
High-speed Diffie-Hellman,

part 2

D. J. Bernstein

University of Illinois at Chicago



Classic question about the

Diffie-Hellman system:

How quickly can we compute

nth powers mod p?

“Modular exponentiation.”

Assume standard prime p;

e.g. p = 2262
� 5081.

How quickly can we compute

g

n mod 2262
� 5081,

given integers g; n?



This talk asks

the analogous question

for elliptic-curve Diffie-Hellman:

How quickly can we compute

nth multiples in an

elliptic-curve group?

“Elliptic-curve

scalar multiplication.”

Assume standard field

and standard elliptic curve.



e.g. NIST P-224: the elliptic curve

y

2 = x

3
� 3x + a6 over Z=p.

Here p = 2224
� 296 + 1

and a6 = 18958286285566608
00040866854449392
64155046809686793
21075787234672564.

e.g. NIST P-256: the elliptic curve

y

2 = x

3
� 3x+ � � � over Z=p where

p = 2256
� 2224 + 2192 + 296

� 1.

e.g. Curve25519: the elliptic curve

y

2 = x

3 + 486662x2 + x over Z=p

where p = 2255
� 19.



Your task: Given (x; y) on curve,

and given integer n � 0,

compute nth multiple of (x; y)

in the elliptic-curve group.

Warning: Answer is not (nx; ny)

unless you’re extremely lucky.

Elliptic-curve point addition

is not vector addition;

(x; y) + (x0; y0) is almost never

(x + x

0

; y + y

0).

Can emphasize this by changing

notation: +, �, [n], etc. But

this talk uses simplified notation.



Similar tasks are critical

for elliptic-curve signatures.

e.g. Schnorr signatures,

unfortunately patented:

Signer has secret key n,

public key nB.

To sign m: choose random z,

uniform in f0; 1; : : : ;#hBi � 1g;

compute r = SHA-256(zB;m);

compute s = z + rn mod #hBi;

send (m; r; s).

To verify (m; r; s): Check

r = SHA-256(sB � rnB;m).



Multiples via additions

Typical recursive formulas:

2P = P+P . 3P = 2P+P .

4P = 2P+2P . 5P = 3P+2P .

6P = 3P+3P . 7P = 5P+2P .

2nP = 7P+(n�7)P if 4�n<8.

(2n+1)P = 2nP+P if 4�n<8.

(4n+1)P = 4nP+P if 4�n<8.

(4n+3)P = 4nP+3P if 4�n<8.

2nP = nP+nP if 8 � n.

(8n+1)P = 8nP+P if 4 � n.

(8n+3)P = 8nP+3P if 4 � n.

(8n+5)P = 8nP+5P if 4 � n.

(8n+7)P = 8nP+7P if 4 � n.



This “addition chain”

(“length-3 sliding windows”)

uses � lgn doublings and

� 0:25 lgn more additions

to compute nP for average n.

e.g. � 320 additions for

average n 2

�

0; 1; : : : ; 2256
� 1

	

.

Some easy improvements from

fast negation on elliptic curves:

(16n� 7)P = 16nP � 7P , etc.

Also use “endomorphisms” for

“Koblitz curves,” “GLV curves.”

More complicated methods

replace 0:25 by � 1=lg lgn.



Explicit doubling formulas

On curve y2 = x

3
� 3x+ a6:

2(x; y) = (x00; y00) where

� = (3x2
� 3)=2y,

x

00 = �

2
� 2x,

y

00 = �(x� x

00)� y.

7 subs etc., 2 squarings,

1 more mult, 1 division.

How do we divide efficiently

in a finite field?



f=g = fg

p�2 in prime field Z=p.

Can compute gp�2 with

� lg p squarings and

� (lg p)=lg lg p more mults.

e.g. p = 2224
� 296 + 1:

223 squarings, 11 more mults.

More generally, f=g = fg

q�2

in any field of size q.

There are faster division methods

(e.g. “Euclid”—beware timing

attacks!); smaller “I/M ratio.”

Special methods for some fields.



Speedup: delay divisions

Division costs many mults

even with fastest division methods.

Save time by delaying divisions.

Naive division-delay method:

Store field elements as fractions

until end of computation.

Divide once before output.

Mult fractions with 2 field mults.

Divide fractions with 2 field mults.

Add fractions with 3 field mults.



Speedup: unify denominators

For elliptic-curve doubling,

have denominator 2y

in � = (3x2
� 3)=2y;

denominator (2y)2

in x

00 = �

2
� 2x;

denominator (2y)3

in y

00 = �(x� x

00)� y.

Subsequent computations will

perform separate computations

on the denominators (2y)2; (2y)3

of x00; y00.

Save time by manipulating

denominators together.



“Jacobian coordinates”:

Store (x; y; z) to represent

elliptic-curve point (x=z2
; y=z

3).

2(x=z2
; y=z

3) = (x00; y00) where

� = (3(x=z2)2 � 3)=2(y=z3)

= �=2yz with � = 3x2
� 3z4;

x

00 = �

2
� 2(x=z2)

= (�2
� 8xy2)=(2yz)2;

y

00 = �((x=z2)� x

00)� (y=z3)

= (12xy2
���

3
� 8y4)=(2yz)3.



2(x=z2
; y=z

3) = (x2=z
2
2 ; y2=z

3
2)

where z2 = 2yz,

� = 3x2
� 3z4,

x2 = �

2
� 8xy2,

y2 = �(4xy2
� x2)� 8y4.

Easily compute with 6 squarings,

3 more mults: x2, z2, z4, y2, y4,

yz, xy2, �2, �(� � �).

Also some subs, doublings, etc.

Use fast field arithmetic:

e.g., can delay carries and

reductions in computing y2.



Speedup: difference of squares

Can compute 3x2
� 3z4 as

3(x� z

2)(x + z

2).

Replace 3 squarings by 1 mult,

1 squaring. Revised total:

4 squarings, 4 more mults.

Note:

3x2
� 3z4 came from 3x2

� 3,

derivative of x3
� 3x+ a6.

Wouldn’t have same speedup

for, e.g., x3
� 5x+ a6.



Speedup: f2
; g

2
; 2fg

After computing f

2 and g

2

can compute 2fg

as (f + g)2 � f

2
� g

2.

In particular:

After computing y

2 and z

2

can compute 2yz

as (y + z)2 � y

2
� z

2.

Replace 1 mult with 1 squaring.

Revised total: 5 squarings,

3 more mults.



Explicit addition formulas

Similar speedups in formulas

for adding distinct points.

5 squarings, 11 more mults.

Again some opportunities

to delay carries, etc.



Speedup: cache results

In adding (x1=z
2
1 ; y1=z

3
1)

to (x2=z
2
2 ; y2=z

3
2),

compute many intermediates,

including z

2
1 ; z

3
1 .

Often add same point again

to a different point;

can reuse z2
1 ; z

3
1 .

“Chudnovsky coordinates.”



Speedup: delay fewer divisions?

Faster divisions sometimes justify

delaying fewer divisions.

e.g. Do we really need

fractions for P; 3P; 5P; 7P?

Can convert P; 3P; 5P; 7P

out of Jacobian coordinates

with one division, several mults.

Then save mults in every

addition of P; 3P; 5P; 7P .

“Mixed coordinates.”

Sometimes worthwhile,

depending on division speed.



Montgomery coordinates

On elliptic curves with

“Montgomery form”

y

2 = x

3 + a2x
2 + x,

preferably with small (a2 � 2)=4:

n(x1; : : :) = (x
n

=z

n

; : : :) where

z1 = 1; x2m = (x2
m

� z

2
m

)2;

z2m=4x
m

z

m

(x2
m

+a2xmzm+z2
m

);

x2m+1=4(x
m

x

m+1�zmzm+1)
2;

z2m+1=4(x
m

z

m+1�zmxm+1)
2
x1.

Can also figure out y,

or use cryptographic protocols

that ignore y.



x

m

�� %%JJJJJJ
z

m

yytttttt

��

x

m+1

%%JJJJJJ

��

z

m+1

yytttttt

��

+

����
,,XXXXXXXXXXXXXXXXXXXXXX

�

���� %%JJ
JJ

JJ
J +

��

�

��

�

,,

�� %%JJ
JJ

JJ
J �

��yytt
tt

tt
t

�

�� %%JJ
JJ

JJ
J �

��yytt
tt

tt
t

�

��

�

��

��

+

����

�

����

�

a2�2
4

��

�

��

�

��

+

��

�x1

��

�

��
x2m z2m x2m+1 z2m+1



Assuming (a2 � 2)=4 small,

main operations are

4 squarings, 5 more mults

for each bit of n.

Compare to Jacobian coordinates:

each bit of n has

5 squarings, 3 more mults,

and on occasion

5 more squarings, 11 more mults.

Montgomery form is better

if n is not gigantic.



Choosing curves

Traditional algorithm design:

Have a function f .

Want fastest algorithm

that computes f .

Cryptographic algorithm design:

Have gigantic collection of

apparently-safe functions f .

Want fastest algorithm

that computes some f .



Elliptic-curve Diffie-Hellman

could use any elliptic curve E

over any finite field F
q

.

Some choices of E;F
q

are better than others.

Higher speed: easier to compute

nth multiples in E(F
q

).

Higher security: harder to find

n given an nth multiple,

i.e., to solve ECDLP.

Lower bandwidth. Etc.

How do we choose E;F
q

?

Which curves are best?



Occasionally an application has

different criteria for E;F
q

.

e.g. Some cryptographic protocols

use “pairings” and need

specific “embedding degrees.”

For simplicity I’ll focus on

traditional protocols:

Diffie-Hellman, ECDSA, etc.

Can also consider, e.g.,

genus-2 hyperelliptic curves.

2006.09: New speed records,

faster than elliptic curves.

For simplicity I’ll focus on

the elliptic-curve case.



Field size?

The group E(F
q

) has

� q elements.

“Generic” algorithms such as

“Pollard’s rho method”

solve ECDLP using

� q

1=2 simple operations.

Highly parallelizable.

e.g. � 240 simple operations

to solve ECDLP if q � 280.

Reject q: too small.



q � 2256 is clearly safe

against these ECDLP algorithms.

� 2128 simple operations

would need massive advances

in computer technology.

These algorithms can finish early,

but almost never do: e.g., chance

� 2�56 of finishing after 2100

simple operations. No serious risk.

Popular today: q � 2160.

Somewhat faster arithmetic.

I don’t recommend this; I can

imagine 280 simple operations.



Field degree?

Field size q is a power of field

characteristic p. Many possibilities

for field degree (lg q)=(lg p).

e.g. q = 2255
� 19; prime;

p = 2255
� 19; degree 1.

e.g. q = (261
� 1)5;

p = 261
� 1; degree 5.

e.g. q = 2255;

p = 2; degree 255.

What’s the best degree?



Degree > 1 has a possible security

problem: “Weil descent.”

e.g. Degree divisible by 4 allows

ECDLP to be solved with only

about q0:375 simple operations.

Need to increase q, outweighing

all known benefits.

Other degrees are at risk too.

Exactly which curves are broken

by Weil descent? Very complicated

answer; active research area.

Maybe we can be comfortable with

degree > 1 despite Weil descent.



Standard argument for using

small characteristic, large degree:

Arithmetic on polynomials mod 2

is just like integer arithmetic

but faster: skip the carries.

Also have fast squarings.

Use fast curve endomorphisms.

Fewer bit operations

for scalar multiplication

in characteristic 2,

compared to large characteristic.

Speculation: � 4 times fewer?



Counterargument:

Typical CPU includes circuits

for integer multiplication,

not for poly mult mod 2.

Large char is slower in hardware

than char 2, but

char 2 is slower in software

than large char.

Hard for char-2 standards

to survive.

For simplicity I’ll assume

that the counterargument wins:

we won’t use char 2.



Medium char? Similar problems.

e.g. q = (231
� 1)8, p = 231

� 1,

degree 8, polys with coefficients in
�

0; 1; : : : ; 231
� 2

	

:

Coefficient products fit

comfortably into 64 bits.

Also have fast inversion.

But hard to take advantage of

128-bit products; and hard to fit

into 53-bit floating-point products.

Big speed loss on many CPUs,

outweighing all known benefits.



Prime shape?

Assume prime field from now on;

F
q

= F
p

= Z=p.

How to choose prime p? Three

common choices in literature.

“Binomial”:

e.g., 2255
� 19.

“Radix 232”:

e.g., NIST prime 2224
� 296 + 1.

“Random”:

no special shape for p.



Classic Diffie-Hellman had an

argument for random primes.

Here’s the argument:

Best attack so far, namely

modern “NFS” index calculus,

is faster for special primes,

requiring larger primes,

outweighing any possible speedup.

Argument disappears for

elliptic curves over prime fields.

Attacker doesn’t seem to

benefit from special primes;

don’t have anything like NFS.



So choose prime

very close to power of 2,

saving time in field operations.

Binomial primes allow very fast

reduction, as we’ve seen.

Radix-232 primes also allow

very fast reduction if

integer arithmetic uses radix 232.

Otherwise not quite as fast.

Different CPUs want

different choices of radix,

so binomial primes are better.



Which power of 2?

Primes not far below 232w

allow field elements to fit

in 4w bytes, minimal waste.

Comfortable security, w = 8:

2253 + 39, 2253 + 51, 2254 + 79,

2255
� 31, 2255

� 19, 2255 + 95.

I recommend 2255
� 19.



Subgroup shape?

Elliptic-curve Diffie-Hellman

uses standard base point B.

Bob’s secret key is n;

Bob’s public key is nB.

Order of B in group

should be a prime ` � q.

Otherwise ECDLP is accelerated

by “Pohlig-Hellman algorithm.”

This constrains curve choice:

number of elements of E(F
q

)

must have large prime divisor `.



Quickly compute #E(F
q

),

number of elements of E(F
q

),

using “Schoof’s algorithm.”

Then can check for `.

Also enforce other constraints:

gcd
�

#E(F
q

); q
	

= 1 to stop

“anomalous curve attack”;

large prime divisor of

“twist order” 2q + 2�#E(F
q

)

to stop “twist attacks”;

large embedding degree

to eliminate “pairings.”



Curve shape?

How to choose a1; a2; a3; a4; a6

defining elliptic curve

y

2 + a1xy + a3y =

x

3 + a2x
2 + a4x+ a6?

See some coefficients

in explicit formulas

for curve operations.

e.g. Derivative 3x2 + 2a2x+ a4

usually creates mult by a2.

But formulas vary: e.g.,

mult by (a2 � 2)=4

in Montgomery’s formulas.



Save time in these formulas

by specializing coefficients.

e.g. y2 = x

3
� 3x+ a6.

e.g. y2 = x

3 + a2x
2 + x.

Many other interesting choices.

Warning: some specializations can

force low embedding degree or

otherwise create security problems.

Remember to check

all the security conditions.



Note on comparing curves

and comparing explicit formulas:

Count CPU cycles, not field ops!

Otherwise you make bad choices.

Reality: mult by small constant

is as expensive as several adds.

Reality: square-to-multiply ratio

is 2=3 for a typical field,

not the often-presumed 4=5.

Reality: a2 + b

2 + 

2 is

faster than (a2
; b

2
; 

2).



Current speed records use

curve y2 = x

3 + a2x
2 + x

with small (a2 � 2)=4.

Additional advantages:

easily resist timing attacks;

easily eliminate y.

a2 = 486662 has near-prime

curve order and twist order.

“Curve25519”:

http://cr.yp.to/ecdh.html



How fast is this curve?

Let’s focus on Pentium M.

Each Pentium M cycle does

� 1 floating-point operation:

fp add or fp sub or fp mult.

Current scalar-multiplication

software for Curve25519:

640838 Pentium M cycles.

589825 fp ops; � 0:92 per cycle.

Understand cycle counts fairly well

by simply counting fp ops.



Main loop: 545700 fp ops.

2140 times 255 iterations.

Reciprocal: 43821 fp ops.

41148 = 254 � 162 for 254 squares;

2673 = 11 � 243 for 11 more mults.

Additional work: 304 fp ops.

Inside one main-loop iteration:

80 = 8 � 10 for 8 adds/subs;

55 for mult by 121665;

648 = 4 � 162 for 4 squarings;

1215 = 5 � 243 for 5 more mults;

142 for bx[1] + (1� b)x[0] etc.



An integer mod 2255
� 19 is

represented in radix 225:5

as a sum of 10 fp numbers

in specified ranges.

Add/sub: 10 fp adds/subs.

Delay reductions and carries!

Mult: poly mult using

102 fp mults, 92 fp adds;

reduce using 9 fp mults, 9 fp adds;

carry 11 times, each 4 fp adds;

overall 2 � 102 + 4 � 10 + 3 fp ops.

Squaring: first do 9 fp doublings;

then eliminate 92 + 9 fp ops;

overall 1 � 102 + 6 � 10 + 2 fp ops.


