Efficient arithmetic on elliptic curves

D. J. BernsteinUniversity of Illinois at Chicago

Classic question about the Diffie-Hellman system: How quickly can we compute nth powers mod p?

Assume that someone gives you p; e.g. $p = 2^{262} - 5081$.

This talk asks
the analogous question
for elliptic-curve Diffie-Hellman:
How quickly can we compute
nth multiples in an
elliptic-curve group?

"Elliptic-curve scalar multiplication."

Assume that someone gives you a field and an elliptic curve.

e.g. NIST P-224: the elliptic curve $y^2=x^3-3x+a_6$ over \mathbf{Z}/p . Here $p=2^{224}-2^{96}+1$ and $a_6=18958286285566608 00040866854449392 64155046809686793 21075787234672564.$

e.g. NIST P-256.

e.g. Curve25519.

Your task: Given (x, y) on curve, and given integer $n \geq 0$, compute nth multiple of (x, y) in the elliptic-curve group.

Warning: Answer is *not* (nx, ny) unless you're extremely lucky. Elliptic-curve point addition is not vector addition; (x, y) + (x', y') is almost never (x + x', y + y').

Can emphasize this by changing notation: +, \oplus , [n], etc. But this talk uses simplified notation.

Multiples via additions

Typical recursive formulas:

$$2P = P+P$$
. $3P = 2P+P$.
 $4P = 2P+2P$. $5P = 3P+2P$.
 $6P = 3P+3P$. $7P = 5P+2P$.
 $2nP = 7P+(n-7)P$ if $4 \le n < 8$.
 $(2n+1)P = 2nP+P$ if $4 \le n < 8$.
 $(4n+1)P = 4nP+P$ if $4 \le n < 8$.
 $(4n+3)P = 4nP+3P$ if $4 \le n < 8$.
 $(2n+1)P = 8nP+P$ if $4 \le n$.
 $(8n+1)P = 8nP+P$ if $4 \le n$.
 $(8n+3)P = 8nP+3P$ if $4 \le n$.
 $(8n+5)P = 8nP+5P$ if $4 \le n$.
 $(8n+7)P = 8nP+7P$ if $4 \le n$.

This "addition chain" ("length-3 sliding windows") uses $\approx \lg n$ doublings and $\approx 0.25 \lg n$ more additions to compute nP for average n.

e.g. pprox 320 additions for average $n \in \{0, 1, \dots, 2^{256} - 1\}$.

Some easy improvements from fast negation on elliptic curves: (16n-7)P=16nP-7P, etc. Also use "endomorphisms" for "Koblitz curves," "GLV curves."

More complicated methods replace 0.25 by $\approx 1/\lg\lg n$.

Explicit doubling formulas

On curve
$$y^2 = x^3 - 3x + a_6$$
:

$$2(x,y)=(x'',y'')$$
 where $\lambda=(3x^2-3)/2y$, $x''=\lambda^2-2x$, $y''=\lambda(x-x'')-y$.

7 subs etc., 2 squarings, 1 more mult, 1 division.

How do we divide efficiently in a finite field?

 $f/=f^{p-2}$ in prime field \mathbf{Z}/p . Can compute p-2 with $\approx \lg p$ squarings and $\approx (\lg p)/\lg\lg p$ more mults.

e.g. $p = 2^{224} - 2^{96} + 1$: 223 squarings, 11 more mults.

More generally, $f/=f^{q-2}$ in any field of size q.

There are faster division methods (e.g. "Euclid"—beware timing attacks!); smaller "I/M ratio." Special methods for some fields.

Speedup: delay divisions

Division costs many mults even with fastest division methods.

Save time by delaying divisions.

Naive division-delay method: Store field elements as fractions until end of computation. Divide once before output.

Mult fractions with 2 field mults. Divide fractions with 2 field mults. Add fractions with 3 field mults.

Speedup: unify denominators

For elliptic-curve doubling, have denominator 2y in $\lambda=(3x^2-3)/2y$; denominator $(2y)^2$ in $x''=\lambda^2-2x$; denominator $(2y)^3$ in $y''=\lambda(x-x'')-y$.

Subsequent computations will perform separate computations on the denominators $(2y)^2$, $(2y)^3$ of x'', y''.

Save time by manipulating denominators together.

"Jacobian coordinates":

Store (x, y, z) to represent elliptic-curve point $(x/z^2, y/z^3)$.

$$2(x/z^2, y/z^3) = (x'', y'')$$
 where $\lambda = (3(x/z^2)^2 - 3)/2(y/z^3)$ $= \alpha/2yz$ with $\alpha = 3x^2 - 3z^4$; $x'' = \lambda^2 - 2(x/z^2)$ $= (\alpha^2 - 8xy^2)/(2yz)^2$; $y'' = \lambda((x/z^2) - x'') - (y/z^3)$ $= (12xy^2\alpha - \alpha^3 - 8y^4)/(2yz)^3$.

$$2(x/z^2,y/z^3)=(x_2/z_2^2,y_2/z_2^3)$$
 where $z_2=2yz$, $lpha=3x^2-3z^4$, $x_2=lpha^2-8xy^2$, $y_2=lpha(4xy^2-x_2)-8y^4$.

Easily compute with 6 squarings, 3 more mults: x^2 , z^2 , z^4 , y^2 , y^4 , yz, xy^2 , α^2 , $\alpha(\cdots)$. Also some subs, doublings, etc.

Use fast field arithmetic: e.g., can delay carries and reductions in computing y_2 .

Speedup: difference of squares

Can compute
$$3x^2 - 3z^4$$
 as $3(x - z^2)(x + z^2)$.

Replace 3 squarings by 1 mult, 1 squaring. Revised total: 4 squarings, 4 more mults.

Note:

 $3x^2 - 3z^4$ came from $3x^2 - 3$, derivative of $x^3 - 3x + a_6$. Wouldn't have same speedup for, e.g., $x^3 - 5x + a_6$.

Speedup: f^2 , 2 , 2 , 2f

After computing f^2 and f^2 and can compute 2f as $(f+)^2-f^2-f^2$.

In particular:

After computing y^2 and z^2 can compute 2yz as $(y+z)^2 - y^2 - z^2$.

Replace 1 mult with 1 squaring. Revised total: 5 squarings, 3 more mults.

Explicit addition formulas

Similar speedups in formulas for adding distinct points.

5 squarings, 11 more mults.

Again some opportunities to delay carries, etc.

Speedup: cache results

In adding $(x_1/z_1^2, y_1/z_1^3)$ to $(x_2/z_2^2, y_2/z_2^3)$, compute many intermediates, including z_1^2, z_1^3 .

Often add same point again to a different point; can reuse z_1^2, z_1^3 .

"Chudnovsky coordinates."

Speedup: delay fewer divisions?

Faster divisions sometimes justify delaying fewer divisions.

e.g. Do we really need fractions for *P*, 3*P*, 5*P*, 7*P*?

Can convert *P*, 3*P*, 5*P*, 7*P* out of Jacobian coordinates with one division, several mults. Then save mults in every addition of *P*, 3*P*, 5*P*, 7*P*. "Mixed coordinates."

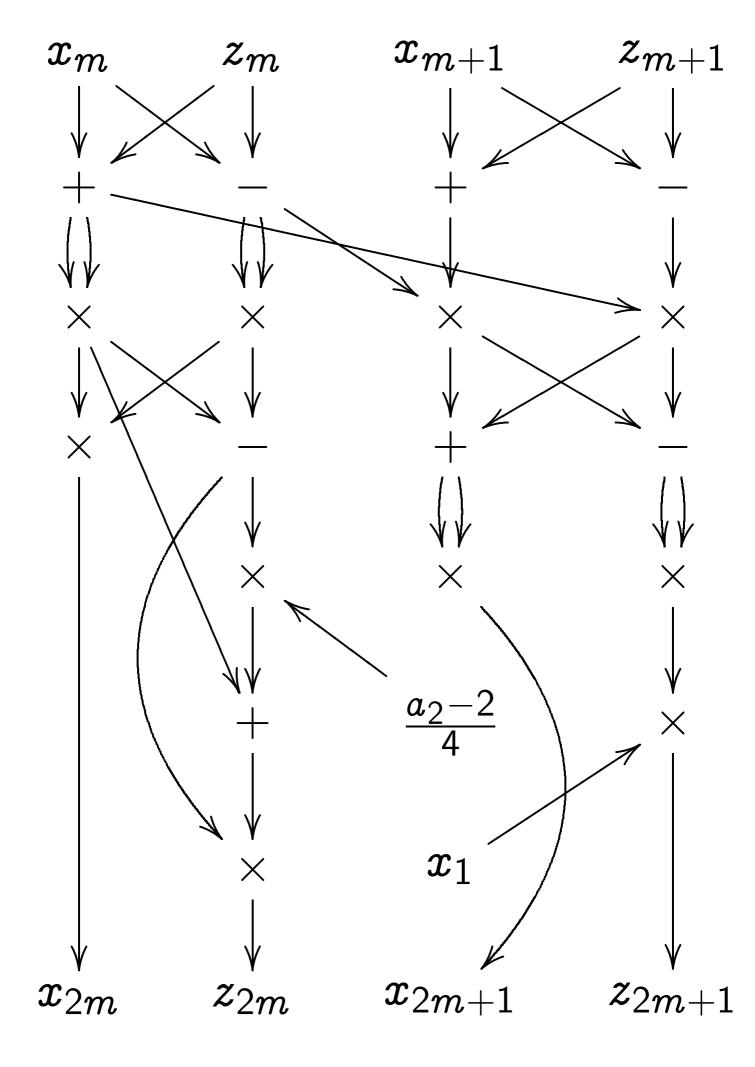
Sometimes worthwhile, depending on division speed.

Montgomery coordinates

On elliptic curves with "Montgomery form" $y^2 = x^3 + a_2 x^2 + x$, preferably with small $(a_2 - 2)/4$:

$$n(x_1,\ldots)=(x_n/z_n,\ldots)$$
 where $z_1=1;\ x_{2m}=(x_m^2-z_m^2)^2;\ z_{2m}=4x_mz_m(x_m^2+a_2x_mz_m+z_m^2);\ x_{2m+1}=4(x_mx_{m+1}-z_mz_{m+1})^2;\ z_{2m+1}=4(x_mz_{m+1}-z_mx_{m+1})^2x_1.$

Can also figure out y, or use cryptographic protocols that ignore y.



Assuming $(a_2 - 2)/4$ small, main operations are 4 squarings, 5 more mults for each bit of n.

Compare to Jacobian coordinates: each bit of *n* has 5 squarings, 3 more mults, and on occasion 5 more squarings, 11 more mults.

Montgomery form is better if n is not gigantic.