Efficient arithmetic in finite fields

D. J. BernsteinUniversity of Illinois at Chicago

Some examples of finite fields:

$$egin{aligned} \mathbf{Z}/(2^{255}-19). \ &(\mathbf{Z}/(2^{61}-1))[t]/(t^5-3). \ &(\mathbf{Z}/223))[t]/(t^{37}-2). \ &(\mathbf{Z}/2)[t]/(t^{283}-t^{12}-t^7-t^5-1). \end{aligned}$$

How quickly can we add, subtract, multiply in these fields?

Answer will depend on platform: AMD Athlon, Sun UltraSPARC IV, Intel 8051, Xilinx Spartan-3, etc. Warning: different platforms often favor different fields!

The first question

How to multiply big integers?

Child's answer: Use polynomial with coefficients in {0, 1, . . . , 9 to represent integer in radix 10.

With this representation, multiply integers in two steps:

- 1. Multiply polynomials.
- 2. "Carry" extra digits.

Polynomial multiplication involves *small* integers. Have split one big multiplication into many small operations.

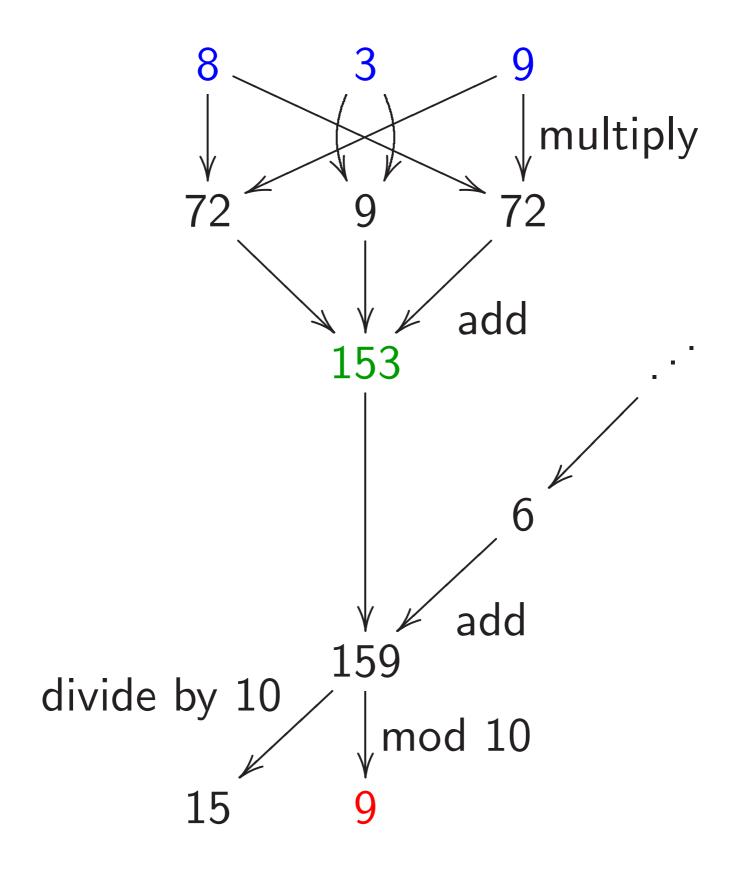
Example of representation:

$$839 = 8 \cdot 10^2 + 3 \cdot 10^1 + 9 \cdot 10^0 =$$
 value (at $t = 10$) of polynomial $8t^2 + 3t^1 + 9t^0$.

Squaring:
$$(8t^2 + 3t^1 + 9t^0)^2 = 64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0$$
.
Carrying: $64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0$; $64t^4 + 48t^3 + 153t^2 + 62t^1 + 1t^0$; $64t^4 + 48t^3 + 159t^2 + 2t^1 + 1t^0$; $64t^4 + 63t^3 + 9t^2 + 2t^1 + 1t^0$; $70t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0$; $7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0$.

In other words, $839^2 = 703921$.

What operations were used here?



Scaled variation:

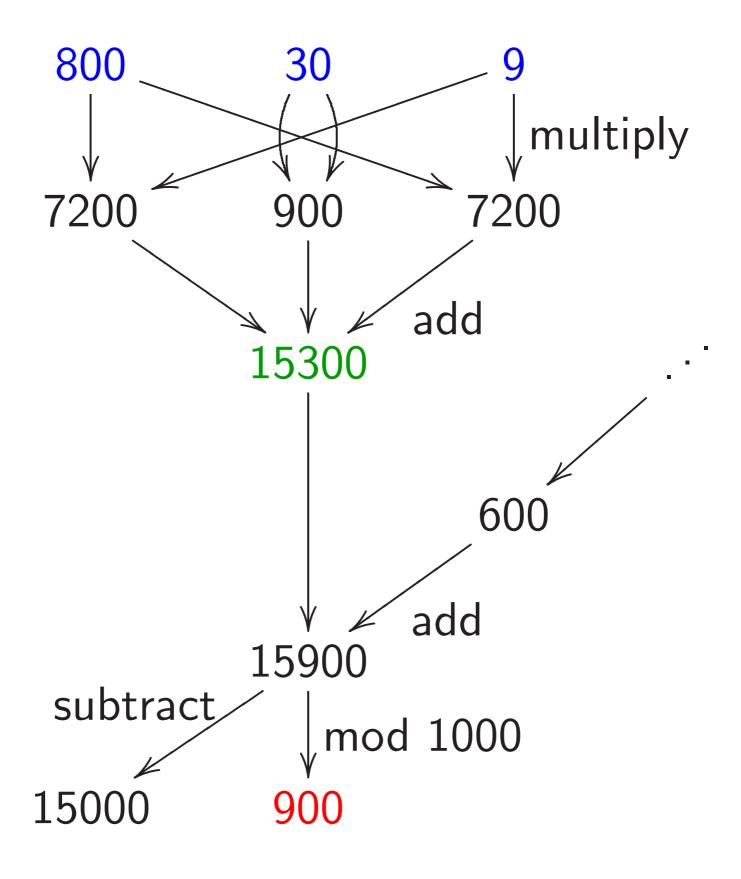
$$839 = 800 + 30 + 9 =$$
value (at $t = 1$) of polynomial $800t^2 + 30t^1 + 9t^0$.

Squaring:
$$(800t^2 + 30t^1 + 9t^0)^2 = 640000t^4 + 48000t^3 + 15300t^2 + 540t^1 + 81t^0$$
.

Carrying:

$$640000t^4 + 48000t^3 + 15300t^2 + 540t^1 + 81t^0;$$
 $640000t^4 + 48000t^3 + 15300t^2 + 620t^1 + 1t^0;$
 \dots
 $700000t^5 + 0t^4 + 3000t^3 + 900t^2 + 20t^1 + 1t^0.$

What operations were used here?



Speedup: double inside squaring

Squaring $\cdots + f_2t^2 + f_1t^1 + f_0t^0$ produces coefficients such as $f_4f_0 + f_3f_1 + f_2f_2 + f_1f_3 + f_0f_4$.

Compute more efficiently as $2f_4f_0 + 2f_3f_1 + f_2f_2$. Or, slightly faster, $2(f_4f_0 + f_3f_1) + f_2f_2$. Or, slightly faster, $(2f_4)f_0 + (2f_3)f_1 + f_2f_2$ after precomputing $2f_1, 2f_2, \ldots$

Have eliminated $\approx 1/2$ of the work if there are many coefficients.

Speedup: allow negative coeffs

Recall 159 \mapsto 15, 9.

Scaled: $15900 \mapsto 15000, 900$.

Alternative: $159 \mapsto 16, -1$.

Scaled: $15900 \mapsto 16000, -100$.

Use digits $\{-5, -4, \ldots, 4, 5\}$ instead of $\{0, 1, \ldots, 9\}$. Several small advantages: easily handle negative integers; easily handle subtraction; reduce products a bit.

Speedup: delay carries

Computing (e.g.) big $ab + c^2$: multiply a, b polynomials, carry, square c poly, carry, add, carry.

e.g.
$$a = 314$$
, $b = 271$, $c = 839$:
 $(3t^2 + 1t^1 + 4t^0)(2t^2 + 7t^1 + 1t^0) = 6t^4 + 23t^3 + 18t^2 + 29t^1 + 4t^0$;
carry: $8t^4 + 5t^3 + 0t^2 + 9t^1 + 4t^0$.

As before
$$(8t^2 + 3t^1 + 9t^0)^2 = 64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0;$$

 $7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0.$

+:
$$7t^5 + 8t^4 + 8t^3 + 9t^2 + 11t^1 + 5t^0$$
;
 $7t^5 + 8t^4 + 9t^3 + 0t^2 + 1t^1 + 5t^0$.

Faster: multiply a, b polynomials, square c polynomial, add, carry.

$$(6t^4 + 23t^3 + 18t^2 + 29t^1 + 4t^0) +$$

 $(64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0) =$
 $70t^4 + 71t^3 + 171t^2 + 83t^1 + 85t^0;$
 $7t^5 + 8t^4 + 9t^3 + 0t^2 + 1t^1 + 5t^0.$

Eliminate intermediate carries.

Outweighs cost of handling slightly larger coefficients.

Important to carry between multiplications (and squarings) to reduce coefficient size; but carries are usually a bad idea for additions, subtractions, etc.

Speedup: polynomial Karatsuba

Computing product of polys f, with (e.g.) deg f < 20, deg $\,<$ 20: 400 coefficient mults, 361 coefficient adds.

Faster: Write f as $F_0 + F_1 t^{10}$ with deg $F_0 < 10$, deg $F_1 < 10$. Similarly write as $G_0 + G_1 t^{10}$.

Then
$$f = (F_0 + F_1)(G_0 + G_1)t^{10} + (F_0G_0 - F_1G_1t^{10})(1 - t^{10}).$$

20 adds for $F_0 + F_1$, $G_0 + G_1$. 300 mults for three products F_0G_0 , F_1G_1 , $(F_0+F_1)(G_0+G_1)$. 243 adds for those products. 9 adds for $F_0G_0 - F_1G_1t^{10}$ with subs counted as adds and with delayed negations. 19 adds for $\cdots (1 - t^{10})$. 19 adds to finish.

Total 300 mults, 310 adds. Larger coefficients, slight expense; still saves time.

Can apply idea recursively as poly degree grows.

Many other algebraic speedups in polynomial multiplication: Toom, FFT, etc.

Increasingly important as polynomial degree grows. $O(n \lg n \lg \lg n)$ coeff operations to compute n-coeff product.

Useful for sizes of *n* that occur in cryptography? Maybe; active research area.

Using CPU's integer instructions

Replace radix 10 with, e.g., 2^{24} . Power of 2 simplifies carries.

Adapt radix to platform.

e.g. Every 2 cycles, Athlon 64 can compute a 128-bit product of two 64-bit integers.

(5-cycle latency; parallelize!)

Also low cost for 128-bit add.

Reasonable to use radix 2^{60} . Sum of many products of digits fits comfortably below 2^{128} . Be careful: analyze largest sum. e.g. In 4 cycles, Intel 8051 can compute a 16-bit product of two 8-bit integers.

Could use radix 2⁶.

Could use radix 2⁸, with 24-bit sums.

e.g. Every 2 cycles, Pentium 4 F3 can compute a 64-bit product of two 32-bit integers.

(11-cycle latency; yikes!)

Reasonable to use radix 2²⁸.

Warning: Multiply instructions are very slow on some CPUs. e.g. Pentium 4 F2: 10 cycles!

Using floating-point instructions

Big CPUs have separate floating-point instructions, aimed at numerical simulation but useful for cryptography.

In my experience, floating-point instructions support faster multiplication (often much, much faster) than integer instructions, except on the Athlon 64. Other advantages: portability; easily scaled coefficients.

- e.g. Every 2 cycles, Pentium III can compute a 64-bit product of two floating-point numbers, and an independent 64-bit sum.
- e.g. Every cycle, Athlon can compute a 64-bit product and an independent 64-bit sum.
- e.g. Every cycle, UltraSPARC III can compute a 53-bit product and an independent 53-bit sum. Reasonable to use radix 2²⁴.
- e.g. Pentium 4 can do the same using SSE2 instructions.

How to do carries in floating-point registers?
(No CPU carry instruction: not useful for simulations.)

Exploit floating-point rounding: add big constant, subtract same constant.

e.g. Given α with $|\alpha| \leq 2^{75}$: compute 53-bit floating-point sum of α and constant $3 \cdot 2^{75}$, obtaining a multiple of 2^{24} ; subtract $3 \cdot 2^{75}$ from result, obtaining multiple of 2^{24} nearest α ; subtract from α .

Reducing modulo a prime

Fix a prime p. The prime field \mathbf{Z}/p is the set $\{0, 1, 2, ..., p-1\}$ with — defined as — mod p, + defined as + mod p, · defined as · mod p.

e.g. p = 1000003: 1000000 + 50 = 47 in \mathbf{Z}/p ; -1 = 1000002 in \mathbf{Z}/p ; $117505 \cdot 23131 = 1$ in \mathbf{Z}/p . How to multiply in \mathbb{Z}/p ?

Can use definition: $fg \mod p = fg - p \lfloor fg/p \rfloor$. Can multiply fg by a precomputed 1/p approximation; easily adjust to obtain $\lfloor fg/p \rfloor$. Slight speedup: "2-adic inverse"; "Montgomery reduction."

We can do better: normally p is chosen with a special form (or dividing a special form; see "redundant representations") to make $fg \mod p$ much faster.

e.g. In $\mathbf{Z}/1000003$: 314159265358 = $314159 \cdot 1000000 + 265358 =$ 314159(-3) + 265358 = -942477 + 265358 =-677119.

Easily adjust to range $\{0, 1, \ldots, p-1\}$ by adding/subtracting a few p's. (Beware timing attacks!)

Speedup: Delay the adjustment; extra p's won't damage subsequent field operations.

Can delay carries until after multiplication by 3.

e.g. To square 314159 in $\mathbf{Z}/1000003$: Square poly $3t^5+1t^4+4t^3+1t^2+5t^1+9t^0$, obtaining $9t^{10}+6t^9+25t^8+14t^7+48t^6+72t^5+59t^4+82t^3+43t^2+90t^1+81t^0$.

Reduce: replace $(c_i)t^{6+i}$ by $(-3c_i)t^i$, obtaining $72t^5 + 32t^4 + 64t^3 - 32t^2 + 48t^1 - 63t^0$.

Carry: $8t^6 - 4t^5 - 2t^4 + 1t^3 + 2t^2 + 2t^1 - 3t^0$.

To minimize poly degree, mix reduction and carrying, carrying the top sooner.

e.g. Start from square $9t^{10} + 6t^9 + 25t^8 + 14t^7 + 48t^6 + 72t^5 + 59t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Reduce $t^{10} \rightarrow t^4$ and carry $t^4 \rightarrow t^5 \rightarrow t^6$: $6t^9 + 25t^8 + 14t^7 + 56t^6 - 5t^5 + 2t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Finish reduction: $-5t^5 + 2t^4 + 64t^3 - 32t^2 + 48t^1 - 87t^0$. Carry $t^0 o t^1 o t^2 o t^3 o t^4 o t^5$: $-4t^5 - 2t^4 + 1t^3 + 2t^2 - 1t^1 + 3t^0$.

Speedup: non-integer radix

Consider $\mathbf{Z}/(2^{61}-1)$.

Five coeffs in radix 2^{13} ? $f_4t^4 + f_3t^3 + f_2t^2 + f_1t^1 + f_0t^0$.

Most coeffs could be 2^{12} .

Square $\cdots + 2(f_4f_1 + f_3f_2)t^5 + \cdots$ Coeff of t^5 could be $> 2^{25}$.

Reduce: $2^{65} = 2^4$ in $\mathbf{Z}/(2^{61} - 1)$; $\cdots + (2^5(f_4f_1 + f_3f_2) + f_0^2)t^0$. Coeff could be $> 2^{29}$.

Very little room for additions, delayed carries, etc. on 32-bit platforms.

Scaled: Evaluate at t = 1. f_4 is multiple of 2^{52} ; f_3 is multiple of 2^{39} ; f_2 is multiple of 2^{26} ; f_1 is multiple of 2^{13} ; f_0 is multiple of 2^0 . Reduce: $\cdots + (2^{-60}(f_4f_1 + f_3f_2) + f_0^2)t^0$.

Better: Non-integer radix $2^{12.2}$.

 f_4 is multiple of 2^{49} ;

 f_3 is multiple of 2^{37} ;

 f_2 is multiple of 2^{25} ;

 f_1 is multiple of 2^{13} ;

 f_0 is multiple of 2^0 .

Saves a few bits in coeffs.

More finite fields

Fix a prime p. Fix a poly φ in one variable t with φ irreducible mod p.

The finite field $(\mathbf{Z}/p)[t]/\varphi$ is the set of polynomials $f_{\deg \varphi-1}t^{\deg \varphi-1}+\cdots+f_1t^1+f_0t^0$ with each $f_i\in \mathbf{Z}/p$ and with $-,+,\cdot$ defined modulo p and modulo φ .

 $(\mathbf{Z}/p)[t]/\varphi$ is an "extension" of the prime field \mathbf{Z}/p ; it has "characteristic" p.

e.g. 223 is prime, and poly $t^6 - 3$ is irreducible mod 223, so $(\mathbf{Z}/223)[t]/(t^6 - 3)$ is a field.

223⁶ elements of field, namely polynomials $f_5t^5+f_4t^4+f_3t^3+f_2t^2+f_1t^1+f_0t^0$ with each $f_i\in\{0,1,\ldots,222\}.$

After adding, subtracting, multiplying: replace t^6 by 3, replace t^7 by 3t, etc.; and reduce coefficients modulo 223. e.g. $(9t^4+1)^2=81t^8+18t^4+1=243t^2+18t^4+1=18t^4+20t^2+1$.

Have two levels of polynomials when p is large: element of $(\mathbf{Z}/p)[t]/\varphi$ is poly mod φ ; each poly coefficient is integer represented as poly in some radix.

e.g. $f_4t^4 + f_3t^3 + f_2t^2 + f_1t^1 + f_0t^0$ in $(\mathbf{Z}/(2^{61}-1))[t]/(t^5-3)$ could have each coefficient f_i represented as poly of degree < 3in radix $2^{61/3}$.

When p is small, especially p = 2, benefit from batching coefficients. Many platform-specific speedups.

Speedup: fast Frobenius

In
$$(\mathbf{Z}/2)[t]/\varphi$$
 have $(\cdots + f_2t^2 + f_1t^1 + f_0t^0)^2 = \cdots + f_2t^4 + f_1t^2 + f_0t^0$.

Cross-terms disappear: 2 = 0.

Thus squaring is very fast: replace t^i by t^{2i} and reduce modulo φ .

More generally, pth powering is very fast in characteristic p.