
Choosing curves

D. J. Bernstein

University of Illinois at Chicago



Elliptic-curve Diffie-Hellman

could use any elliptic curve E
over any finite field Fq.
Some choices of E;Fq
are better than others.

Higher speed: easier to compute

nth multiples in E(Fq).
Higher security: harder to find

n given an nth multiple,

i.e., to solve ECDLP.

Lower bandwidth. Etc.

How do we choose E;Fq?
Which curves are best?



Occasionally an application has

different criteria for E;Fq.
e.g. Some cryptographic protocols

need specific embedding degrees

for pairings.

For simplicity I’ll focus on

fast, secure Diffie-Hellman.

Can also consider, e.g.,

genus-2 hyperelliptic curves.

Better than elliptic curves?

Active research area.

For simplicity I’ll focus on

the elliptic-curve case.



Field size?

The group E(Fq) has

� q elements.

“Generic” algorithms such as

“Pollard’s rho method”

solve ECDLP using

� q1=2 simple operations.

Highly parallelizable.

e.g. � 240 simple operations

to solve ECDLP if q � 280.

Reject q: too small.



q � 2256 is clearly safe

against these ECDLP algorithms.

� 2128 simple operations

would need massive advances

in computer technology.

These algorithms can finish early,

but almost never do: e.g., chance

� 2�56 of finishing after 2100

simple operations. No serious risk.

Popular today: q � 2160.

Somewhat faster arithmetic.

I don’t recommend this; I can

imagine 280 simple operations.



Field degree?

Field size q is a power of field

characteristic p. Many possibilities

for field degree (lg q)=(lg p).
e.g. q = 2255 � 19; prime;

p = 2255 � 19; degree 1.

e.g. q = (261 � 1)5;

p = 261 � 1; degree 5.

e.g. q = 2255;

p = 2; degree 255.

What’s the best degree?



Degree > 1 has a possible security

problem: “Weil descent.”

e.g. Degree divisible by 4 allows

ECDLP to be solved with only

about q0:375 simple operations.

Need to increase q, outweighing

all known benefits. (Gaudry, Diem)

Other degrees are at risk too.

Exactly which curves are broken

by Weil descent? Very complicated

answer; active research area.

Maybe we can be comfortable with

degree > 1 despite Weil descent.



Standard argument for using

small characteristic, large degree:

Arithmetic on polynomials mod 2

is just like integer arithmetic

but faster: skip the carries.

Also have fast squarings.

Use fast curve endomorphisms.

Fewer bit operations

for scalar multiplication

in characteristic 2,

compared to large characteristic.

Speculation: � 4 times fewer?



Counterargument:

Typical CPU includes circuits

for integer multiplication,

not for poly mult mod 2.

Large char is slower in hardware

than char 2, but

char 2 is much slower in software

than large char.

It seems to me that

the counterargument is winning:

char-2 standards are dying.



Medium char? Similar problems.

e.g. q = (231 � 1)8, p = 231 � 1,

degree 8, polys with coefficients in�
0; 1; : : : ; 231 � 2

	
:

Coefficient products fit

comfortably into 64 bits.

Also have fast inversion.

But hard to take advantage of

128-bit products; and hard to fit

into 53-bit floating-point products.

Big speed loss on many CPUs,

outweighing all known benefits.



Prime shape?

Assume prime field from now on;

Fq = Fp = Z=p.
How to choose prime p? Three

common choices in literature.

“Binomial”:

e.g., 2255 � 19.

“Radix 232”:

e.g., NIST prime 2224 � 296 + 1.

“Random”:

no special shape for p.



Classic Diffie-Hellman had an

argument for random primes.

Here’s the argument:

Best attack so far, namely

modern “NFS” index calculus,

is faster for special primes,

requiring larger primes,

outweighing any possible speedup.

Argument disappears for

elliptic curves over prime fields.

Attacker doesn’t seem to

benefit from special primes;

don’t have anything like NFS.



So choose prime

very close to power of 2,

saving time in field operations.

Binomial primes allow very fast

reduction, as we’ve seen.

Radix-232 primes also allow

very fast reduction if

integer arithmetic uses radix 232.

Otherwise not quite as fast.

Different CPUs want

different choices of radix,

so binomial primes are better.



Which power of 2?

Primes not far below 232w
allow field elements to fit

in 4w bytes, minimal waste.

Comfortable security, w = 8:

2253 + 39, 2253 + 51, 2254 + 79,

2255 � 31, 2255 � 19, 2255 + 95.

I recommend 2255 � 19.



Subgroup shape?

Elliptic-curve Diffie-Hellman

uses standard base point B.

Bob’s secret key is n;

Bob’s public key is nB.

Order of B in group

should be a prime ` � q.
Otherwise ECDLP is accelerated

by “Pohlig-Hellman algorithm.”

This constrains curve choice:

number of elements of E(Fq)
must have large prime divisor `.



Quickly compute #E(Fq),
number of elements of E(Fq),
using “Schoof’s algorithm.”

Enforce other constraints:

gcd
�
#E(Fq); q

	
= 1 to stop

“anomalous curve attack”;

large prime divisor of

“twist order” 2q + 2�#E(Fq)
to stop “twist attacks”;

large embedding degree

to eliminate pairings.



Curve shape?

How to choose a1; a2; a3; a4; a6

defining elliptic curve

y2 + a1xy + a3y =

x3 + a2x2 + a4x + a6?

See some coefficients

in explicit formulas

for curve operations.

e.g. Derivative 3x2 + 2a2x + a4

usually creates mult by a2.

But formulas vary: e.g.,

can see mult by (a2 � 2)=4.



Save time in these formulas

by specializing coefficients.

e.g. y2 = x3 � 3x + a6.

e.g. y2 = x3 + a2x2 + x.

Many other interesting choices.

Warning: some specializations can

force low embedding degree or

otherwise create security problems.

Remember to check

all the security conditions.



Note on comparing curves

and comparing explicit formulas:

Count CPU cycles, not field ops!

Otherwise you make bad choices.

Reality: mult by small constant

is as expensive as several adds.

Reality: square-to-multiply ratio

is 2=3 for a typical field,

not the often-presumed 4=5.

Reality: a2 + b2 + 2 is

faster than (a2; b2; 2).



Current speed records use

curve y2 = x3 + a2x2 + x
with small (a2 � 2)=4.

Additional advantages:

easily resist timing attacks;

easily eliminate y.

a2 = 486662 has near-prime

curve order and twist order.

“Curve25519”:

http://cr.yp.to/ecdh.html


