Efficient arithmetic on elliptic curves

D. J. Bernstein
University of Illinois at Chicago
Classic question about the Diffie-Hellman system: How quickly can we compute \(n \)th powers mod \(p \)?

“Modular exponentiation.”

Assume standard prime \(p \); e.g. \(p = 2^{262} - 5081 \).

How quickly can we compute \(g^n \) mod \(2^{262} - 5081 \), given integers \(g, n \)?
This talk asks the analogous question for elliptic-curve Diffie-Hellman: How quickly can we compute \(n \)th multiples in an elliptic-curve group?

“Elliptic-curve scalar multiplication.”

Assume standard field and standard elliptic curve.
e.g. NIST P-224: the elliptic curve
\[y^2 = x^3 - 3x + a_6 \] over \(\mathbb{Z}/p \).
Here \(p = 2^{224} - 2^{96} + 1 \)
and \(a_6 = 18958286285566608 \\
00040866854449392 \\
64155046809686793 \\
21075787234672564. \)

e.g. NIST P-256: the elliptic curve
\[y^2 = x^3 - 3x + \cdots \] over \(\mathbb{Z}/p \) where
\(p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1. \)

e.g. Curve25519: the elliptic curve
\[y^2 = x^3 + 486662x^2 + x \] over \(\mathbb{Z}/p \)
where \(p = 2^{255} - 19. \)
Your task: Given \((x, y)\) on curve, and given integer \(n \geq 0\), compute \(n\)th multiple of \((x, y)\) in the elliptic-curve group.

Warning: Answer is not \((nx, ny)\) unless you’re extremely lucky. Elliptic-curve point addition is not vector addition; \((x, y) + (x', y')\) is almost never \((x + x', y + y')\).

Can emphasize this by changing notation: \(+\), \(\oplus\), \([n]\), etc. But this talk uses simplified notation.
Similar tasks are critical for elliptic-curve signatures.

e.g. Schnorr signatures, unfortunately patented:

Signer has secret key n, public key nB.

To sign m: choose random z, uniform in $\{0, 1, \ldots, \#\langle B \rangle - 1\}$; compute $r = \text{SHA-256}(zB, m)$; compute $s = z + rn \mod \#\langle B \rangle$; send (m, r, s).

To verify (m, r, s): Check $r = \text{SHA-256}(sB - rnB, m)$.
Multiples via additions

Typical recursive formulas:
\[2P = P + P. \quad 3P = 2P + P. \]
\[4P = 2P + 2P. \quad 5P = 3P + 2P. \]
\[6P = 3P + 3P. \quad 7P = 5P + 2P. \]
\[2nP = 7P + (n - 7)P \text{ if } 4 \leq n < 8. \]
\[(2n + 1)P = 2nP + P \text{ if } 4 \leq n < 8. \]
\[(4n + 1)P = 4nP + P \text{ if } 4 \leq n < 8. \]
\[(4n + 3)P = 4nP + 3P \text{ if } 4 \leq n < 8. \]
\[2nP = nP + nP \text{ if } 8 \leq n. \]
\[(8n + 1)P = 8nP + P \text{ if } 4 \leq n. \]
\[(8n + 3)P = 8nP + 3P \text{ if } 4 \leq n. \]
\[(8n + 5)P = 8nP + 5P \text{ if } 4 \leq n. \]
\[(8n + 7)P = 8nP + 7P \text{ if } 4 \leq n. \]
This “addition chain” ("length-3 sliding windows") uses $\approx \lg n$ doublings and $\approx 0.25 \lg n$ more additions to compute nP for average n.

e.g. ≈ 320 additions for average $n \in \{0, 1, \ldots, 2^{256} - 1\}$.

Some easy improvements from fast negation on elliptic curves: $(16n - 7)P = 16nP - 7P$, etc.
Also use “endomorphisms” for “Koblitz curves,” “GLV curves.”

More complicated methods replace 0.25 by $\approx 1/\lg \lg n$.
Explicit doubling formulas

On curve $y^2 = x^3 - 3x + a_6$:

$$2(x, y) = (x'', y'')$$ where

$$\lambda = \frac{3x^2 - 3}{2y},$$

$$x'' = \lambda^2 - 2x,$$

$$y'' = \lambda(x - x'') - y.$$

7 subs etc., 2 squarings, 1 more mult, 1 division.

How do we divide efficiently in a finite field?
\[f / g = f g^{p-2} \] in prime field \(\mathbb{Z}/p \).
Can compute \(g^{p-2} \) with
\(\approx \lg p \) squarings and
\(\approx (\lg p)/\lg \lg p \) more mults.

E.g. \(p = 2^{224} - 2^{96} + 1 \):
223 squarings, 11 more mults.

More generally, \(f / g = f g^{q-2} \)
in any field of size \(q \).

There are faster division methods
(e.g. “Euclid”—beware timing attacks!); smaller “I/M ratio.”
Special methods for some fields.
Speedup: delay divisions

Division costs many mults even with fastest division methods.

Save time by delaying divisions.

Naive division-delay method:
Store field elements as fractions until end of computation.
Divide once before output.

Mult fractions with 2 field mults.
Divide fractions with 2 field mults.
Add fractions with 3 field mults.
Speedup: unify denominators

For elliptic-curve doubling, have denominator $2y$ in $\lambda = (3x^2 - 3)/2y$; denominator $(2y)^2$ in $x'' = \lambda^2 - 2x$; denominator $(2y)^3$ in $y'' = \lambda(x - x'') - y$.

Subsequent computations will perform separate computations on the denominators $(2y)^2, (2y)^3$ of x'', y''.

Save time by manipulating denominators together.
“Jacobian coordinates”: Store \((x, y, z)\) to represent elliptic-curve point \((x/z^2, y/z^3)\).

\[
2(x/z^2, y/z^3) = (x'', y'')\text{ where } \\
\lambda = (3(x/z^2)^2 - 3)/2(y/z^3) \\
= \alpha/2yz \text{ with } \alpha = 3x^2 - 3z^4; \\
x'' = \lambda^2 - 2(x/z^2) \\
= (\alpha^2 - 8xy^2)/(2yz)^2; \\
y''' = \lambda((x/z^2) - x'') - (y/z^3) \\
= (12xy^2\alpha - \alpha^3 - 8y^4)/(2yz)^3.
\]
\[2(x/z^2, y/z^3) = (x_2/z_2^2, y_2/z_2^3) \]

where \(z_2 = 2yz \),
\[\alpha = 3x^2 - 3z^4, \]
\[x_2 = \alpha^2 - 8xy^2, \]
\[y_2 = \alpha(4xy^2 - x_2) - 8y^4. \]

Easily compute with 6 squarings, 3 more mults: \(x^2, z^2, z^4, y^2, y^4, yz, xy^2, \alpha^2, \alpha(\ldots). \)

Also some subs, doublings, etc.

Use fast field arithmetic:

e.g., can delay carries and reductions in computing \(y_2 \).
Speedup: difference of squares

Can compute $3x^2 - 3z^4$ as $3(x - z^2)(x + z^2)$.

Replace 3 squarings by 1 mult, 1 squaring. Revised total: 4 squarings, 4 more mults.

Note:
$3x^2 - 3z^4$ came from $3x^2 - 3$, derivative of $x^3 - 3x + a_6$.
Wouldn’t have same speedup for, e.g., $x^3 - 5x + a_6$.
Speedup: \(f^2, g^2, 2fg \)

After computing \(f^2 \) and \(g^2 \) can compute \(2fg \) as \((f + g)^2 - f^2 - g^2\).

In particular:
After computing \(y^2 \) and \(z^2 \) can compute \(2yz \) as \((y + z)^2 - y^2 - z^2\).

Replace 1 mult with 1 squaring. Revised total: 5 squarings, 3 more mults.
Explicit addition formulas

Similar speedups in formulas for adding distinct points.

5 squarings, 11 more mults.

Again some opportunities to delay carries, etc.
Speedup: cache results

In adding \((x_1/z_1^2, y_1/z_1^3)\)
to \((x_2/z_2^2, y_2/z_2^3)\),
compute many intermediates,
including \(z_1^2, z_1^3\).

Often add same point again
to a different point;
can reuse \(z_1^2, z_1^3\).

“Chudnovsky coordinates.”
Speedup: delay fewer divisions?

Faster divisions sometimes justify delaying fewer divisions.

E.g. Do we really need fractions for $P, 3P, 5P, 7P$?

Sometimes worthwhile, depending on division speed.
Montgomery coordinates

On elliptic curves with “Montgomery form”

\[y^2 = x^3 + a_2 x^2 + x, \]

preferably with small \((a_2 - 2)/4:\)

\[n(x_1, \ldots) = (x_n/z_n, \ldots) \]

where

\[z_1 = 1;\]
\[x_{2m} = (x_m^2 - z_m^2)^2; \]
\[z_{2m} = 4x_m z_m (x_m^2 + a_2 x_m z_m + z_m^2); \]
\[x_{2m+1} = 4(x_m x_{m+1} - z_m z_{m+1})^2; \]
\[z_{2m+1} = 4(x_m z_{m+1} - z_m x_{m+1})^2 x_1. \]

Can also figure out \(y\),
or use cryptographic protocols that ignore \(y\).
Assuming \((a_2 - 2)/4\) small, main operations are
4 squarings, 5 more mults
for each bit of \(n\).

Compare to Jacobian coordinates:
each bit of \(n\) has
5 squarings, 3 more mults,
\textit{and} on occasion
5 more squarings, 11 more mults.

Montgomery form is better
if \(n\) is not gigantic.