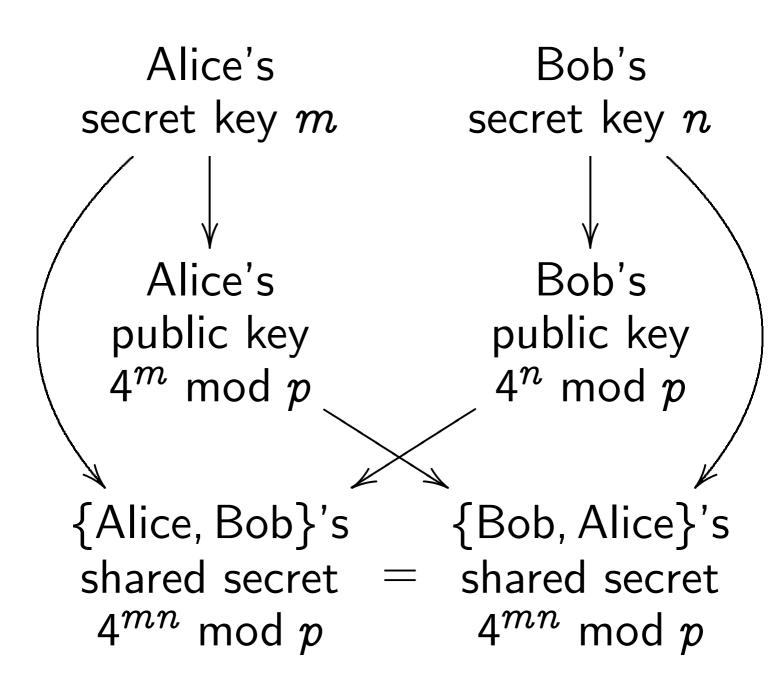
High-speed Diffie-Hellman, part 1

D. J. Bernstein

University of Illinois at Chicago

Can quickly compute $4^n \mod 2^{262} - 5081$ given $n \in \{0, 1, 2, \dots, 2^{256} - 1\}$. Similarly, can quickly compute $4^{mn} \mod 2^{262} - 5081$ given nand $4^m \mod 2^{262} - 5081$.

"Discrete-logarithm problem": given $4^n \mod 2^{262} - 5081$, find n. Is this easy to solve? Diffie-Hellman secret-sharing system using $p = 2^{262} - 5081$:



Can attacker find $4^{mn} \mod p$?

Bad news: DLP can be solved at surprising speed! Attacker can find *m* and *n* by "index calculus."

To protect against this attack, replace $2^{262} - 5081$ with a much larger prime. *Much* slower arithmetic.

Alternative: Elliptic-curve cryptography. Replace $\{1, 2, ..., 2^{262} - 5082\}$ with a comparable-size "safe elliptic-curve group." *Somewhat* slower arithmetic.

An elliptic curve over R

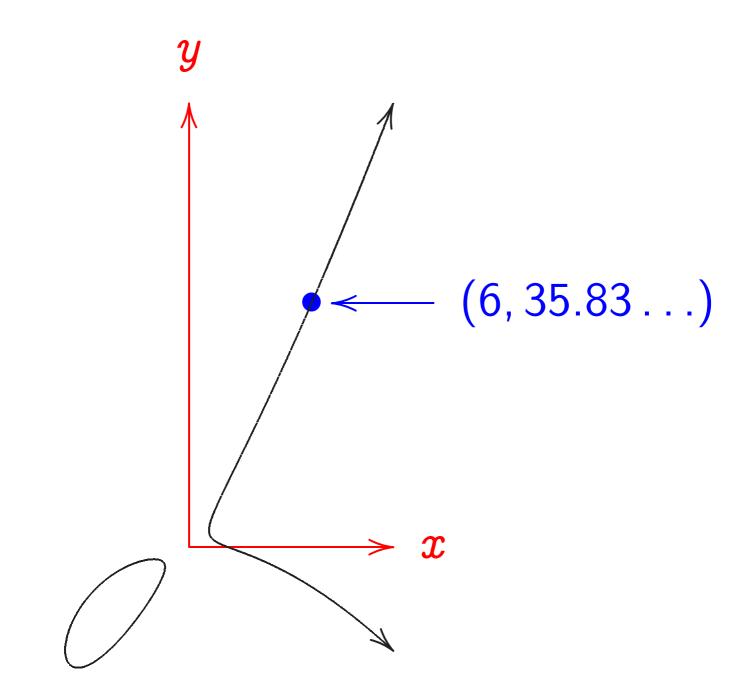
Consider all pairs of real numbers x, ysuch that $y^2 - 5xy = x^3 - 7$.

The "points on the elliptic curve $y^2 - 5xy = x^3 - 7$ over **R**" are those pairs and one additional point, ∞ .

i.e. The set of points is $\{(x,y)\in {f R} imes {f R}:\ y^2-5xy=x^3-7\}\cup\{\infty\}.$

(**R** is the set of real numbers.)

Graph of this set of points:



Don't forget ∞ . Visualize ∞ as top of y axis. There is a standard definition of 0, -, + on this set of points. Magical fact: The set of points is a "commutative group"; i.e., these operations 0, -, +satisfy every identity satisfied by **Z**.

e.g. All $P, Q, R \in \mathbf{Z}$ satisfy (P+Q) + R = P + (Q+R),so all curve points P, Q, Rsatisfy (P+Q) + R = P + (Q+R).

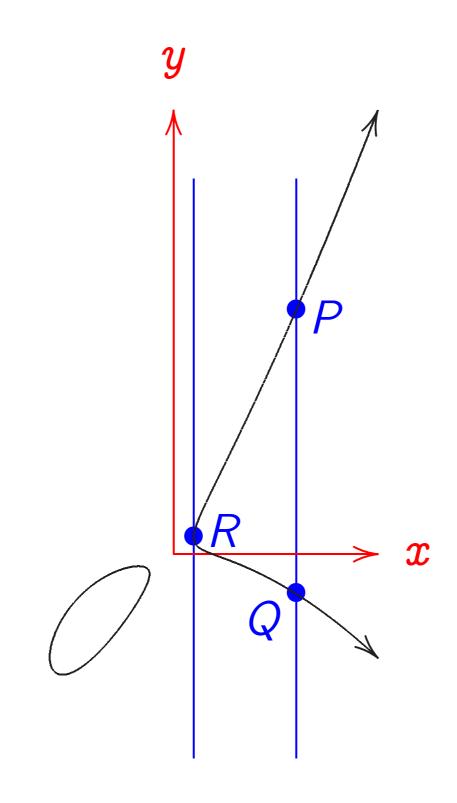
(**Z** is the set of integers.)

Visualizing the group law

 $0 = \infty; -\infty = \infty.$

Distinct curve points P, Qon a vertical line have -P = Q; $P + Q = 0 = \infty$.

A curve point Rwith a vertical tangent line has -R = R; $R + R = 0 = \infty$.

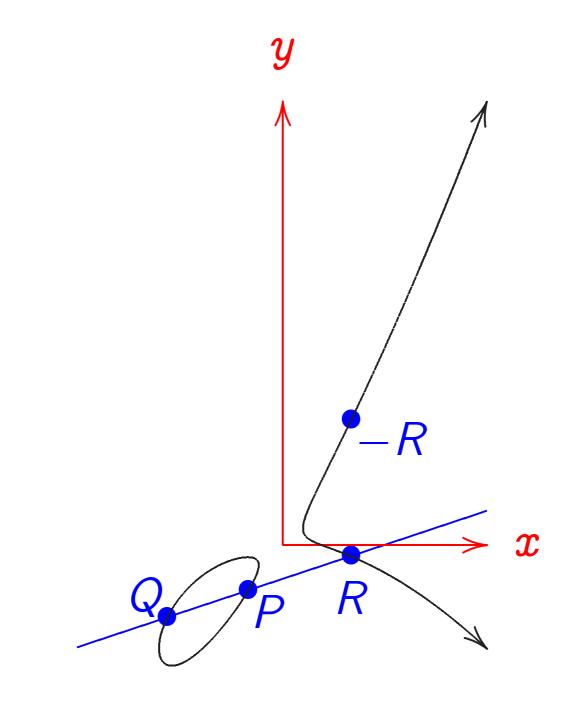


Distinct curve points P, Q, R on a line have P + Q = -R; $P + Q + R = 0 = \infty$.

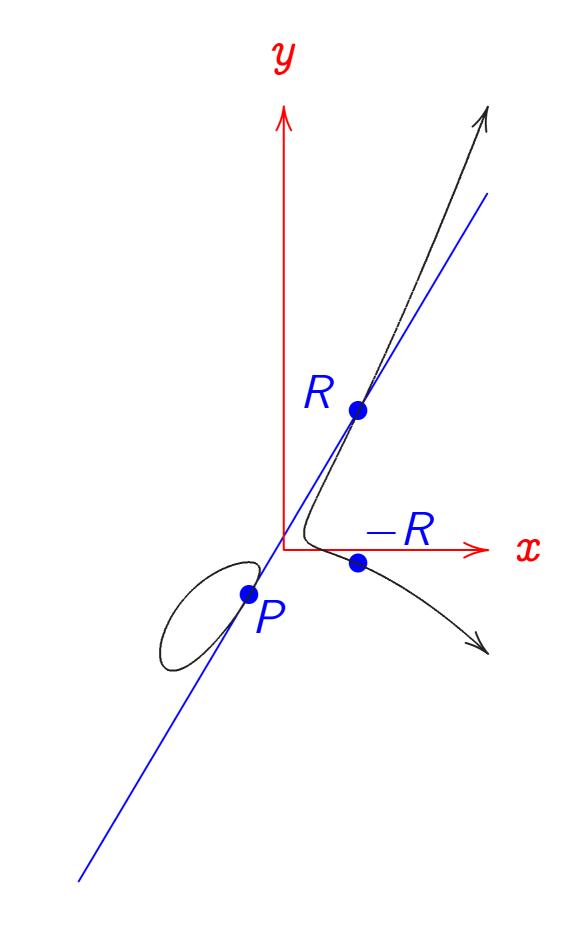
Distinct curve points P, Ron a line tangent at Phave P + P = -R; $P + P + R = 0 = \infty$.

A non-vertical line with only one curve point Phas P + P = -P; P + P + P = 0.

Here P + Q = -R:



Here P + P = -R:



Curve addition formulas

Easily find formulas for + by finding formulas for lines and for curve-line intersections.

 $egin{aligned} &x
eq x'\colon (x,y)+(x',y')=(x'',y'')\ & ext{where }\lambda=(y'-y)/(x'-x),\ &x''=\lambda^2-5\lambda-x-x',\ &y''=5x''-(y+\lambda(x''-x)). \end{aligned}$

 $egin{aligned} &2y
eq 5x:\ (x,y)+(x,y)=(x'',y'')\ & ext{where }\lambda=(5y+3x^2)/(2y-5x),\ &x''=\lambda^2-5\lambda-2x,\ &y''=5x''-(y+\lambda(x''-x)). \end{aligned}$

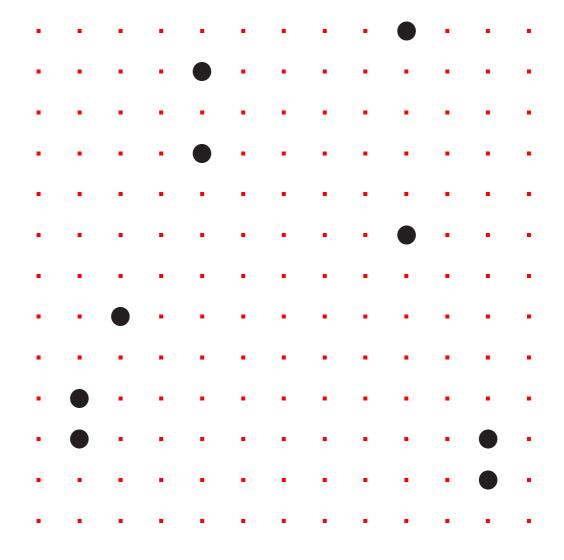
 $(x, y) + (x, 5x - y) = \infty.$

An elliptic curve over $\mathbf{Z}/13$

Consider the prime field $\mathbf{Z}/13 = \{0, 1, 2, \dots, 12\}$ with $-, +, \cdot$ defined mod 13.

The "set of points on the elliptic curve $y^2 - 5xy = x^3 - 7$ over $\mathbf{Z}/13$ " is $\{(x, y) \in \mathbf{Z}/13 imes \mathbf{Z}/13:$ $y^2 - 5xy = x^3 - 7\} \cup \{\infty\}.$

Graph of this set of points:



As before, don't forget ∞ .

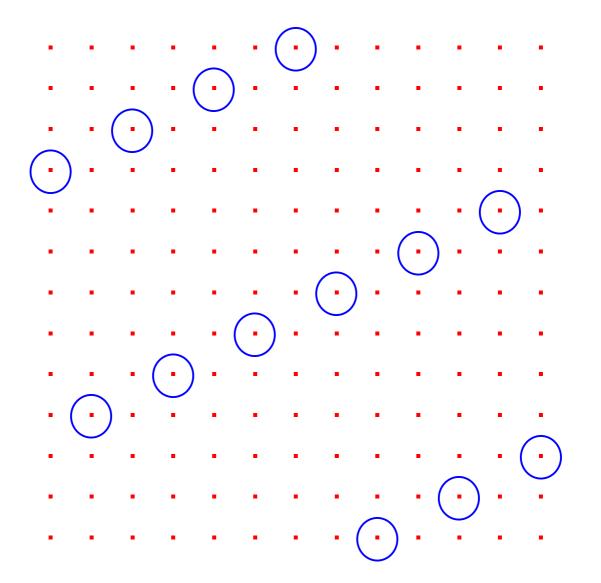
The set of curve points is a commutative group with standard definition of 0, -, +.

Can visualize 0, -, + as before. Replace lines over **R** by lines over **Z**/13.

Warning: tangent is defined by derivatives; hard to visualize.

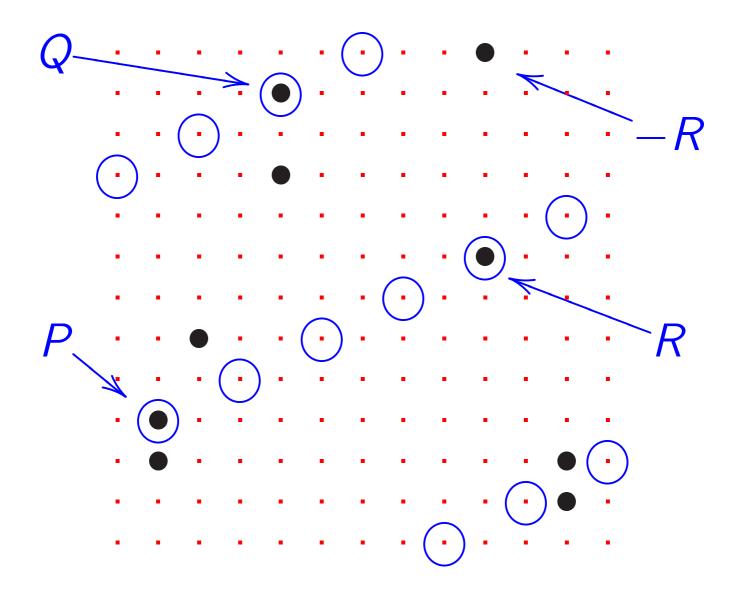
Can define 0, -, +using same formulas as before.

Example of line over $\mathbf{Z}/13$:



Formula for this line: y = 7x + 9.

P + Q = -R:



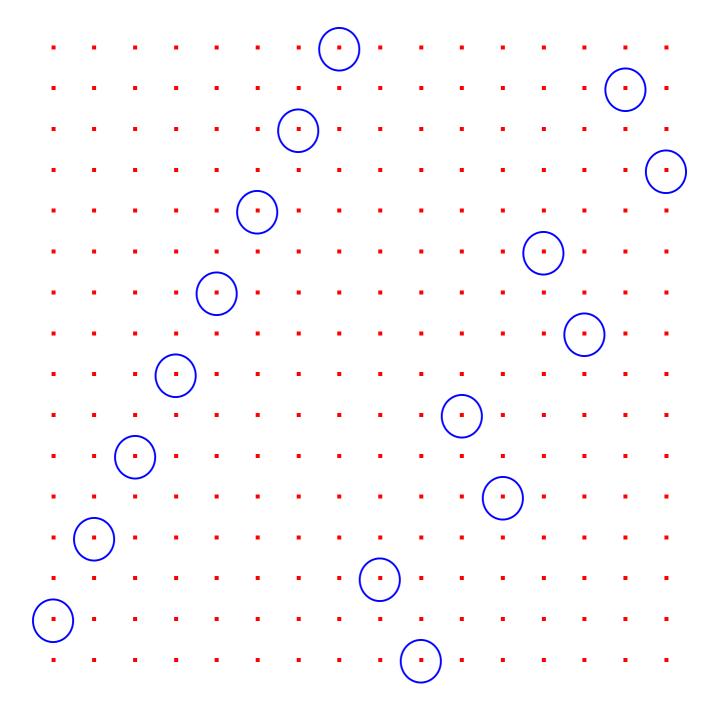
An elliptic curve over \mathbf{F}_{16}

Consider the non-prime field $(\mathbf{Z}/2)[t]/(t^4 - t - 1) = \{$ $0t^3 + 0t^2 + 0t^1 + 0t^0$ $0t^3 + 0t^2 + 0t^1 + 1t^0$. $0t^3 + 0t^2 + 1t^1 + 0t^0$. $0t^3 + 0t^2 + 1t^1 + 1t^0$ $0t^3 + 1t^2 + 0t^1 + 0t^0$. $1t^3 + 1t^2 + 1t^1 + 1t^0$ of size $2^4 = 16$.

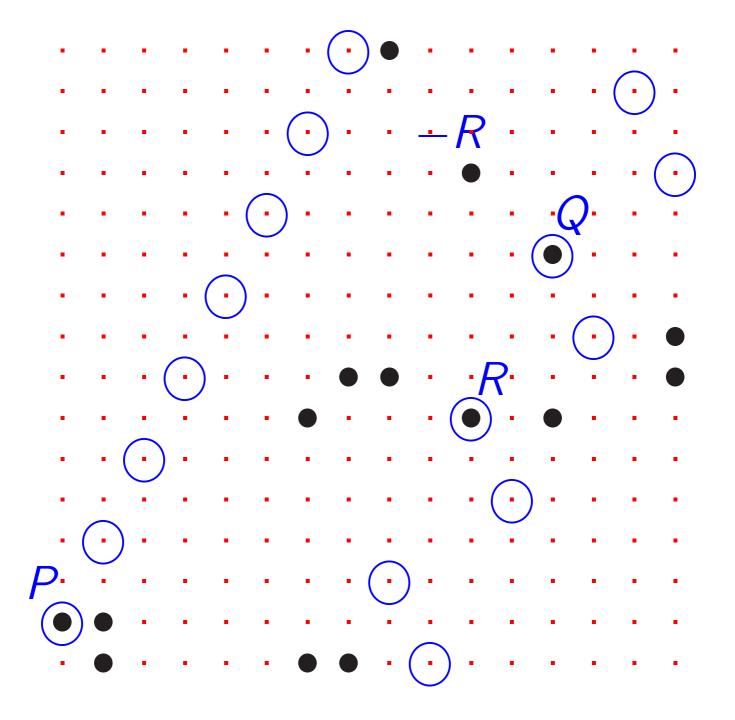
Graph of the "set of points on the elliptic curve $y^2 - 5xy = x^3 - 7$ over $(\mathbf{Z}/2)[t]/(t^4 - t - 1)$ ":

•		•	•	•	•	•	÷		•	•	•	•	•	•	÷
÷	÷	÷	•	•	•	•	÷	•	•	•	÷	•	÷	•	÷
•	•	•	•	•	•	•	•	•	•	•	•	•	÷	•	÷
•	•	1	•	•	•	•	•	•	•		•	•	1	•	•
•	1	1	•	•	•	•	•	1	•	•	•	•	1	•	1
1	1	1	•	•	•	•	1	1	•	•	1		1	•	1
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	1	•		•	•	•	•	•	•	•	•	1	•	
		-										-			
		1								•		•	1		
:	:	÷	•	•	•		•	•	•		÷		÷	•	
•	•									-					•
•	•	:	:	:	•	•	•	•	:	•	:	•	:	:	•
:	:	:	•	:	•	•	•	•	•	•	:	•	:	:	•
•	•	•				•	•	•		•	•	•			•

Line y = tx + 1:



P + Q = -R:



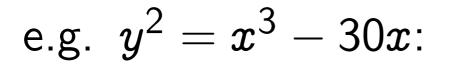
More elliptic curves

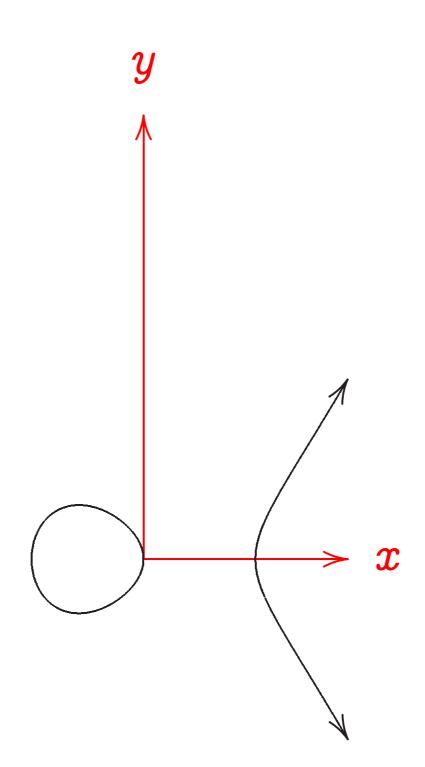
Can use any field k.

Can use any nonsingular curve $y^2 + a_1xy + a_3y =$ $x^3 + a_2x^2 + a_4x + a_6.$

"Nonsingular": no $(x, y) \in k \times k$ simultaneously satisfies $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$ and $2y + a_1x + a_3 = 0$ and $a_1y = 3x^2 + 2a_2x + a_4$.

Easy to check nonsingularity. Almost all curves are nonsingular when k is large.





 $\{(x,y)\in k imes k:$ $y^2 + a_1 x y + a_3 y =$ $x^3 + a_2 x^2 + a_4 x + a_6 \} \cup \{\infty\}$ is a commutative group with standard definition of 0, -, +. Points on line add to 0with appropriate multiplicity. Group is usually called "E(k)" where E is "the elliptic curve $y^2 + a_1 x y + a_3 y =$ $x^3 + a_2 x^2 + a_4 x + a_6$."

Fairly easy to write down explicit formulas for 0, -, + as before.

Using explicit formulas can quickly compute *n*th multiples in E(k) given $n \in \{0, 1, 2, ..., 2^{256} - 1\}$ and given E, k with $\#k \approx 2^{256}$.

(How quickly? We'll study this later.)

"Elliptic-curve discrete-logarithm problem" (ECDLP): given points P and nP, find n.

Can find curves where ECDLP seems extremely difficult: $\approx 2^{128}$ operations.

See "Handbook of elliptic and hyperelliptic curve cryptography" for much more information.

Two examples of elliptic curves useful for cryptography:

"NIST P-256": $E(\mathbf{Z}/p)$ where p is the prime $2^{256}-2^{224}+2^{192}+2^{96}-1$ and E is the elliptic curve $y^2 = x^3 - 3x + (a \text{ particular constant}).$

"Curve25519": $E(\mathbf{Z}/p)$ where p is the prime $2^{255} - 19$ and E is the elliptic curve $y^2 = x^3 + 486662x^2 + x$.

Fast arithmetic

Someone specifies k.
 How quickly can we
 perform arithmetic in k?

2. Someone specifies k and E. How quickly can we compute *n*th multiples in E(k)?

How quickly can we compute nth multiples in E(k) if we choose k and E?

Some examples of finite fields:

$$f Z/(2^{255}-19).\ (f Z/(2^{61}-1))[t]/(t^5-3).\ (f Z/223))[t]/(t^{37}-2).\ (f Z/2)[t]/(t^{283}-t^{12}-t^7-t^5-1).$$

How quickly can we add, subtract, multiply in these fields?

Answer will depend on platform: AMD Athlon, Sun UltraSPARC IV, Intel 8051, Xilinx Spartan-3, etc. Warning: different platforms often favor different fields!

Fast integer arithmetic

How to multiply big integers?

Child's answer: Use polynomial with coefficients in {0, 1, ..., 9} to represent integer in radix 10.

With this representation, multiply integers in two steps: 1. Multiply polynomials.

2. "Carry" extra digits.

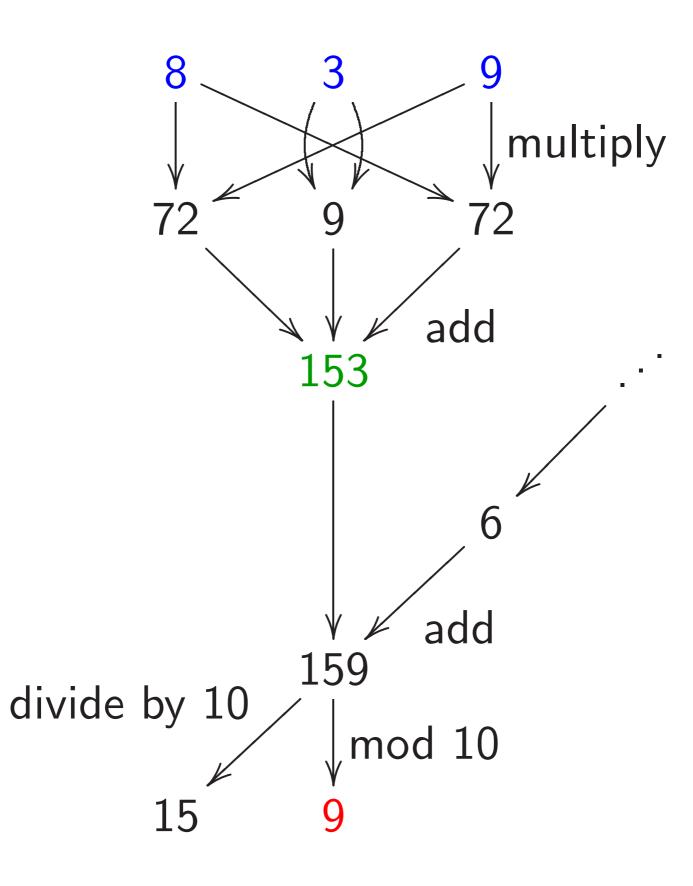
Polynomial multiplication involves *small* integers. Have split one big multiplication into many small operations. Example of representation:

 $839 = 8 \cdot 10^2 + 3 \cdot 10^1 + 9 \cdot 10^0 =$ value (at t = 10) of polynomial $8t^2 + 3t^1 + 9t^0$.

Squaring: $(8t^2 + 3t^1 + 9t^0)^2 =$ $64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0$. Carrying: $64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0$: $64t^4 + 48t^3 + 153t^2 + 62t^1 + 1t^0$ $64t^4 + 48t^3 + 159t^2 + 2t^1 + 1t^0$ $64t^4 + 63t^3 + 9t^2 + 2t^1 + 1t^0$: $70t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0$ $7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0$

In other words, $839^2 = 703921$.

What operations were used here?



Scaled variation:

839 = 800 + 30 + 9 =value (at t = 1) of polynomial $800t^2 + 30t^1 + 9t^0$.

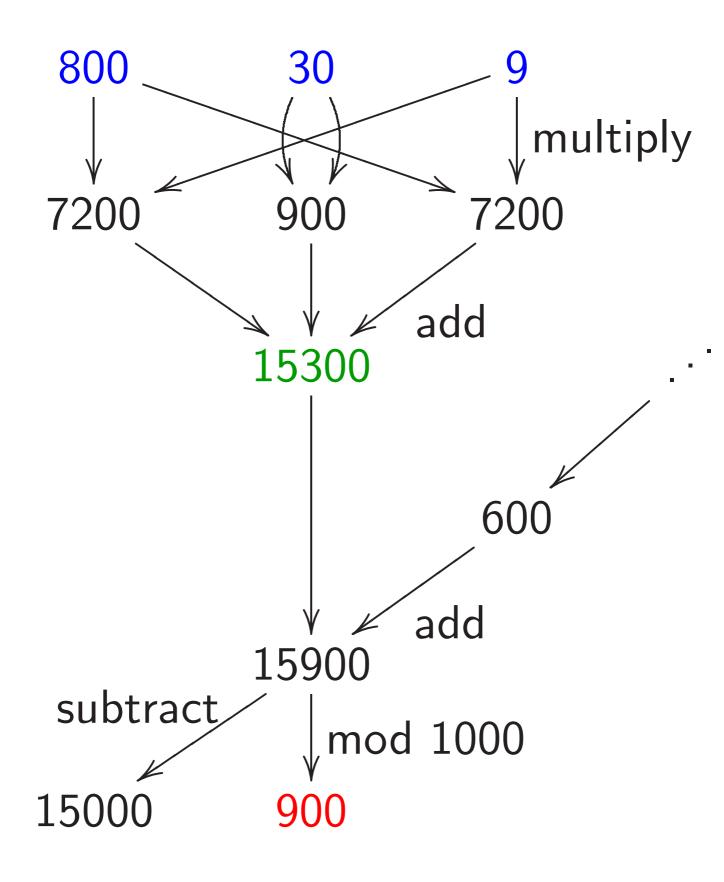
Squaring: $(800t^2 + 30t^1 + 9t^0)^2 =$ $640000t^4 + 48000t^3 + 15300t^2 +$ $540t^1 + 81t^0$. Carrying: $640000t^4 + 48000t^3 + 15300t^2 +$ $540t^1 + 81t^0$; $640000t^4 + 48000t^3 + 15300t^2 +$

 $620t^1 + \mathbf{1}t^0;$

 $700000t^5 + 0t^4 + 3000t^3 + 900t^2 + 20t^1 + 1t^0.$

. . .

What operations were used here?



Speedup: double inside squaring

Squaring $\dots + f_2 t^2 + f_1 t^1 + f_0 t^0$ produces coefficients such as $f_4 f_0 + f_3 f_1 + f_2 f_2 + f_1 f_3 + f_0 f_4.$

Compute more efficiently as $2f_4f_0 + 2f_3f_1 + f_2f_2$. Or, slightly faster, $2(f_4f_0 + f_3f_1) + f_2f_2$ Or, slightly faster, $(2f_4)f_0 + (2f_3)f_1 + f_2f_2$ after precomputing $2f_1, 2f_2, \ldots$ Have eliminated pprox 1/2 of the work if there are many coefficients.

Speedup: allow negative coeffs

Recall $159 \mapsto 15, 9$. Scaled: $15900 \mapsto 15000, 900$.

Alternative: $159 \mapsto 16, -1$. Scaled: $15900 \mapsto 16000, -100$.

Use digits {-5, -4, ..., 4, 5} instead of {0, 1, ..., 9}. Several small advantages: easily handle negative integers; easily handle subtraction; reduce products a bit.

Speedup: delay carries

Computing (e.g.) big $ab + c^2$: multiply a, b polynomials, carry, square c poly, carry, add, carry.

e.g. a = 314, b = 271, c = 839: $(3t^2 + 1t^1 + 4t^0)(2t^2 + 7t^1 + 1t^0) =$ $6t^4 + 23t^3 + 18t^2 + 29t^1 + 4t^0$; carry: $8t^4 + 5t^3 + 0t^2 + 9t^1 + 4t^0$.

As before $(8t^2 + 3t^1 + 9t^0)^2 =$ $64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0;$ $7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0.$

+: $7t^5 + 8t^4 + 8t^3 + 9t^2 + 11t^1 + 5t^0$; $7t^5 + 8t^4 + 9t^3 + 0t^2 + 1t^1 + 5t^0$. Faster: multiply *a*, *b* polynomials, square *c* polynomial, add, carry.

 $(6t^{4} + 23t^{3} + 18t^{2} + 29t^{1} + 4t^{0}) + (64t^{4} + 48t^{3} + 153t^{2} + 54t^{1} + 81t^{0}) = 70t^{4} + 71t^{3} + 171t^{2} + 83t^{1} + 85t^{0};$ $7t^{5} + 8t^{4} + 9t^{3} + 0t^{2} + 1t^{1} + 5t^{0}.$

Eliminate intermediate carries. Outweighs cost of handling slightly larger coefficients.

Important to carry between multiplications (and squarings) to reduce coefficient size; but carries are usually a bad idea for additions, subtractions, etc. Speedup: polynomial Karatsuba

Computing product of polys f, gwith (e.g.) deg f < 20, deg g < 20: 400 coefficient mults, 361 coefficient adds.

Faster: Write f as $F_0 + F_1 t^{10}$ with deg $F_0 < 10$, deg $F_1 < 10$. Similarly write g as $G_0 + G_1 t^{10}$.

Then $fg = (F_0 + F_1)(G_0 + G_1)t^{10}$ + $(F_0G_0 - F_1G_1t^{10})(1 - t^{10}).$ 20 adds for $F_0 + F_1$, $G_0 + G_1$. 300 mults for three products $F_0G_0, F_1G_1, (F_0 + F_1)(G_0 + G_1).$ 243 adds for those products. 9 adds for $F_0G_0 - F_1G_1t^{10}$ with subs counted as adds and with delayed negations. 19 adds for $\cdots (1 - t^{10})$. 19 adds to finish.

Total 300 mults, 310 adds. Larger coefficients, slight expense; still saves time.

Can apply idea recursively as poly degree grows.

Many other algebraic speedups in polynomial multiplication: Toom, FFT, etc.

Increasingly important as polynomial degree grows. $O(n \lg n \lg \lg n)$ coeff operations to compute *n*-coeff product.

Useful for sizes of *n* that occur in cryptography? Maybe; active research area.

Using CPU's integer instructions

Replace radix 10 with, e.g., 2^{24} . Power of 2 simplifies carries.

Adapt radix to platform.

e.g. Every 2 cycles, Athlon 64 can compute a 128-bit product of two 64-bit integers. (5-cycle latency; parallelize!) Also low cost for 128-bit add.

Reasonable to use radix 2⁶⁰. Sum of many products of digits fits comfortably below 2¹²⁸. Be careful: analyze largest sum. e.g. In 4 cycles, Intel 8051 can compute a 16-bit product of two 8-bit integers. Could use radix 2⁶. Could use radix 2⁸, with 24-bit sums.

e.g. Every 2 cycles, Pentium 4 F3 can compute a 64-bit product of two 32-bit integers. (11-cycle latency; yikes!) Reasonable to use radix 2²⁸.

Warning: Multiply instructions are very slow on some CPUs. e.g. Pentium 4 F2: 10 cycles! Using floating-point instructions

Big CPUs have separate floating-point instructions, aimed at numerical simulation but useful for cryptography.

In my experience, floating-point instructions support faster multiplication (often much, much faster) than integer instructions, except on the Athlon 64. Other advantages: portability; easily scaled coefficients. e.g. Every 2 cycles, Pentium III can compute a 64-bit product of two floating-point numbers, and an independent 64-bit sum.

e.g. Every cycle, Athlon can compute a 64-bit product and an independent 64-bit sum.

e.g. Every cycle, UltraSPARC III can compute a 53-bit product and an independent 53-bit sum. Reasonable to use radix 2²⁴.

e.g. Pentium 4 can do the same using SSE2 instructions.

How to do carries in floating-point registers? (No CPU carry instruction: not useful for simulations.)

Exploit floating-point rounding: add big constant, subtract same constant.

e.g. Given α with $|\alpha| \leq 2^{75}$: compute 53-bit floating-point sum of α and constant $3 \cdot 2^{75}$, obtaining a multiple of 2^{24} ; subtract $3 \cdot 2^{75}$ from result, obtaining multiple of 2^{24} nearest α ; subtract from α .

Reducing modulo a prime

Fix a prime p. The prime field \mathbf{Z}/p is the set $\{0, 1, 2, \dots, p-1\}$ with - defined as $- \mod p$, + defined as $+ \mod p$, \cdot defined as $\cdot \mod p$.

e.g. p = 1000003: 1000000 + 50 = 47 in \mathbf{Z}/p ; -1 = 1000002 in \mathbf{Z}/p ; $117505 \cdot 23131 = 1$ in \mathbf{Z}/p . How to multiply in \mathbf{Z}/p ?

Can use definition: $fg \mod p = fg - p \lfloor fg/p \rfloor$. Can multiply fg by a precomputed 1/p approximation; easily adjust to obtain $\lfloor fg/p \rfloor$. Slight speedup: "2-adic inverse"; "Montgomery reduction."

We can do better: normally *p* is chosen with a special form (or dividing a special form; see "redundant representations") to make *fg* mod *p* much faster. e.g. In Z/1000003: 314159265358 = $314159 \cdot 1000000 + 265358 =$ 314159(-3) + 265358 = -942477 + 265358 =-677119.

Easily adjust to range $\{0, 1, \ldots, p-1\}$ by adding/subtracting a few p's. (Beware timing attacks!)

Speedup: Delay the adjustment; extra *p*'s won't damage subsequent field operations. Can delay carries until after multiplication by 3.

e.g. To square 314159 in $\mathbf{Z}/1000003$: Square poly $3t^5 + 1t^4 + 4t^3 + 1t^2 + 5t^1 + 9t^0$, obtaining $9t^{10} + 6t^9 + 25t^8 + 14t^7 + 48t^6 + 72t^5 + 59t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Reduce: replace $(c_i)t^{6+i}$ by $(-3c_i)t^i$, obtaining $72t^5 + 32t^4 + 64t^3 - 32t^2 + 48t^1 - 63t^0$.

Carry: $8t^6 - 4t^5 - 2t^4 + 1t^3 + 2t^2 + 2t^1 - 3t^0$.

To minimize poly degree, mix reduction and carrying, carrying the top sooner.

e.g. Start from square $9t^{10} + 6t^9 + 25t^8 + 14t^7 + 48t^6 + 72t^5 + 59t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Reduce $t^{10} \rightarrow t^4$ and carry $t^4 \rightarrow t^5 \rightarrow t^6$: $6t^9 + 25t^8 + 14t^7 + 56t^6 - 5t^5 + 2t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Finish reduction: $-5t^5 + 2t^4 + 64t^3 - 32t^2 + 48t^1 - 87t^0$. Carry $t^0 \rightarrow t^1 \rightarrow t^2 \rightarrow t^3 \rightarrow t^4 \rightarrow t^5$: $-4t^5 - 2t^4 + 1t^3 + 2t^2 - 1t^1 + 3t^0$. <u>Speedup: non-integer radix</u>

Consider $Z/(2^{61} - 1)$.

Five coeffs in radix 2^{13} ? $f_4t^4 + f_3t^3 + f_2t^2 + f_1t^1 + f_0t^0$. Most coeffs could be 2^{12} .

Square $\cdots + 2(f_4f_1 + f_3f_2)t^5 + \cdots$. Coeff of t^5 could be $> 2^{25}$.

Reduce: $2^{65} = 2^4$ in $\mathbb{Z}/(2^{61} - 1)$; $\cdots + (2^5(f_4f_1 + f_3f_2) + f_0^2)t^0$. Coeff could be $> 2^{29}$. Very little room for additions, delayed carries, etc.

on 32-bit platforms.

Scaled: Evaluate at t = 1. f_4 is multiple of 2^{52} ; f_3 is multiple of 2^{39} ; f_2 is multiple of 2^{26} ; f_1 is multiple of 2^{13} ; f_0 is multiple of 2⁰. Reduce: $\cdots + (2^{-60}(f_4f_1 + f_3f_2) + f_0^2)t^0.$ Better: Non-integer radix $2^{12.2}$. f_4 is multiple of 2^{49} ; f_3 is multiple of 2^{37} ; f_2 is multiple of 2^{25} ; f_1 is multiple of 2^{13} ; f_0 is multiple of 2^0 . Saves a few bits in coeffs.

More finite fields

Fix a prime p. Fix a poly φ in one variable twith φ irreducible mod p.

The finite field $(\mathbf{Z}/p)[t]/\varphi$ is the set of polynomials $f_{\deg \varphi - 1}t^{\deg \varphi - 1} + \cdots + f_1t^1 + f_0t^0$ with each $f_i \in \mathbf{Z}/p$ and with $-, +, \cdot$ defined modulo p and modulo φ .

 $(\mathbf{Z}/p)[t]/\varphi$ is an "extension" of the prime field \mathbf{Z}/p ; it has "characteristic" p. e.g. 223 is prime, and poly $t^6 - 3$ is irreducible mod 223, so $(\mathbb{Z}/223)[t]/(t^6 - 3)$ is a field. 223⁶ elements of field, namely polynomials $f_5t^5 + f_4t^4 + f_3t^3 + f_2t^2 + f_1t^1 + f_0t^0$ with each $f_i \in \{0, 1, \dots, 222\}$.

After adding, subtracting, multiplying: replace t^6 by 3, replace t^7 by 3t, etc.; and reduce coefficients modulo 223. e.g. $(9t^4 + 1)^2 = 81t^8 + 18t^4 + 1 =$ $243t^2 + 18t^4 + 1 = 18t^4 + 20t^2 + 1$. Have two levels of polynomials when p is large: element of $(\mathbf{Z}/p)[t]/\varphi$ is poly mod φ ; each poly coefficient is integer represented as poly in some radix.

e.g. $f_4t^4 + f_3t^3 + f_2t^2 + f_1t^1 + f_0t^0$ in $(\mathbf{Z}/(2^{61} - 1))[t]/(t^5 - 3)$ could have each coefficient f_i represented as poly of degree < 3 in radix $2^{61/3}$.

When p is small, especially p = 2, many speedups beyond this talk: batching coefficients, using fast Frobenius, et al.