Efficient arithmetic
on elliptic curves

D. J. Bernstein
University of Illinois at Chicago
Classic question about the Diffie-Hellman system:
How quickly can we compute nth powers mod p?

“Modular exponentiation.”

Assume standard prime p;
e.g. $p = 2^{262} - 5081$.
How quickly can we compute g^n mod $2^{262} - 5081$, given integers g, n?
This talk asks
the analogous question
for elliptic-curve Diffie-Hellman:
How quickly can we compute
nth multiples in an
elliptic-curve group?

“Elliptic-curve
scalar multiplication.”

Assume standard field
and standard elliptic curve.
e.g. NIST P-224: the elliptic curve
\[y^2 = x^3 - 3x + a_6 \] over \(\mathbb{Z}/p \).
Here \(p = 2^{224} - 2^{96} + 1 \) and \(a_6 = 189582862855666608000408668544493926415504680968679321075787234672564 \).

\[y^2 = x^3 - 3x + \cdots \] over \(\mathbb{Z}/p \) where \(p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1 \).

e.g. Curve25519: the elliptic curve
\[y^2 = x^3 + 486662x^2 + x \] over \(\mathbb{Z}/p \) where \(p = 2^{255} - 19 \).
Your task: Given \((x, y)\) on curve, and given integer \(n \geq 0\), compute \(n\)th multiple of \((x, y)\) in the elliptic-curve group.

Warning: Answer is not \((nx, ny)\) unless you’re extremely lucky.

Elliptic-curve point addition is not vector addition;
\((x, y) + (x', y')\) is almost never \((x + x', y + y')\).

Can emphasize this by changing notation: \(\oplus\), \(\Theta\), \([n]\), etc. But this talk uses simplified notation.
Similar tasks are critical for elliptic-curve signatures.

e.g. Schnorr signatures, unfortunately patented:

Signer has secret key n, public key nB.

To sign m: choose random z, uniform in $\{0, 1, \ldots, \#\langle B \rangle - 1\}$; compute $r = \text{SHA-256}(zB, m)$; compute $s = z + rn \mod \#\langle B \rangle$; send (m, r, s).

To verify (m, r, s): Check $r = \text{SHA-256}(sB - rnB, m)$.
Multiples via additions

Typical recursive formulas:

\[2P = P + P. \quad 3P = 2P + P. \]
\[4P = 2P + 2P. \quad 5P = 3P + 2P. \]
\[6P = 3P + 3P. \quad 7P = 5P + 2P. \]
\[2nP = 7P + (n - 7)P \text{ if } 4 \leq n < 8. \]
\[(2n + 1)P = 2nP + P \text{ if } 4 \leq n < 8. \]
\[(4n + 1)P = 4nP + P \text{ if } 4 \leq n < 8. \]
\[(4n + 3)P = 4nP + 3P \text{ if } 4 \leq n < 8. \]
\[2nP = nP + nP \text{ if } 8 \leq n. \]
\[(8n + 1)P = 8nP + P \text{ if } 4 \leq n. \]
\[(8n + 3)P = 8nP + 3P \text{ if } 4 \leq n. \]
\[(8n + 5)P = 8nP + 5P \text{ if } 4 \leq n. \]
\[(8n + 7)P = 8nP + 7P \text{ if } 4 \leq n. \]
This “addition chain” ("length-3 sliding windows") uses \(\approx \lg n \) doublings and \(\approx 0.25 \lg n \) more additions to compute \(nP \) for average \(n \).

e.g. \(\approx 320 \) additions for average \(n \in \{0, 1, \ldots, 2^{256} - 1\} \).

Some easy improvements from fast negation on elliptic curves: \((16n - 7)P = 16nP - 7P\), etc. Also use "endomorphisms" for "Koblitz curves," "GLV curves."

More complicated methods replace 0.25 by \(\approx 1/\lg \lg n \).
Explicit doubling formulas

On curve $y^2 = x^3 - 3x + a_6$:

$$2(x, y) = (x'', y'')$$ where

$$\lambda = (3x^2 - 3)/2y,$$

$$x'' = \lambda^2 - 2x,$$

$$y'' = \lambda(x - x'') - y.$$

7 subs etc., 2 squarings,
1 more mult, 1 division.

How do we divide efficiently in a finite field?
\[f/g = fg^{p-2} \] in prime field \(\mathbb{Z}/p \).
Can compute \(g^{p-2} \) with
\[\approx \lg p \] squarings and
\[\approx (\lg p)/\lg \lg p \] more mults.

E.g. \(p = 2^{224} - 2^{96} + 1 \):
223 squarings, 11 more mults.

More generally, \(f/g = fg^{q-2} \)
in any field of size \(q \).

There are faster division methods (e.g. “Euclid”—beware timing attacks!); smaller “I/M ratio.”
Special methods for some fields.
Speedup: delay divisions

Division costs many mults even with fastest division methods.

Save time by delaying divisions.

Naive division-delay method:
Store field elements as fractions until end of computation.
Divide once before output.

Mult fractions with 2 field mults.
Divide fractions with 2 field mults.
Add fractions with 3 field mults.
Speedup: unify denominators

For elliptic-curve doubling, have denominator $2y$
in $\lambda = (3x^2 - 3)/2y$; denominator $(2y)^2$
in $x'' = \lambda^2 - 2x$; denominator $(2y)^3$
in $y'' = \lambda(x - x'') - y$.

Subsequent computations will perform separate computations on the denominators $(2y)^2, (2y)^3$ of x'', y''.

Save time by manipulating denominators together.
“Jacobian coordinates”: Store \((x, y, z)\) to represent elliptic-curve point \((x/z^2, y/z^3)\).

\[2(x/z^2, y/z^3) = (x'', y'')\] where \(\lambda = (3(x/z^2)^2 - 3)/2(y/z^3)\)

\[= \alpha/2yz\] with \(\alpha = 3x^2 - 3z^4\);

\[x'' = \lambda^2 - 2(x/z^2)\]

\[= (\alpha^2 - 8xy^2)/(2yz)^2;\]

\[y'' = \lambda((x/z^2) - x'') - (y/z^3)\]

\[= (12xy^2\alpha - \alpha^3 - 8y^4)/(2yz)^3.\]
\[2(x/z^2, y/z^3) = (x_2/z_2^2, y_2/z_2^3) \]
where \(z_2 = 2yz \),
\(\alpha = 3x^2 - 3z^4 \),
\(x_2 = \alpha^2 - 8xy^2 \),
\(y_2 = \alpha(4xy^2 - x_2) - 8y^4 \).

Easily compute with 6 squarings, 3 more mults: \(x^2, z^2, z^4, y^2, y^4, yz, xy^2, \alpha^2, \alpha(\cdots) \).
Also some subs, doublings, etc.

Use fast field arithmetic:
e.g., can delay carries and reductions in computing \(y_2 \).
Speedup: difference of squares

Can compute $3x^2 - 3z^4$ as $3(x - z^2)(x + z^2)$.

Replace 3 squarings by 1 mult, 1 squaring. Revised total: 4 squarings, 4 more mults.

Note:
$3x^2 - 3z^4$ came from $3x^2 - 3$, derivative of $x^3 - 3x + a_6$. Wouldn’t have same speedup for, e.g., $x^3 - 5x + a_6$.
Speedup: $f^2, g^2, 2fg$

After computing f^2 and g^2 can compute $2fg$ as $(f + g)^2 - f^2 - g^2$.

In particular:
After computing y^2 and z^2 can compute $2yz$ as $(y + z)^2 - y^2 - z^2$.

Replace 1 mult with 1 squaring. Revised total: 5 squarings, 3 more mults.
Explicit addition formulas

Similar speedups in formulas for adding distinct points.

5 squarings, 11 more mults.

Again some opportunities to delay carries, etc.
Speedup: cache results

In adding \((x_1/z_1^2, y_1/z_1^3)\) to \((x_2/z_2^2, y_2/z_2^3)\), compute many intermediates, including \(z_1^2, z_1^3\).

Often add same point again to a different point; can reuse \(z_1^2, z_1^3\).

“Chudnovsky coordinates.”
Speedup: delay fewer divisions?

Faster divisions sometimes justify delaying fewer divisions.

e.g. Do we really need fractions for $P, 3P, 5P, 7P$?

Can convert $P, 3P, 5P, 7P$ out of Jacobian coordinates with one division, several multiplies. Then save multiplies in every addition of $P, 3P, 5P, 7P$.

“Mixed coordinates.”

Sometimes worthwhile, depending on division speed.
Montgomery coordinates

On elliptic curves with “Montgomery form”
\[y^2 = x^3 + a_2 x^2 + x, \]
preferably with small \((a_2 - 2)/4\):

\[n(x_1, \ldots) = (x_n/z_n, \ldots) \text{ where} \]
\[z_1 = 1; \quad x_{2m} = (x_m^2 - z_m^2)^2; \]
\[z_{2m} = 4x_m z_m (x_m^2 + a_2 x_m z_m + z_m^2); \]
\[x_{2m+1} = 4(x_m x_{m+1} - z_m z_{m+1})^2; \]
\[z_{2m+1} = 4(x_m z_{m+1} - z_m x_{m+1})^2 x_1. \]

Can also figure out \(y\),
or use cryptographic protocols that ignore \(y\).
Assuming \((a_2 - 2)/4\) small, main operations are 4 squarings, 5 more mults for each bit of \(n\).

Compare to Jacobian coordinates: each bit of \(n\) has 5 squarings, 3 more mults, \textit{and} on occasion 5 more squarings, 11 more mults.

Montgomery form is better if \(n\) is not gigantic.