
Efficient arithmetic in finite fields

D. J. Bernstein

University of Illinois at Chicago

Some examples of finite fields:

Z=(2255 � 19).

(Z=(261 � 1))[t]=(t5 � 3).

(Z=223))[t]=(t37 � 2).

(Z=2)[t]=(t283 � t12 � t7 � t5 � 1).

Topic of this talk:

How quickly can we

add, subtract, multiply

in these fields?

Answer will depend on platform:

AMD Athlon, Sun UltraSPARC IV,

Intel 8051, Xilinx Spartan-3, etc.

Warning: different platforms

often favor different fields!

Why do we care?

“Modular exponentiation”:

can quickly compute

4n mod 2262 � 5081

given n 2 �
0; 1; 2; : : : ; 2256 � 1

	
.

Similarly, can quickly compute

4mn mod 2262 � 5081 given n
and 4m mod 2262 � 5081.

Time-savers: fast field mults,

short “addition chains.”

“Discrete-logarithm problem”:

given 4n mod 2262 � 5081, find n.

This computation seems harder.

Diffie-Hellman secret-sharing

system using p = 2262 � 5081:

Alice’s
secret key m

��

��

Bob’s
secret key n

��

��

Alice’s
public key
4m mod p

%%K
KK

KK
KK

Bob’s
public key
4n mod p

yyss
ss

ss
s

fAlice;Bobg’s
shared secret
4mn mod p

=
fBob;Aliceg’s
shared secret
4mn mod p

Alice, Bob easily find 4mn mod p.
Seems harder for attacker.

Bad news: “Index calculus”

solves DLP at surprising speed!

To protect against this attack,

replace 2262 � 5081 with

a much larger prime.

Much slower arithmetic.

Alternative: Elliptic-curve

cryptography. Replace�
1; 2; : : : ; 2262 � 5082

	

with a comparable-size

“safe elliptic-curve group.”

Somewhat slower arithmetic.

Either way, need fast arithmetic

in a finite field.

The core question

How to multiply big integers?

Child’s answer: Use polynomial

with coefficients in f0; 1; : : : ; 9g
to represent integer in radix 10.

With this representation,

multiply integers in two steps:

1. Multiply polynomials.

2. “Carry” extra digits.

Polynomial multiplication

involves small integers.

Have split one big multiplication

into many small operations.

Example of representation:

839 = 8 � 102 + 3 � 101 + 9 � 100 =

value (at t = 10) of polynomial

8t2 + 3t1 + 9t0.
Squaring: (8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0.
Carrying:

64t4 + 48t3 + 153t2 + 54t1 + 81t0;
64t4 + 48t3 + 153t2 + 62t1 + 1t0;
64t4 + 48t3 + 159t2 + 2t1 + 1t0;
64t4 + 63t3 + 9t2 + 2t1 + 1t0;
70t4 + 3t3 + 9t2 + 2t1 + 1t0;
7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.
In other words, 8392 = 703921.

What operations were used here?

8

�� ((PPPPPPPPPPPP 3

����

9

vvnnnnnnnnnnnn

multiply
��

72

@@

@@
@@

9

��

72

add~~~~
~~

~~

153

��

. .
.

����
��

��

6

add~~}}
}}

}}

159
divide by 10

~~}}
}}

}}
mod 10
��

15 9

Scaled variation:

839 = 800 + 30 + 9 =

value (at t = 1) of polynomial

800t2 + 30t1 + 9t0.
Squaring: (800t2 + 30t1 + 9t0)2 =

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0.
Carrying:

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0;
640000t4 + 48000t3 + 15300t2 +

620t1 + 1t0; : : :
700000t5 + 0t4 + 3000t3 + 900t2 +

20t1 + 1t0.

What operations were used here?

800

��))TTTTTTTTTTTTTT 30

����

9

uujjjjjjjjjjjjjjj

multiply
��

7200

$$
IIIIIII 900

��

7200

add{{ww
ww

ww
w

15300

��

. .
.

}}{{
{{

{{

600

addzzvv
vv

vv
v

15900
subtract

zzuuuuuuu

mod 1000
��

15000 900

Speedup: double inside squaring

Squaring � � �+ f2t2 + f1t1 + f0t0
produces coefficients such as

f4f0 + f3f1 + f2f2 + f1f3 + f0f4.

Compute more efficiently as

2f4f0 + 2f3f1 + f2f2.

Or, slightly faster,

2(f4f0 + f3f1) + f2f2.

Or, slightly faster,

(2f4)f0 + (2f3)f1 + f2f2

after precomputing 2f1; 2f2; : : :.
Have eliminated � 1=2 of the work

if there are many coefficients.

Speedup: allow negative coeffs

Recall 159 7! 15; 9.
Scaled: 15900 7! 15000; 900.

Alternative: 159 7! 16;�1.

Scaled: 15900 7! 16000;�100.

Use digits f�5;�4; : : : ; 4; 5g
instead of f0; 1; : : : ; 9g.
Several small advantages:

easily handle negative integers;

easily handle subtraction;

reduce products a bit.

Speedup: delay carries

Computing (e.g.) big ab+ 2:
multiply a; b polynomials, carry,

square poly, carry, add, carry.

e.g. a = 314, b = 271, = 839:

(3t2 +1t1 +4t0)(2t2 +7t1 +1t0) =

6t4 + 23t3 + 18t2 + 29t1 + 4t0;
carry: 8t4 + 5t3 + 0t2 + 9t1 + 4t0.
As before (8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0;
7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.
+: 7t5+8t4+8t3+9t2+11t1+5t0;
7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

Faster: multiply a; b polynomials,

square polynomial, add, carry.

(6t4 + 23t3 + 18t2 + 29t1 + 4t0) +

(64t4+48t3+153t2+54t1+81t0) =

70t4 + 71t3 + 171t2 + 83t1 + 85t0;
7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.
Eliminate intermediate carries.

Outweighs cost of handling

slightly larger coefficients.

Important to carry between

multiplications (and squarings)

to reduce coefficient size; but

carries are usually a bad idea for

additions, subtractions, etc.

Speedup: polynomial Karatsuba

Computing product of polys f; g
with (e.g.) deg f < 20, deg g < 20:

400 coefficient mults,

361 coefficient adds.

Faster: Write f as F0 + F1t10

with deg F0 < 10, deg F1 < 10.

Similarly write g as G0 + G1t10.

Then fg = (F0 + F1)(G0 + G1)t10

+ (F0G0 � F1G1t10)(1� t10).

20 adds for F0 + F1, G0 + G1.

300 mults for three products

F0G0, F1G1, (F0 + F1)(G0 + G1).

243 adds for those products.

9 adds for F0G0 � F1G1t10

with subs counted as adds

and with delayed negations.

19 adds for � � � (1� t10).

19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

Many other algebraic speedups

in polynomial multiplication:

Toom, FFT, etc.

Increasingly important as

polynomial degree grows.

O(n lgn lg lgn) coeff operations

to compute n-coeff product.

Useful for sizes of n
that occur in cryptography?

Maybe; active research area.

Using CPU’s integer instructions

Replace radix 10 with, e.g., 224.

Power of 2 simplifies carries.

Adapt radix to platform.

e.g. Every 2 cycles, Athlon 64

can compute a 128-bit product

of two 64-bit integers.

(5-cycle latency; parallelize!)

Also low cost for 128-bit add.

Reasonable to use radix 260.

Sum of many products of digits

fits comfortably below 2128.

Be careful: analyze largest sum.

e.g. In 4 cycles, Intel 8051

can compute a 16-bit product

of two 8-bit integers.

Could use radix 26.

Could use radix 28,

with 24-bit sums.

e.g. Every 2 cycles, Pentium 4 F3

can compute a 64-bit product

of two 32-bit integers.

(11-cycle latency; yikes!)

Reasonable to use radix 228.

Warning: Multiply instructions

are very slow on some CPUs.

e.g. Pentium 4 F2: 10 cycles!

Using floating-point instructions

Big CPUs have separate

floating-point instructions,

aimed at numerical simulation

but useful for cryptography.

In my experience,

floating-point instructions

support faster multiplication

(often much, much faster)

than integer instructions,

except on the Athlon 64.

Other advantages: portability;

easily scaled coefficients.

e.g. Every 2 cycles, Pentium III

can compute a 64-bit product

of two floating-point numbers,

and an independent 64-bit sum.

e.g. Every cycle, Athlon

can compute a 64-bit product

and an independent 64-bit sum.

e.g. Every cycle, UltraSPARC III

can compute a 53-bit product

and an independent 53-bit sum.

Reasonable to use radix 224.

e.g. Pentium 4 can do the same

using SSE2 instructions.

How to do carries in

floating-point registers?

(No CPU carry instruction:

not useful for simulations.)

Exploit floating-point rounding:

add big constant,

subtract same constant.

e.g. Given � with j�j � 275:

compute 53-bit floating-point sum

of � and constant 3 � 275,

obtaining a multiple of 224;

subtract 3 � 275 from result,

obtaining multiple of 224

nearest �; subtract from �.

Reducing modulo a prime

Fix a prime p.
The prime field Z=p
is the set f0; 1; 2; : : : ; p� 1g
with � defined as � mod p,
+ defined as + mod p,
� defined as � mod p.
e.g. p = 1000003:

1000000 + 50 = 47 in Z=p;
�1 = 1000002 in Z=p;
117505 � 23131 = 1 in Z=p.

How to multiply in Z=p?
Can use definition:

fg mod p = fg � p bfg=p.
Can multiply fg by a

precomputed 1=p approximation;

easily adjust to obtain bfg=p.
Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

We can do better: normally

p is chosen with a special form

(or dividing a special form; see

“redundant representations”)

to make fg mod p much faster.

e.g. In Z=1000003:

314159265358 =

314159 � 1000000 + 265358 =

314159(�3) + 265358 =

�942477 + 265358 =

�677119.

Easily adjust to range

f0; 1; : : : ; p� 1g
by adding/subtracting a few p’s.
(Beware timing attacks!)

Speedup: Delay the adjustment;

extra p’s won’t damage

subsequent field operations.

Can delay carries until after

multiplication by 3.

e.g. To square 314159

in Z=1000003: Square poly

3t5 + 1t4 + 4t3 + 1t2 + 5t1 + 9t0,
obtaining 9t10 + 6t9 + 25t8 +

14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.
Reduce: replace (i)t6+i by

(�3i)ti, obtaining 72t5 + 32t4 +

64t3 � 32t2 + 48t1 � 63t0.
Carry: 8t6 � 4t5 � 2t4 +

1t3 + 2t2 + 2t1 � 3t0.

To minimize poly degree,

mix reduction and carrying,

carrying the top sooner.

e.g. Start from square 9t10 + 6t9 +

25t8 + 14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.
Reduce t10 ! t4 and carry t4 !
t5 ! t6: 6t9 +25t8 +14t7 +56t6�
5t5+2t4+82t3+43t2+90t1+81t0.
Finish reduction: �5t5 + 2t4 +

64t3 � 32t2 + 48t1 � 87t0. Carry

t0 ! t1 ! t2 ! t3 ! t4 ! t5:
�4t5 � 2t4 + 1t3 + 2t2 � 1t1 + 3t0.

Speedup: non-integer radix

Consider Z=(261 � 1).

Five coeffs in radix 213?

f4t4 + f3t3 + f2t2 + f1t1 + f0t0.
Most coeffs could be 212.

Square � � �+2(f4f1 +f3f2)t5 + � � �.
Coeff of t5 could be > 225.

Reduce: 265 = 24 in Z=(261 � 1);

� � � + (25(f4f1 + f3f2) + f2
0)t0.

Coeff could be > 229.

Very little room for

additions, delayed carries, etc.

on 32-bit platforms.

Scaled: Evaluate at t = 1.

f4 is multiple of 252;

f3 is multiple of 239;

f2 is multiple of 226;

f1 is multiple of 213;

f0 is multiple of 20. Reduce:

� � �+ (2�60(f4f1 + f3f2) + f2
0)t0.

Better: Non-integer radix 212:2.
f4 is multiple of 249;

f3 is multiple of 237;

f2 is multiple of 225;

f1 is multiple of 213;

f0 is multiple of 20.

Saves a few bits in coeffs.

More finite fields

Fix a prime p. Fix a

poly ' in one variable t
with ' irreducible mod p.
The finite field (Z=p)[t]='
is the set of polynomials

fdeg'�1tdeg'�1 + � � �+ f1t1 + f0t0
with each fi 2 Z=p
and with �;+; � defined

modulo p and modulo '.

(Z=p)[t]=' is an “extension”

of the prime field Z=p;
it has “characteristic” p.

e.g. 223 is prime, and poly

t6 � 3 is irreducible mod 223,

so (Z=223)[t]=(t6 � 3) is a field.

2236 elements of field,

namely polynomials f5t5 + f4t4 +

f3t3 + f2t2 + f1t1 + f0t0
with each fi 2 f0; 1; : : : ; 222g.
After adding, subtracting,

multiplying: replace t6 by 3,

replace t7 by 3t, etc.; and

reduce coefficients modulo 223.

e.g. (9t4 + 1)2 = 81t8 + 18t4 + 1 =

243t2 +18t4 +1 = 18t4 +20t2 +1.

Have two levels of polynomials

when p is large: element

of (Z=p)[t]=' is poly mod ';

each poly coefficient is integer

represented as poly in some radix.

e.g. f4t4 +f3t3 +f2t2 +f1t1 +f0t0
in (Z=(261 � 1))[t]=(t5 � 3)

could have each coefficient fi
represented as poly of degree < 3

in radix 261=3.
When p is small, especially p = 2,

many speedups beyond this talk:

batching coefficients,

using fast Frobenius, et al.

