Efficient arithmetic in finite fields

D. J. Bernstein
University of Illinois at Chicago
Some examples of finite fields:

\[\mathbb{Z}/(2^{255} - 19). \]
\[(\mathbb{Z}/(2^{61} - 1))[t]/(t^5 - 3). \]
\[(\mathbb{Z}/223))[t]/(t^{37} - 2). \]
\[(\mathbb{Z}/2)[t]/(t^{283} - t^{12} - t^7 - t^5 - 1). \]

Topic of this talk:
How quickly can we add, subtract, multiply in these fields?

Answer will depend on platform: AMD Athlon, Sun UltraSPARC IV, Intel 8051, Xilinx Spartan-3, etc. Warning: different platforms often favor different fields!
Why do we care?

“Modular exponentiation”: can quickly compute

\[4^n \mod 2^{262} - 5081\]

given \(n \in \{0, 1, 2, \ldots, 2^{256} - 1\}\).

Similarly, can quickly compute

\[4^{mn} \mod 2^{262} - 5081\]
given \(n\) and \(4^m \mod 2^{262} - 5081\).

Time-savers: fast field mults, short “addition chains.”

“Discrete-logarithm problem”: given \(4^n \mod 2^{262} - 5081\), find \(n\). This computation seems harder.
Diffie-Hellman secret-sharing system using $p = 2^{262} - 5081$:

- Alice’s secret key m
- Bob’s secret key n
- Alice’s public key $4^m \mod p$
- Bob’s public key $4^n \mod p$

Alice, Bob easily find $4^{mn} \mod p$. Seems harder for attacker.
Bad news: “Index calculus” solves DLP at surprising speed!

To protect against this attack, replace $2^{262} - 5081$ with a much larger prime. *Much* slower arithmetic.

Alternative: Elliptic-curve cryptography. Replace

$\{1, 2, \ldots, 2^{262} - 5082\}$

with a comparable-size “safe elliptic-curve group.” *Somewhat* slower arithmetic.

Either way, need fast arithmetic in a finite field.
The core question

How to multiply big integers?

Child’s answer: Use polynomial with coefficients in \(\{0, 1, \ldots, 9\} \) to represent integer in radix 10.

With this representation, multiply integers in two steps:
1. Multiply polynomials.
2. “Carry” extra digits.

Polynomial multiplication involves *small* integers.
Have split one big multiplication into many small operations.
Example of representation:

\[839 = 8 \cdot 10^2 + 3 \cdot 10^1 + 9 \cdot 10^0 = \text{value (at } t = 10) \text{ of polynomial } 8t^2 + 3t^1 + 9t^0.\]

Squaring: \((8t^2 + 3t^1 + 9t^0)^2 = 64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0.\)

Carrying:
\[
\begin{align*}
64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0; \\
64t^4 + 48t^3 + 153t^2 + 62t^1 + 1t^0; \\
64t^4 + 48t^3 + 159t^2 + 2t^1 + 1t^0; \\
64t^4 + 63t^3 + 9t^2 + 2t^1 + 1t^0; \\
70t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0; \\
7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0.
\end{align*}
\]

In other words, \(839^2 = 703921.\)
What operations were used here?

8 → 72
3 multiply 9 → 72

153 add

159 add 6

15 divide by 10

9 mod 10

...
Scaled variation:

\[839 = 800 + 30 + 9 = \]

value (at \(t = 1 \)) of polynomial

\[800t^2 + 30t^1 + 9t^0. \]

Squaring: \((800t^2 + 30t^1 + 9t^0)^2 =

\[640000t^4 + 48000t^3 + 15300t^2 + 540t^1 + 81t^0. \]

Carrying:

\[640000t^4 + 48000t^3 + 15300t^2 + 540t^1 + 81t^0; \]

\[640000t^4 + 48000t^3 + 15300t^2 + 620t^1 + 1t^0; \]

\[700000t^5 + 0t^4 + 3000t^3 + 900t^2 + 20t^1 + 1t^0. \]
What operations were used here?

800 \rightarrow 7200

30 \rightarrow 900

9 \rightarrow 7200

\text{multiply}

\text{add}

15300

\text{add}

15900

\text{subtract}

\text{mod 1000}

15000

900
Speedup: double inside squaring

Squaring \(\cdots + f_2 t^2 + f_1 t^1 + f_0 t^0 \) produces coefficients such as
\[f_4 f_0 + f_3 f_1 + f_2 f_2 + f_1 f_3 + f_0 f_4. \]

Compute more efficiently as
\[2f_4 f_0 + 2f_3 f_1 + f_2 f_2. \]
Or, slightly faster,
\[2(f_4 f_0 + f_3 f_1) + f_2 f_2. \]
Or, slightly faster,
\[(2f_4) f_0 + (2f_3) f_1 + f_2 f_2 \]
after precomputing \(2f_1, 2f_2, \ldots \).

Have eliminated \(\approx 1/2 \) of the work if there are many coefficients.
Speedup: allow negative coeffs

Recall 159 \mapsto 15, 9.
Scaled: 15900 \mapsto 15000, 900.

Alternative: 159 \mapsto 16, -1.
Scaled: 15900 \mapsto 16000, -100.

Use digits \{-5, -4, \ldots, 4, 5\} instead of \{0, 1, \ldots, 9\}.
Several small advantages:
easily handle negative integers;
easily handle subtraction;
reduce products a bit.
Speedup: delay carries

Computing (e.g.) big $ab + c^2$: multiply a, b polynomials, carry, square c poly, carry, add, carry.

e.g. $a = 314$, $b = 271$, $c = 839$: $(3t^2 + 1t^1 + 4t^0)(2t^2 + 7t^1 + 1t^0) = 6t^4 + 23t^3 + 18t^2 + 29t^1 + 4t^0$; carry: $8t^4 + 5t^3 + 0t^2 + 9t^1 + 4t^0$.

As before $(8t^2 + 3t^1 + 9t^0)^2 = 64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0$; $7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0$.

$+ : 7t^5 + 8t^4 + 8t^3 + 9t^2 + 11t^1 + 5t^0$; $7t^5 + 8t^4 + 9t^3 + 0t^2 + 1t^1 + 5t^0$.
Faster: multiply a, b polynomials, square c polynomial, add, carry.

$$(6t^4 + 23t^3 + 18t^2 + 29t^1 + 4t^0) + (64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0) = 70t^4 + 71t^3 + 171t^2 + 83t^1 + 85t^0;$$
\[
7t^5 + 8t^4 + 9t^3 + 0t^2 + 1t^1 + 5t^0.\]

Eliminate intermediate carries. Outweighs cost of handling slightly larger coefficients.

Important to carry between multiplications (and squarings) to reduce coefficient size; but carries are usually a bad idea for additions, subtractions, etc.
Speedup: polynomial Karatsuba

Computing product of polys f, g with (e.g.) $\deg f < 20, \deg g < 20$: 400 coefficient mults, 361 coefficient adds.

Faster: Write f as $F_0 + F_1 t^{10}$ with $\deg F_0 < 10, \deg F_1 < 10$. Similarly write g as $G_0 + G_1 t^{10}$.

Then $fg = (F_0 + F_1)(G_0 + G_1)t^{10} + (F_0G_0 - F_1G_1t^{10})(1 - t^{10})$.
20 adds for $F_0 + F_1, G_0 + G_1$.
300 mults for three products $F_0G_0, F_1G_1, (F_0 + F_1)(G_0 + G_1)$.
243 adds for those products.
9 adds for $F_0G_0 - F_1G_1 t^{10}$
with subs counted as adds and with delayed negations.
19 adds for $\cdots (1 - t^{10})$.
19 adds to finish.

Total 300 mults, 310 adds.
Larger coefficients, slight expense; still saves time.

Can apply idea recursively as poly degree grows.
Many other algebraic speedups in polynomial multiplication: Toom, FFT, etc.

Increasingly important as polynomial degree grows. $O(n \lg n \lg \lg n)$ coeff operations to compute n-coeff product.

Useful for sizes of n that occur in cryptography? Maybe; active research area.
Using CPU’s integer instructions

Replace radix 10 with, e.g., 2^{24}. Power of 2 simplifies carries.

Adapt radix to platform.

e.g. Every 2 cycles, Athlon 64 can compute a 128-bit product of two 64-bit integers. (5-cycle latency; parallelize!)
Also low cost for 128-bit add.

Reasonable to use radix 2^{60}. Sum of many products of digits fits comfortably below 2^{128}.
Be careful: analyze largest sum.
e.g. In 4 cycles, Intel 8051 can compute a 16-bit product of two 8-bit integers.
Could use radix 2^6.
Could use radix 2^8, with 24-bit sums.

e.g. Every 2 cycles, Pentium 4 F3 can compute a 64-bit product of two 32-bit integers.
(11-cycle latency; yikes!)
Reasonable to use radix 2^{28}.

Warning: Multiply instructions are very slow on some CPUs.
e.g. Pentium 4 F2: 10 cycles!
Using floating-point instructions

Big CPUs have separate floating-point instructions, aimed at numerical simulation but useful for cryptography.

In my experience, floating-point instructions support faster multiplication (often much, much faster) than integer instructions, except on the Athlon 64. Other advantages: portability; easily scaled coefficients.
e.g. Every 2 cycles, Pentium III can compute a 64-bit product of two floating-point numbers, and an independent 64-bit sum.

e.g. Every cycle, Athlon can compute a 64-bit product and an independent 64-bit sum.

e.g. Every cycle, UltraSPARC III can compute a 53-bit product and an independent 53-bit sum. Reasonable to use radix 2^{24}.

e.g. Pentium 4 can do the same using SSE2 instructions.
How to do carries in floating-point registers?
(No CPU carry instruction: not useful for simulations.)

Exploit floating-point rounding: add big constant, subtract same constant.

e.g. Given α with $|\alpha| \leq 2^{75}$: compute 53-bit floating-point sum of α and constant $3 \cdot 2^{75}$, obtaining a multiple of 2^{24}; subtract $3 \cdot 2^{75}$ from result, obtaining multiple of 2^{24} nearest α; subtract from α.
Reducing modulo a prime

Fix a prime p.
The prime field \mathbb{Z}/p
is the set $\{0, 1, 2, \ldots, p - 1\}$
with $-$ defined as $- \mod p$,
$+$ defined as $+ \mod p$,
\cdot defined as $\cdot \mod p$.

e.g. $p = 1000003$:
$1000000 + 50 = 47$ in \mathbb{Z}/p;
$-1 = 1000002$ in \mathbb{Z}/p;
$117505 \cdot 23131 = 1$ in \mathbb{Z}/p.
How to multiply in \mathbb{Z}/p?

Can use definition:
\[fg \mod p = fg - p \left\lfloor \frac{fg}{p} \right\rfloor. \]

Can multiply fg by a precomputed $1/p$ approximation; easily adjust to obtain $\left\lfloor \frac{fg}{p} \right\rfloor$.

Slight speedup: “2-adic inverse”; “Montgomery reduction.”

We can do better: normally p is chosen with a special form (or dividing a special form; see “redundant representations”) to make $fg \mod p$ much faster.
e.g. In $\mathbb{Z}/1000003$:

$314159265358 = $

$314159 \cdot 1000000 + 265358 = $

$314159(-3) + 265358 = $

$-942477 + 265358 = $

$-677119.$

Easily adjust to range

$\{0, 1, \ldots, p - 1\}$

by adding/subtracting a few p’s.

(Beware timing attacks!)

Speedup: Delay the adjustment; extra p’s won’t damage subsequent field operations.
Can delay carries until after multiplication by 3.

e.g. To square 314159 in \(\mathbb{Z}/1000003 \):
Square poly \(3t^5 + 1t^4 + 4t^3 + 1t^2 + 5t^1 + 9t^0 \),
obtaining \(9t^{10} + 6t^9 + 25t^8 + 14t^7 + 48t^6 + 72t^5 + 59t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0 \).

Reduce: replace \((c_i)t^{6+i} \) by \((-3c_i)t^i \), obtaining \(72t^5 + 32t^4 + 64t^3 - 32t^2 + 48t^1 - 63t^0 \).

Carry: \(8t^6 - 4t^5 - 2t^4 + 1t^3 + 2t^2 + 2t^1 - 3t^0 \).
To minimize poly degree, mix reduction and carrying, carrying the top sooner.

e.g. Start from square \(9t^{10} + 6t^9 + 25t^8 + 14t^7 + 48t^6 + 72t^5 + 59t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0\).

Reduce \(t^{10} \rightarrow t^4\) and carry \(t^4 \rightarrow t^5 \rightarrow t^6\): \(6t^9 + 25t^8 + 14t^7 + 56t^6 - 5t^5 + 2t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0\).

Finish reduction: \(-5t^5 + 2t^4 + 64t^3 - 32t^2 + 48t^1 - 87t^0\). Carry \(t^0 \rightarrow t^1 \rightarrow t^2 \rightarrow t^3 \rightarrow t^4 \rightarrow t^5\): \(-4t^5 - 2t^4 + 1t^3 + 2t^2 - 1t^1 + 3t^0\).
Speedup: non-integer radix

Consider \(\mathbb{Z}/(2^{61} - 1) \).

Five coeffs in radix \(2^{13} \)?
\[f_4 t^4 + f_3 t^3 + f_2 t^2 + f_1 t^1 + f_0 t^0. \]
Most coeffs could be \(2^{12} \).

Square \(\cdots + 2(f_4 f_1 + f_3 f_2)t^5 + \cdots \).
Coeff of \(t^5 \) could be \(> 2^{25} \).

Reduce: \(2^{65} = 2^4 \) in \(\mathbb{Z}/(2^{61} - 1) \);
\(\cdots + (2^5(f_4 f_1 + f_3 f_2) + f_0^2)t^0 \).
Coeff could be \(> 2^{29} \).

Very little room for additions, delayed carries, etc.
on 32-bit platforms.
Scaled: Evaluate at $t = 1$.

f_4 is multiple of 2^{52};
f_3 is multiple of 2^{39};
f_2 is multiple of 2^{26};
f_1 is multiple of 2^{13};
f_0 is multiple of 2^0. Reduce:

$$\cdots + (2^{-60}(f_4f_1 + f_3f_2) + f_0^2)t^0.$$

Better: Non-integer radix $2^{12.2}$.

f_4 is multiple of 2^{49};
f_3 is multiple of 2^{37};
f_2 is multiple of 2^{25};
f_1 is multiple of 2^{13};
f_0 is multiple of 2^0.

Saves a few bits in coeffs.
More finite fields

Fix a prime p. Fix a poly φ in one variable t with φ irreducible mod p.

The finite field $(\mathbb{Z}/p)[t]/\varphi$ is the set of polynomials $f_{\deg \varphi-1}t^{\deg \varphi-1} + \cdots + f_1 t^1 + f_0 t^0$ with each $f_i \in \mathbb{Z}/p$ and with $-, +, \cdot$ defined modulo p and modulo φ.

$(\mathbb{Z}/p)[t]/\varphi$ is an “extension” of the prime field \mathbb{Z}/p; it has “characteristic” p.
e.g. 223 is prime, and poly $t^6 - 3$ is irreducible mod 223, so $(\mathbb{Z}/223)[t]/(t^6 - 3)$ is a field.

223^6 elements of field, namely polynomials $f_5t^5 + f_4t^4 + f_3t^3 + f_2t^2 + f_1t^1 + f_0t^0$ with each $f_i \in \{0, 1, \ldots, 222\}$.

After adding, subtracting, multiplying: replace t^6 by 3, replace t^7 by $3t$, etc.; and reduce coefficients modulo 223.

e.g. $(9t^4 + 1)^2 = 81t^8 + 18t^4 + 1 = 243t^2 + 18t^4 + 1 = 18t^4 + 20t^2 + 1$.
Have two levels of polynomials when \(p \) is large: element of \((\mathbb{Z}/p)[t]/\varphi\) is poly mod \(\varphi \); each poly coefficient is integer represented as poly in some radix.

E.g. \(f_4 t^4 + f_3 t^3 + f_2 t^2 + f_1 t^1 + f_0 t^0 \) in \((\mathbb{Z}/(2^{61} - 1))[t]/(t^5 - 3)\) could have each coefficient \(f_i \) represented as poly of degree \(< 3\) in radix \(2^{61}/3\).

When \(p \) is small, especially \(p = 2\), many speedups beyond this talk: batching coefficients, using fast Frobenius, et al.