Efficient arithmetic on elliptic curves
D. J. Bernstein University of Illinois at Chicago

Classic question about the Diffie-Hellman system: How quickly can we compute nth powers mod p ? "Modular exponentiation."

Assume standard prime p; e.g. $p=2^{262}-5081$. How quickly can we compute $g^{n} \bmod 2^{262}-5081$, given integers g, n ?

This talk asks

the analogous question
for elliptic-curve Diffie-Hellman: How quickly can we compute nth multiples in an elliptic-curve group?

"Elliptic-curve

scalar multiplication."
Assume standard field and standard elliptic curve.
e.g. NIST P-224: the elliptic curve $y^{2}=x^{3}-3 x+a_{6}$ over \mathbf{Z} / p.
Here $p=2^{224}-2^{96}+1$
and $a_{6}=18958286285566608$
00040866854449392 64155046809686793 21075787234672564.
e.g. NIST P-256: the elliptic curve $y^{2}=x^{3}-3 x+\cdots$ over \mathbf{Z} / p where $p=2^{256}-2^{224}+2^{192}+2^{96}-1$.
e.g. Curve25519: the elliptic curve $y^{2}=x^{3}+486662 x^{2}+x$ over \mathbf{Z} / p where $p=2^{255}-19$.

Your task: Given (x, y) on curve, and given integer $n \geq 0$, compute nth multiple of (x, y) in the elliptic-curve group.

Warning: Answer is not $(n x, n y)$ unless you're extremely lucky. Elliptic-curve point addition is not vector addition; $(x, y)+\left(x^{\prime}, y^{\prime}\right)$ is almost never $\left(x+x^{\prime}, y+y^{\prime}\right)$.

Can emphasize this by changing notation: $+, \oplus,[n]$, etc. But this talk uses simplified notation.

Similar tasks are critical for elliptic-curve signatures.
e.g. Schnorr signatures, unfortunately patented:

Signer has secret key n, public key $n B$.

To sign m : choose random z, uniform in $\{0,1, \ldots, \#\langle B\rangle-1\}$; compute $r=\operatorname{SHA}-256(z B, m)$; compute $s=z+r n \bmod \#\langle B\rangle$; send (m, r, s).

To verify (m, r, s) : Check $r=\mathrm{SHA}-256(s B-r n B, m)$.

Multiples via additions

Typical recursive formulas:
$2 P=P+P .3 P=2 P+P$.
$4 P=2 P+2 P .5 P=3 P+2 P$.
$6 P=3 P+3 P .7 P=5 P+2 P$.
$2 n P=7 P+(n-7) P$ if $4 \leq n<8$.
$(2 n+1) P=2 n P+P$ if $4 \leq n<8$.
$(4 n+1) P=4 n P+P$ if $4 \leq n<8$.
$(4 n+3) P=4 n P+3 P$ if $4 \leq n<8$.
$2 n P=n P+n P$ if $8 \leq n$.
$(8 n+1) P=8 n P+P$ if $4 \leq n$.
$(8 n+3) P=8 n P+3 P$ if $4 \leq n$.
$(8 n+5) P=8 n P+5 P$ if $4 \leq n$.
$(8 n+7) P=8 n P+7 P$ if $4 \leq n$.

This "addition chain"

("length-3 sliding windows")
uses $\approx \lg n$ doublings and $\approx 0.25 \lg n$ more additions to compute $n P$ for average n.
e.g. ≈ 320 additions for average $n \in\left\{0,1, \ldots, 2^{256}-1\right\}$.

Some easy improvements from fast negation on elliptic curves: $(16 n-7) P=16 n P-7 P$, etc.
Also use "endomorphisms" for "Koblitz curves," "GLV curves."

More complicated methods replace 0.25 by $\approx 1 / \lg \lg n$.

Explicit doubling formulas

On curve $y^{2}=x^{3}-3 x+a_{6}$:
$2(x, y)=\left(x^{\prime \prime}, y^{\prime \prime}\right)$ where
$\lambda=\left(3 x^{2}-3\right) / 2 y$,
$x^{\prime \prime}=\lambda^{2}-2 x$,
$y^{\prime \prime}=\lambda\left(x-x^{\prime \prime}\right)-y$.
7 subs etc., 2 squarings,
1 more milt, 1 division.
How do we divide efficiently in a finite field?
$f / g=f g^{p-2}$ in prime field \mathbf{Z} / p. Can compute g^{p-2} with $\approx \lg p$ squarings and $\approx(\lg p) / \lg \lg p$ more mults.
e.g. $p=2^{224}-2^{96}+1$:

223 squarings, 11 more mults.
More generally, $f / g=f g^{q-2}$ in any field of size q.

There are faster division methods
(e.g. "Euclid"—beware timing attacks!); smaller "I/M ratio."
Special methods for some fields.

Speedup: delay divisions

Division costs many mults even with fastest division methods.

Save time by delaying divisions.
Naive division-delay method:
Store field elements as fractions until end of computation.
Divide once before output.
Mult fractions with 2 field mults.
Divide fractions with 2 field mults.
Add fractions with 3 field mults.

Speedup: unify denominators

For elliptic-curve doubling,
have denominator $2 y$
in $\lambda=\left(3 x^{2}-3\right) / 2 y$;
denominator $(2 y)^{2}$
in $x^{\prime \prime}=\lambda^{2}-2 x$;
denominator $(2 y)^{3}$
in $y^{\prime \prime}=\lambda\left(x-x^{\prime \prime}\right)-y$.
Subsequent computations will perform separate computations on the denominators $(2 y)^{2},(2 y)^{3}$ of $x^{\prime \prime}, y^{\prime \prime}$.

Save time by manipulating denominators together.

"Jacobian coordinates":

Store (x, y, z) to represent elliptic-curve point $\left(x / z^{2}, y / z^{3}\right)$.
$2\left(x / z^{2}, y / z^{3}\right)=\left(x^{\prime \prime}, y^{\prime \prime}\right)$ where $\lambda=\left(3\left(x / z^{2}\right)^{2}-3\right) / 2\left(y / z^{3}\right)$
$=\alpha / 2 y z$ with $\alpha=3 x^{2}-3 z^{4}$;
$x^{\prime \prime}=\lambda^{2}-2\left(x / z^{2}\right)$
$=\left(\alpha^{2}-8 x y^{2}\right) /(2 y z)^{2}$;
$y^{\prime \prime}=\lambda\left(\left(x / z^{2}\right)-x^{\prime \prime}\right)-\left(y / z^{3}\right)$
$=\left(12 x y^{2} \alpha-\alpha^{3}-8 y^{4}\right) /(2 y z)^{3}$.
$2\left(x / z^{2}, y / z^{3}\right)=\left(x_{2} / z_{2}^{2}, y_{2} / z_{2}^{3}\right)$
where $z_{2}=2 y z$,
$\alpha=3 x^{2}-3 z^{4}$,
$x_{2}=\alpha^{2}-8 x y^{2}$,
$y_{2}=\alpha\left(4 x y^{2}-x_{2}\right)-8 y^{4}$.
Easily compute with 6 squarings, 3 more milts: $x^{2}, z^{2}, z^{4}, y^{2}, y^{4}$, $y z, x y^{2}, \alpha^{2}, \alpha(\cdots)$.
Also some subs, doublings, etc.
Use fast field arithmetic:
e.g., can delay carries and reductions in computing y_{2}.

Speedup: difference of squares

Can compute $3 x^{2}-3 z^{4}$ as
$3\left(x-z^{2}\right)\left(x+z^{2}\right)$.
Replace 3 squarings by 1 mut, 1 squaring. Revised total: 4 squarings, 4 more muts.

Note:
$3 x^{2}-3 z^{4}$ came from $3 x^{2}-3$, derivative of $x^{3}-3 x+a_{6}$. Wouldn't have same speedup for, e.g., $x^{3}-5 x+a_{6}$.

Speedup: $f^{2}, g^{2}, 2 f g$
After computing f^{2} and g^{2} can compute $2 f g$
as $(f+g)^{2}-f^{2}-g^{2}$.
In particular:
After computing y^{2} and z^{2}
can compute $2 y z$
as $(y+z)^{2}-y^{2}-z^{2}$.
Replace 1 molt with 1 squaring.
Revised total: 5 squarings,
3 more mulls.

Explicit addition formulas

Similar speedups in formulas for adding distinct points. 5 squarings, 11 more mults.

Again some opportunities to delay carries, etc.

Speedup: cache results

In adding $\left(x_{1} / z_{1}^{2}, y_{1} / z_{1}^{3}\right)$
to $\left(x_{2} / z_{2}^{2}, y_{2} / z_{2}^{3}\right)$,
compute many intermediates,
including z_{1}^{2}, z_{1}^{3}.
Often add same point again to a different point; can reuse z_{1}^{2}, z_{1}^{3}.
"Chudnovsky coordinates."

Speedup: delay fewer divisions?

Faster divisions sometimes justify delaying fewer divisions.
e.g. Do we really need fractions for $P, 3 P, 5 P, 7 P$?

Can convert $P, 3 P, 5 P, 7 P$ out of Jacobian coordinates
with one division, several mults.
Then save mults in every
addition of $P, 3 P, 5 P, 7 P$.
"Mixed coordinates."
Sometimes worthwhile,
depending on division speed.

Montgomery coordinates

On elliptic curves with
"Montgomery form"
$y^{2}=x^{3}+a_{2} x^{2}+x$,
preferably with small $\left(a_{2}-2\right) / 4$:
$n\left(x_{1}, \ldots\right)=\left(x_{n} / z_{n}, \ldots\right)$ where
$z_{1}=1 ; x_{2 m}=\left(x_{m}^{2}-z_{m}^{2}\right)^{2}$;
$z_{2 m}=4 x_{m} z_{m}\left(x_{m}^{2}+a_{2} x_{m} z_{m}+z_{m}^{2}\right)$;
$x_{2 m+1}=4\left(x_{m} x_{m+1}-z_{m} z_{m+1}\right)^{2}$; $z_{2 m+1}=4\left(x_{m} z_{m+1}-z_{m} x_{m+1}\right)^{2} x_{1}$.

Can also figure out y,
or use cryptographic protocols that ignore y.

Assuming $\left(a_{2}-2\right) / 4$ small, main operations are
4 squarings, 5 more mults
for each bit of n.
Compare to Jacobian coordinates: each bit of n has

5 squarings, 3 more mults, and on occasion

5 more squarings, 11 more mults.
Montgomery form is better if n is not gigantic.

