Elliptic curves

D. J. Bernstein

University of Illinois at Chicago

Why elliptic-curve cryptography?

Can quickly compute
$4^{n} \bmod 2^{262}-5081$
given $n \in\left\{0,1,2, \ldots, 2^{256}-1\right\}$.
Similarly, can quickly compute $4^{m n} \bmod 2^{262}-5081$ given n and $4^{m} \bmod 2^{262}-5081$.
"Discrete-logarithm problem": given $4^{n} \bmod 2^{262}-5081$, find n. Is this easy to solve?

Diffie-Hellman secret-sharing

 system using $p=2^{262}-5081$:Alice's
secret key m

\{Alice, Bob\}'s shared secret $=$ shared secret $4^{m n} \bmod p$

Bob's secret key n
 public key $4^{n} \bmod p$

Bob's

Alice's
public key $4^{m} \bmod p$

Bad news: DLP can be solved at surprising speed! Attacker can find m and n by index calculus.

To protect against this attack, replace $2^{262}-5081$ with a much larger prime. Much slower arithmetic.

Alternative: Elliptic-curve cryptography. Replace $\left\{1,2, \ldots, 2^{262}-5082\right\}$ with a comparable-size "safe elliptic-curve group."
Somewhat slower arithmetic.

An elliptic curve over \mathbf{R}

Consider all pairs
of real numbers x, y
such that $y^{2}-5 x y=x^{3}-7$.
The "points on the elliptic curve $y^{2}-5 x y=x^{3}-7$ over $\mathbf{R "}^{\prime \prime}$ are those pairs and one additional point, ∞.
i.e. The set of points is
$\{(x, y) \in \mathbf{R} \times \mathbf{R}$:
$\left.y^{2}-5 x y=x^{3}-7\right\} \cup\{\infty\}$.
(\mathbf{R} is the set of real numbers.)

Graph of this set of points:

y

Don't forget ∞.
Visualize ∞ as top of y axis.

There is a standard definition of $0,-,+$ on this set of points.

Magical fact: The set of points is a "commutative group"; ie., these operations $0,-,+$ satisfy every identity satisfied by \mathbf{Z}.
e.g. All $P, Q, R \in \mathbf{Z}$ satisfy
$(P+Q)+R=P+(Q+R)$, so all curve points P, Q, R satisfy $(P+Q)+R=P+(Q+R)$.
(\mathbf{Z} is the set of integers.)

Visualizing the group law

$0=\infty ;-\infty=\infty$.
Distinct curve points P, Q on a vertical line have $-P=Q$;
$P+Q=0=\infty$.
A curve point R
with a vertical tangent line has $-R=R$;
$R+R=0=\infty$.

Here $-P=Q,-Q=P,-R=R$:
y

Distinct curve points P, Q, R on a line have $P+Q=-R$;
$P+Q+R=0=\infty$.
Distinct curve points P, R on a line tangent at P have $P+P=-R$; $P+P+R=0=\infty$.

A non-vertical line with only one curve point P has $P+P=-P$; $P+P+P=0$.

Here $P+Q=-R$:

y

Here $P+P=-R$:
y

Curve addition formulas

Easily find formulas for +

 by finding formulas for lines and for curve-line intersections.$x \neq x^{\prime}:(x, y)+\left(x^{\prime}, y^{\prime}\right)=\left(x^{\prime \prime}, y^{\prime \prime}\right)$
where $\lambda=\left(y^{\prime}-y\right) /\left(x^{\prime}-x\right)$,
$x^{\prime \prime}=\lambda^{2}-5 \lambda-x-x^{\prime}$,
$y^{\prime \prime}=5 x^{\prime \prime}-\left(y+\lambda\left(x^{\prime \prime}-x\right)\right)$.
$2 y \neq 5 x:(x, y)+(x, y)=\left(x^{\prime \prime}, y^{\prime \prime}\right)$
where $\lambda=\left(5 y+3 x^{2}\right) /(2 y-5 x)$,
$x^{\prime \prime}=\lambda^{2}-5 \lambda-2 x$,
$y^{\prime \prime}=5 x^{\prime \prime}-\left(y+\lambda\left(x^{\prime \prime}-x\right)\right)$.
$(x, y)+(x, 5 x-y)=\infty$.

An elliptic curve over $\mathbf{Z} / 13$

Consider the prime field
$\mathbf{Z} / 13=\{0,1,2, \ldots, 12\}$
with,,-+ defined $\bmod 13$.
The "set of points on the elliptic curve $y^{2}-5 x y=x^{3}-7$ over $\mathbf{Z} / 13^{\prime \prime}$ is
$\{(x, y) \in \mathbf{Z} / 13 \times \mathbf{Z} / 13:$

$$
\left.y^{2}-5 x y=x^{3}-7\right\} \cup\{\infty\} .
$$

Graph of this set of points:

As before, don't forget ∞.

The set of curve points
is a commutative group with standard definition of $0,-,+$.

Can visualize $0,-,+$ as before
Replace lines over \mathbf{R} by lines over $\mathbf{Z} / 13$.

Warning: tangent is defined by derivatives; hard to visualize.

Can define $0,-,+$
using same formulas as before.

Example of line over $\mathbf{Z} / 13$:

Formula for this line: $y=7 x+9$.
$P+Q=-R:$

An elliptic curve over \mathbf{F}_{16}

Consider the non-prime field
$(\mathbf{Z} / 2)[t] /\left(t^{4}-t-1\right)=\{$ $0 t^{3}+0 t^{2}+0 t^{1}+0 t^{0}$,
$0 t^{3}+0 t^{2}+0 t^{1}+1 t^{0}$,
$0 t^{3}+0 t^{2}+1 t^{1}+0 t^{0}$,
$0 t^{3}+0 t^{2}+1 t^{1}+1 t^{0}$, $0 t^{3}+1 t^{2}+0 t^{1}+0 t^{0}$, $\left.1 t^{3}+1 t^{2}+1 t^{1}+1 t^{0}\right\}$ of size $2^{4}=16$.

Graph of the "set of points on the

 elliptic curve $y^{2}-5 x y=x^{3}-7$ over $(\mathbf{Z} / 2)[t] /\left(t^{4}-t-1\right)$ ":
Line $y=t x+1$:

$P+Q=-R:$
.

$$
\because \quad . \quad . \quad . \quad . \quad . \quad-R
$$

.

$$
\text { " } \quad \text { " } \quad \text { - }
$$

\bigcirc
.

$$
\begin{array}{llll}
\\
\hline & . & " & \\
\hline & . & \square
\end{array}
$$

" "

$$
\text { " } \quad . \quad \because \quad . \quad \text { " }
$$

$$
+0
$$

$$
\text { . } \quad .
$$

$$
\begin{equation*}
. \quad . \because \cdot \quad . \quad . \quad 0 \quad . \quad R \tag{0}
\end{equation*}
$$

$. \because .0 . \quad . \quad . \quad . \quad$.

- (. "
P.
(O) ".

$$
00 \cdot \bigcirc
$$

More elliptic curves

Can use any field k.
Can use any nonsingular curve $y^{2}+a_{1} x y+a_{3} y=$
$x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$.
"Nonsingular": no $(x, y) \in k \times k$ simultaneously satisfies
$y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+$ $a_{4} x+a_{6}$ and $2 y+a_{1} x+a_{3}=0$ and $a_{1} y=3 x^{2}+2 a_{2} x+a_{4}$.

Easy to check nonsingularity.
Almost all curves are nonsingular when k is large.

e.g. $y^{2}=x^{3}-30 x$:

y

$\{(x, y) \in k \times k:$
$y^{2}+a_{1} x y+a_{3} y=$
$\left.x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{\infty\}$
is a commutative group with standard definition of $0,-,+$.
Points on line add to 0
with appropriate multiplicity.
Group is usually called " $E(k)$ " where E is "the elliptic curve $y^{2}+a_{1} x y+a_{3} y=$ $x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$.

Fairly easy to write down explicit formulas for $0,-,+$ as before.

Using explicit formulas can quickly compute nth multiples in $E(k)$ given $n \in\left\{0,1,2, \ldots, 2^{256}-1\right\}$ and $\# k \approx 2^{256}$.
(How quickly?
We'll study this later.)
"Elliptic-curve discrete-logarithm problem" (ECDLP): given points P and $n P$, find n.

Can find curves where ECDLP seems extremely difficult: $\approx 2^{128}$ operations.

See "Handbook of elliptic and hyperelliptic curve cryptography" for much more information.

Two examples of elliptic curves useful for cryptography:
"NIST P-256": $E(\mathbf{Z} / p)$ where p is
the prime $2^{256}-2^{224}+2^{192}+2^{96}-1$
and E is the elliptic curve $y^{2}=$
$x^{3}-3 x+($ a particular constant) .
"Curv e25519": $E(\mathbf{Z} / p)$ where
p is the prime $2^{255}-19$
and E is the elliptic curve $y^{2}=x^{3}+486662 x^{2}+x$.

