Efficient arithmetic in finite fields

D. J. Bernstein

University of Illinois at Chicago

Some examples of finite fields:
$\mathbf{Z} /\left(2^{255}-19\right)$.
$\left(\mathbf{Z} /\left(2^{61}-1\right)\right)[t] /\left(t^{5}-3\right)$.
$(\mathbf{Z} / 223))[t] /\left(t^{37}-2\right)$.
$(\mathbf{Z} / 2)[t] /\left(t^{283}-t^{12}-t^{7}-t^{5}-1\right)$.
How quickly can we add, subtract, multiply in these fields?

Answer will depend on platform: AMD Athlon, Sun UltraSPARC IV, Intel 8051, Xilinx Spartan-3, etc. Warning: different platforms often favor different fields!

The first question

How to multiply big integers?
Child's answer: Use polynomial with coefficients in $\{0,1, \ldots, 9\}$ to represent integer in radix 10 .

With this representation, multiply integers in two steps: 1. Multiply polynomials.
2. "Carry" extra digits.

Polynomial multiplication

 involves small integers. Have split one big multiplication into many small operations.Example of representation:
$839=8 \cdot 10^{2}+3 \cdot 10^{1}+9 \cdot 10^{0}=$
value (at $t=10$) of polynomial $8 t^{2}+3 t^{1}+9 t^{0}$.

Squaring: $\left(8 t^{2}+3 t^{1}+9 t^{0}\right)^{2}=$ $64 t^{4}+48 t^{3}+153 t^{2}+54 t^{1}+81 t^{0}$.

Carrying:
$64 t^{4}+48 t^{3}+153 t^{2}+54 t^{1}+81 t^{0} ;$ $64 t^{4}+48 t^{3}+153 t^{2}+62 t^{1}+1 t^{0} ;$ $64 t^{4}+48 t^{3}+159 t^{2}+2 t^{1}+1 t^{0} ;$ $64 t^{4}+63 t^{3}+9 t^{2}+2 t^{1}+1 t^{0} ;$ $70 t^{4}+3 t^{3}+9 t^{2}+2 t^{1}+1 t^{0} ;$ $7 t^{5}+0 t^{4}+3 t^{3}+9 t^{2}+2 t^{1}+1 t^{0}$.

In other words, $839^{2}=703921$.

What operations were used here?

divide by 10
$\downarrow \bmod 10$
15
9

Scaled variation:
$839=800+30+9=$
value (at $t=1$) of polynomial
$800 t^{2}+30 t^{1}+9 t^{0}$.
Squaring: $\left(800 t^{2}+30 t^{1}+9 t^{0}\right)^{2}=$ $640000 t^{4}+48000 t^{3}+15300 t^{2}+$ $540 t^{1}+81 t^{0}$.

Carrying:
$640000 t^{4}+48000 t^{3}+15300 t^{2}+$ $540 t^{1}+81 t^{0} ;$
$640000 t^{4}+48000 t^{3}+15300 t^{2}+$ $620 t^{1}+1 t^{0}$;
$700000 t^{5}+0 t^{4}+3000 t^{3}+900 t^{2}+$ $20 t^{1}+1 t^{0}$.

What operations were used here?

subtract

15000900

Speedup: double inside squaring

Squaring $\cdots+f_{2} t^{2}+f_{1} t^{1}+f_{0} t^{0}$ produces coefficients such as $f_{4} f_{0}+f_{3} f_{1}+f_{2} f_{2}+f_{1} f_{3}+f_{0} f_{4}$.

Compute more efficiently as
$2 f_{4} f_{0}+2 f_{3} f_{1}+f_{2} f_{2}$.
Or, slightly faster,
$2\left(f_{4} f_{0}+f_{3} f_{1}\right)+f_{2} f_{2}$.
Or, slightly faster,
$\left(2 f_{4}\right) f_{0}+\left(2 f_{3}\right) f_{1}+f_{2} f_{2}$ after precomputing $2 f_{1}, 2 f_{2}, \ldots$

Have eliminated $\approx 1 / 2$ of the work if there are many coefficients.

Speedup: allow negative coeffs

Recall $159 \mapsto 15,9$.
Scaled: $15900 \mapsto 15000,900$.
Alternative: $159 \mapsto 16,-1$.
Scaled: $15900 \mapsto 16000,-100$.
Use digits $\{-5,-4, \ldots, 4,5\}$ instead of $\{0,1, \ldots, 9\}$.
Several small advantages:
easily handle negative integers; easily handle subtraction; reduce products a bit.

Speedup: delay carries

Computing (e.g.) big $a b+c^{2}$: multiply a, b polynomials, carry, square c poly, carry, add, carry.
e.g. $a=314, b=271, c=839$:
$\left(3 t^{2}+1 t^{1}+4 t^{0}\right)\left(2 t^{2}+7 t^{1}+1 t^{0}\right)=$
$6 t^{4}+23 t^{3}+18 t^{2}+29 t^{1}+4 t^{0} ;$ carry: $8 t^{4}+5 t^{3}+0 t^{2}+9 t^{1}+4 t^{0}$.

As before $\left(8 t^{2}+3 t^{1}+9 t^{0}\right)^{2}=$ $64 t^{4}+48 t^{3}+153 t^{2}+54 t^{1}+81 t^{0} ;$ $7 t^{5}+0 t^{4}+3 t^{3}+9 t^{2}+2 t^{1}+1 t^{0}$.
$+: 7 t^{5}+8 t^{4}+8 t^{3}+9 t^{2}+11 t^{1}+5 t^{0} ;$ $7 t^{5}+8 t^{4}+9 t^{3}+0 t^{2}+1 t^{1}+5 t^{0}$.

Faster: multiply a, b polynomials, square c polynomial, add, carry.
$\left(6 t^{4}+23 t^{3}+18 t^{2}+29 t^{1}+4 t^{0}\right)+$ $\left(64 t^{4}+48 t^{3}+153 t^{2}+54 t^{1}+81 t^{0}\right)=$ $70 t^{4}+71 t^{3}+171 t^{2}+83 t^{1}+85 t^{0} ;$ $7 t^{5}+8 t^{4}+9 t^{3}+0 t^{2}+1 t^{1}+5 t^{0}$.

Eliminate intermediate carries.
Outweighs cost of handling slightly larger coefficients.

Important to carry between multiplications (and squarings) to reduce coefficient size; but carries are usually a bad idea for additions, subtractions, etc.

Speedup: polynomial Karatsuba

Computing product of polys f, g with (e.g.) $\operatorname{deg} f<20, \operatorname{deg} g<20$: 400 coefficient mults, 361 coefficient adds.

Faster: Write f as $F_{0}+F_{1} t^{10}$ with $\operatorname{deg} F_{0}<10$, deg $F_{1}<10$. Similarly write g as $G_{0}+G_{1} t^{10}$.

Then $f g=\left(F_{0}+F_{1}\right)\left(G_{0}+G_{1}\right) t^{10}$ $+\left(F_{0} G_{0}-F_{1} G_{1} t^{10}\right)\left(1-t^{10}\right)$.

20 adds for $F_{0}+F_{1}, G_{0}+G_{1}$. 300 mults for three products
$F_{0} G_{0}, F_{1} G_{1},\left(F_{0}+F_{1}\right)\left(G_{0}+G_{1}\right)$. 243 adds for those products.
9 adds for $F_{0} G_{0}-F_{1} G_{1} t^{10}$
with subs counted as adds and with delayed negations. 19 adds for $\cdots\left(1-t^{10}\right)$. 19 adds to finish.

Total 300 mults, 310 adds.
Larger coefficients, slight expense; still saves time.

Can apply idea recursively as poly degree grows.

Many other algebraic speedups in polynomial multiplication: Toom, FFT, etc.

Increasingly important as polynomial degree grows.
$O(n \lg n \lg \lg n)$ coeff operations to compute n-coeff product.

Useful for sizes of n that occur in cryptography? Maybe; active research area.

Using CPU's integer instructions

Replace radix 10 with, e.g., 2^{24}. Power of 2 simplifies carries.

Adapt radix to platform.
e.g. Every 2 cycles, Athlon 64 can compute a 128 -bit product of two 64-bit integers.
(5-cycle latency; parallelize!)
Also low cost for 128-bit add.
Reasonable to use radix 2^{60}. Sum of many products of digits fits comfortably below 2^{128}.
Be careful: analyze largest sum.
e.g. In 4 cycles, Intel 8051
can compute a 16-bit product of two 8-bit integers.
Could use radix 2^{6}.
Could use radix 2^{8},
with 24-bit sums.
e.g. Every 2 cycles, Pentium 4 F3 can compute a 64-bit product of two 32-bit integers.
(11-cycle latency; yikes!)
Reasonable to use radix 2^{28}.
Warning: Multiply instructions are very slow on some CPUs. e.g. Pentium 4 F2: 10 cycles!

Using floating-point instructions

Big CPUs have separate
floating-point instructions, aimed at numerical simulation but useful for cryptography.

In my experience,
floating-point instructions support faster multiplication (often much, much faster) than integer instructions, except on the Athlon 64.
Other advantages: portability; easily scaled coefficients.
e.g. Every 2 cycles, Pentium III can compute a 64-bit product of two floating-point numbers, and an independent 64-bit sum.
e.g. Every cycle, Athlon can compute a 64-bit product and an independent 64-bit sum.
e.g. Every cycle, UltraSPARC III can compute a 53-bit product and an independent 53-bit sum. Reasonable to use radix 2^{24}.
e.g. Pentium 4 can do the same using SSE2 instructions.

How to do carries in
floating-point registers?
(No CPU carry instruction: not useful for simulations.)

Exploit floating-point rounding: add big constant, subtract same constant.
e.g. Given α with $|\alpha| \leq 2^{75}$: compute 53-bit floating-point sum of α and constant $3 \cdot 2^{75}$, obtaining a multiple of 2^{24}; subtract $3 \cdot 2^{75}$ from result, obtaining multiple of 2^{24} nearest α; subtract from α.

Reducing modulo a prime

Fix a prime p.
The prime field \mathbf{Z} / p
is the set $\{0,1,2, \ldots, p-1\}$
with - defined as $-\bmod p$,

+ defined as $+\bmod p$,
- defined as $\cdot \bmod p$.
e.g. $p=1000003$:
$1000000+50=47$ in \mathbf{Z} / p;
$-1=1000002$ in \mathbf{Z} / p;
$117505 \cdot 23131=1$ in \mathbf{Z} / p.

How to multiply in \mathbf{Z} / p ?

Can use definition:
$f g \bmod p=f g-p\lfloor f g / p\rfloor$.
Can multiply $f g$ by a precomputed $1 / p$ approximation; easily adjust to obtain $\lfloor f g / p\rfloor$.
Slight speedup: "2-adic inverse"; "Montgomery reduction."

We can do better: normally
p is chosen with a special form (or dividing a special form; see "redundant representations") to make $f g \bmod p$ much faster.
e.g. In Z/1000003:
$314159265358=$
$314159 \cdot 1000000+265358=$
$314159(-3)+265358=$
$-942477+265358=$
-677119.
Easily adjust to range
$\{0,1, \ldots, p-1\}$
by adding/subtracting a few p^{\prime} s.
(Beware timing attacks!)
Speedup: Delay the adjustment; extra p 's won't damage subsequent field operations.

Can delay carries until after multiplication by 3 .
e.g. To square 314159
in $\mathbf{Z} / 1000003$: Square poly
$3 t^{5}+1 t^{4}+4 t^{3}+1 t^{2}+5 t^{1}+9 t^{0}$, obtaining $9 t^{10}+6 t^{9}+25 t^{8}+$ $14 t^{7}+48 t^{6}+72 t^{5}+59 t^{4}+$ $82 t^{3}+43 t^{2}+90 t^{1}+81 t^{0}$.

Reduce: replace $\left(c_{i}\right) t^{6+i}$ by $\left(-3 c_{i}\right) t^{i}$, obtaining $72 t^{5}+32 t^{4}+$ $64 t^{3}-32 t^{2}+48 t^{1}-63 t^{0}$.

Carry: $8 t^{6}-4 t^{5}-2 t^{4}+$
$1 t^{3}+2 t^{2}+2 t^{1}-3 t^{0}$.

To minimize poly degree,

 mix reduction and carrying, carrying the top sooner.e.g. Start from square $9 t^{10}+6 t^{9}+$ $25 t^{8}+14 t^{7}+48 t^{6}+72 t^{5}+59 t^{4}+$ $82 t^{3}+43 t^{2}+90 t^{1}+81 t^{0}$.

Reduce $t^{10} \rightarrow t^{4}$ and carry $t^{4} \rightarrow$ $t^{5} \rightarrow t^{6}: 6 t^{9}+25 t^{8}+14 t^{7}+56 t^{6}-$ $5 t^{5}+2 t^{4}+82 t^{3}+43 t^{2}+90 t^{1}+81 t^{0}$.

Finish reduction: $-5 t^{5}+2 t^{4}+$ $64 t^{3}-32 t^{2}+48 t^{1}-87 t^{0}$. Carry $t^{0} \rightarrow t^{1} \rightarrow t^{2} \rightarrow t^{3} \rightarrow t^{4} \rightarrow t^{5}:$ $-4 t^{5}-2 t^{4}+1 t^{3}+2 t^{2}-1 t^{1}+3 t^{0}$.

Speedup: non-integer radix

Consider $\mathbf{Z} /\left(2^{61}-1\right)$.
Five coeffs in radix 2^{13} ?
$f_{4} t^{4}+f_{3} t^{3}+f_{2} t^{2}+f_{1} t^{1}+f_{0} t^{0}$. Most coeffs could be 2^{12}.

Square $\cdots+2\left(f_{4} f_{1}+f_{3} f_{2}\right) t^{5}+\cdots$. Coeff of t^{5} could be $>2^{25}$.

Reduce: $2^{65}=2^{4}$ in $\mathbf{Z} /\left(2^{61}-1\right)$;
$\cdots+\left(2^{5}\left(f_{4} f_{1}+f_{3} f_{2}\right)+f_{0}^{2}\right) t^{0}$.
Conf could be $>2^{29}$.
Very little room for additions, delayed carries, etc. on 32-bit platforms.

Scaled: Evaluate at $t=1$
f_{4} is multiple of 2^{52};
f_{3} is multiple of 2^{39};
f_{2} is multiple of 2^{26};
f_{1} is multiple of 2^{13};
f_{0} is multiple of 2^{0}. Reduce:
$\cdots+\left(2^{-60}\left(f_{4} f_{1}+f_{3} f_{2}\right)+f_{0}^{2}\right) t^{0}$.
Better: Non-integer radix $2^{12.2}$.
f_{4} is multiple of 2^{49};
f_{3} is multiple of 2^{37};
f_{2} is multiple of 2^{25};
f_{1} is multiple of 2^{13};
f_{0} is multiple of 2^{0}.
Saves a few bits in coeffs.

More finite fields

Fix a prime p. Fix a
poly φ in one variable t
with φ irreducible $\bmod p$.
The finite field $(\mathbf{Z} / p)[t] / \varphi$
is the set of polynomials
$f_{\operatorname{deg} \varphi-1} t^{\operatorname{deg} \varphi-1}+\cdots+f_{1} t^{1}+f_{0} t^{0}$ with each $f_{i} \in \mathbf{Z} / p$
and with,,-+ defined modulo p and modulo φ.
$(\mathbf{Z} / p)[t] / \varphi$ is an "extension" of the prime field \mathbf{Z} / p;
it has "characteristic" p.
e.g. 223 is prime, and poly $t^{6}-3$ is irreducible $\bmod 223$, so $(\mathbf{Z} / 223)[t] /\left(t^{6}-3\right)$ is a field.
223^{6} elements of field,
namely polynomials $f_{5} t^{5}+f_{4} t^{4}+$
$f_{3} t^{3}+f_{2} t^{2}+f_{1} t^{1}+f_{0} t^{0}$
with each $f_{i} \in\{0,1, \ldots, 222\}$.
After adding, subtracting, multiplying: replace t^{6} by 3 , replace t^{7} by $3 t$, etc.; and reduce coefficients modulo 223. e.g. $\left(9 t^{4}+1\right)^{2}=81 t^{8}+18 t^{4}+1=$ $243 t^{2}+18 t^{4}+1=18 t^{4}+20 t^{2}+1$.

Have two levels of polynomials when p is large: element of $(\mathbf{Z} / p)[t] / \varphi$ is poly $\bmod \varphi$; each poly coefficient is integer represented as poly in some radix.
e.g. $f_{4} t^{4}+f_{3} t^{3}+f_{2} t^{2}+f_{1} t^{1}+f_{0} t^{0}$ in $\left(\mathbf{Z} /\left(2^{61}-1\right)\right)[t] /\left(t^{5}-3\right)$ could have each coefficient f_{i} represented as poly of degree <3 in radix $2^{61 / 3}$.

When p is small, especially $p=2$, benefit from batching coefficients. Many platform-specific speedups.

Speedup: fast Frobenius

$\ln (\mathbf{Z} / 2)[t] / \varphi$ have
$\left(\cdots+f_{2} t^{2}+f_{1} t^{1}+f_{0} t^{0}\right)^{2}=$
$\cdots+f_{2} t^{4}+f_{1} t^{2}+f_{0} t^{0}$.
Cross-terms disappear: $2=0$.
Thus squaring is very fast:
replace t^{i} by $t^{2 i}$ and reduce modulo φ.

More generally, pth powering is very fast in characteristic p.

