High-speed Typical Internet protocol:
cryptographic functions

message generator

lm

sender

lm

network

lm,

receliver

D. J. Bernstein

1ctions

Typical Internet protocol:

message generator

m

sender

m

network

[

receliver

A message gene
creates a messa
a string of bytes.

Message generat
gives m to a sen

Sender gives m t

Network gives a
to a receiver.

Maybe m' = m;
Maybe network i
controlled by an
who changed m

Typical Internet protocol:

message generator

lm

sender

lm

network

lm,

receliver

A message generator
creates a message m,
a string of bytes.

Message generator
gives m to a sender.

Sender gives m to a network.

Network gives a message m’
to a receiver.

Maybe m’ = m; maybe not.
Maybe network is

controlled by an attacker
who changed m into m’ # m.

protocol:

tor

A message generator
creates a message m,
a string of bytes.

Message generator
gives m to a sender.

Sender gives m to a network.

Network gives a message m’
to a receiver.

Maybe m’ = m; maybe not.
Maybe network is

controlled by an attacker

who changed m into m’ # m.

Protocol eliminat

message generzc

lm

sender using 7

-

network

lm’,a

recelver using 1

A message generator
creates a message m,
a string of bytes.

Message generator
gives m to a sender.

Sender gives m to a network.

Network gives a message m’
to a receiver.

Maybe m’ = m; maybe not.
Maybe network is

controlled by an attacker

who changed m into m’' # m.

Protocol eliminating forgeries:

message generator

lm

sender using 7, S

lm,a

network

lm’,a’

recelver using 7, s

rator
¥e m,

or
der.

0 a hetwork.

message m/

maybe not.

S

attacker

into m’ #4 m.

Protocol eliminating forgeries:

message generator

lm

sender using 7, S

lm,a

network

lm’,a’

recelver using 7, s

Fix a finite field .
Typically #k ~

Sender, receiver
uniform random

Network's functic
IS Independent o

Sender encodes 1
as polynomial m
Sender then com
authenticator a

Receiver discards
if a' # m/(r) +

Protocol eliminating forgeries:

message generator

lm

sender using 7, S

lm,a

network

lm’,a’

recelver using 7, s

Fix a finite field k.
Typically #k ~ 2128

Sender, receiver share a secret:
uniform random (7, s) € k x k.
Network’'s function m,a — m’ a’

is independent of (7, s).

Sender encodes message m
as polynomial m € zk|z].
Sender then computes
authenticator a = m(r) + s.

Receiver discards m’, a’
if a’ #m/(r) + s.

ing forgeries:

tor

n

Fix a finite field k.
Typically #k ~ 2128

Sender, receiver share a secret:
uniform random (7, s) € k x k.
Network’'s function m,a — m’ a’

is independent of (7, s).

Sender encodes message m
as polynomial m € zk|z].
Sender then computes
authenticator a = m(r) + s.

Receiver discards m’, a’
if a’ 4 m/(r) + s.

If m’ 4 m then
Pr|receiver accef
< max{degm, d

e.g. Pr< 2798
and message deg

Proof: m' 4 m |
som’ —a' #m
#k pairs (1,s) €
satisfy a = m(r)
< max{degm, d
also satisfy a’ =

Fix a finite field k.
Typically #k ~ 2128

Sender, receiver share a secret:
uniform random (7, s) € k x k.
Network’'s function m,a — m’ a’

is independent of (7, s).

Sender encodes message m
as polynomial m € zk|z].
Sender then computes
authenticator a = m(r) + s.

Receiver discards m’, a’
if a’ 4 m'(r) + s.

If m’ 4 m then
Pr[receiver accepts m/]

< max{degm, degm'}/#k.

e.g. Pr<2 98 if 4k =218
and message degree < 230,

Proof: m' #4 m in zk[z]
som' —a' #m —a in k[z].
#k pairs (r,s) € k X k
satisfy a = m(r) + s.

< max{degm,degm’} pairs
also satisfy a’ = m/(r) + s.

k.
,128

share a secret:
(r,s) € k X k.
n m,a— m,a
(7, 8).

nessage m
c zk|x].
putes

= m(r) + s.

/

m’ a’

A
) .

If m’ 4 m then
Pr[receiver accepts m/]

< max{degm, degm'}/#k.

e.g. Pr<2 98 if #f =218
and message degree < 230,

Proof: m’' 4 m in zk[z]
som' —a' #m —a in k[z].
#k pairs (r,s) € k X k
satisfy a = m(r) + s.

< max{degm,degm’} pairs
also satisfy a’ = m/(r) + s.

Many messages,

message generzc

J/ml;'r

sender

\Ll,ml

network

/
lnl,'rr

receliver

If m’ 4 m then
Pr[receiver accepts m']
< max{deg m, deg m’}/#k

e.g. Pr<2 98 if 4 =218
and message degree < 230,

Proof: m' #4 m in zk[z]
som' —a' #m —a in k[z].
#k pairs (r,s) € k x k
satisfy a = m(r) + s.

< max{degm,degm’} pairs
also satisfy a’ = m/(r) + s.

Many messages, unprotected:

message generator

J/ml;mg; .

sender

\Ll,ml;2,m2; ..

network

/ /. o1 /.
lnl,ml,nz,m2, ..

receliver

Many messages, unprotected: Many messages,

ts m/] .
oo m’}/#k. message generator message geners
F#k:2128 J/ml;mg;... J/ml;’f
ree < 230 .
. sender sender using 7
n zk|x '
— a in k|zx]. ll,m1;2,m2;... ll,ml
kX k

+ s. network network

egﬁ/} pairs / A / /

recelver recelver using 1

Many messages, unprotected: Many messages, protected:

message generator message generator
J/ml;mg;... J/ml;mg;...
sender sender using 7, s
\Ll,m]_;2,m2;... ll,ml,al;Q,mg,ag;...
network network
l'n,’lm,’l'n,’zfrn’2 ln’l,mll,all;nlz,mlz,a’z;..

recelver recelver using 7, s

unprotected:

tor

no; ...

2, 1Mo ...

/. o1 /.
115 T, My . ..

Many messages, protected:

message generator

J/ml;mg; .

sender using 7, S

ll,ml,a1;2,m2,a2; .

network

/ / / . / / / .
lnl,ml,al,nQ,mz,aQ,..

recelver using 7, s

Secret here is un
(r,s) € k x k112
e, 7 € k;s(1) ¢

e.g. 128000 secr
to handle 999 me
if #k = 2128

Sender transmits
as n, m, m(r) +

Receiver discards
if a’ £ m/(r) + «

Forged n/, m’, o’
chance of being

Many messages, protected:

message generator

J/ml;mg; .

sender using 7, S

ll,ml,a1;2,m2,a2; .

network

/ / / . / / / .
lnl,ml,al,nQ,mz,aQ,..

recelver using 7, s

Secret here is uniform random
(r.s) € k x k{123,
e, 7 € k;s(l) € k;s(2) €k;. ...

e.g. 128000 secret bits
to handle 999 messages
if #k = 2125,

Sender transmits nth message m
as n, m, m(r) + s(n).

Receiver discards n/, m’ a’
if a’ = m/(r) + s(n').

Forged n’/, m’, a’ has negligible
chance of being accepted.

protected:

tor

Secret here is uniform random
(r.s) € k x k{123,
e, 7 € k;s(l) € k;s(2) €k; ...

e.g. 128000 secret bits
to handle 999 messages
if #k = 2125,

Sender transmits nth message m

as n, m, m(r) + s(n).

Receiver discards n/, m’ a’
if a’ £ m/(r) + s(n').

Forged n/, m’, a’ has negligible
chance of being accepted.

How did sender,
create and share
Must have had p
providing secrecy

Why not use tha
for new message:

Answer 1: Exten
through time. P
can disappear aff
New channel sen

Answer 2: Expar
Messages can be
than 7, s.

Secret here is uniform random
(r.s) € k x k{L2-}
e, 7 € k;s(l) € k;s(2) €k;. ...

e.g. 128000 secret bits
to handle 999 messages
if #k = 2125

Sender transmits nth message m
as n, m, m(r) + s(n).

Receiver discards n/, m’ a’
if a’ £ m/(r) + s(n').

Forged n/, m’, a’ has negligible
chance of being accepted.

How did sender, receiver

create and share r, s?

Must have had previous channel
providing secrecy, authenticity.

Why not use that channel
for new messages?

Answer 1: Extend security
through time. Previous channel
can disappear after sending 7, s.
New channel sends new messages.

Answer 2: Expand bandwidth.
Messages can be much longer
than 7, s.

Iform random

et bits
2SSages

nth message m
s(n).

n' m’ a

(n').

has negligible
accepted.

How did sender, receiver

create and share r, s?

Must have had previous channel
providing secrecy, authenticity.

Why not use that channel
for new messages?

Answer 1: Extend security
through time. Previous channel
can disappear after sending 7, s.
New channel sends new messages.

Answer 2: Expand bandwidth.
Messages can be much longer
than 7, s.

For b-bit security
c messages, total

transmit 7,
old channel

secrecy and .
for b

\v/

transmit m1q; m
new channe

authen
for d

How did sender, receiver For b-bit security, |lg #k| = b,
create and share 7, s? c messages, total length d:
Must have had previous channel

providing secrecy, authenticity. transmit 7, s through
old channel providing

Why n h hannel .
y not use that channe secrecy and authenticity

for new messages’?’
S for b -

- be bits
Answer 1: Extend security
through time. Previous channel Il
can disappear after sending 7, s. _ :
PP 5 transmit mi; mo; ... through

New channel sends new messages. .
new channel providing

Answer 2: Expand bandwidth. authenticity
Messages can be much longer for d bits

than 7, s.

recelver

r, S?

revious channel
, authenticity.

t channel
57

d security

evious channel
er sending 7, s.
ds new messages.

id bandwidth.
much longer

For b-bit security, |lg #k| = b,
c messages, total length d:

transmit 7, s through
old channel providing

secrecy and authenticity
for b 4+ bc bits

\v/

transmit mi; mo; ... through
new channel providing

authenticity
for d bits

Authenticated-er
using 1, ((m, m(

transmit 7,
old channel
secrecy and .
for b + bc

\v/

transmit m1q; m
new channe

secrecy and .
for d

For b-bit security, |lg #k| = b,

c messages, total length d:

old chann

transmit 7, s through

el providing

secrecy and authenticity

for b -

- bc bits

\v/

transmit mi; mo; ... through
new channel providing
authenticity

for d bits

Authenticated-encryption variant
using n, ((m, m(r)) + s(n)):

transmit 7, s through
old channel providing
secrecy and authenticity
for b + bc + d bits

\v/

transmit mi; mo; ... through
new channel providing
secrecy and authenticity

for d bits

, [lg #k] = b,
| length d:

s through
providing
authenticity

bc bits

5; ... through
| providing
ticity

bits

Authenticated-encryption variant

using n, ((m, m(r)) + s(n)):

transmit 7, s through
old channel providing
secrecy and authenticity
for b + bc + d bits

N

\%

4

transmit mqi; mo; ..

. through

new channel providing

secrecy and authenticity
for d bits

Can multiply in /
using pl+o(l) pit
more precisely, bf

Can evaluate m(
using b(lg b)1 o0
for each b-bit blc

Overall (bc + d)(
bit operations.

Normally d domi
so (Igb)1tol) by
for each message

Authenticated-encryption variant
using n, ((m, m(r)) + s(n)):

transmit 7, s through
old channel providing
secrecy and authenticity
for b + bc + d bits

\v/

transmit mi; mo; ... through
new channel providing
secrecy and authenticity

for d bits

Can multiply in &
using b11°(1) bit operations:
more precisely, b(lg b)1o(1).

Can evaluate m(7r)
using b(lg b)11°(1) bit operations
for each b-bit block of m.

Overall (bc + d)(Ig b)1 o)
bit operations.

Normally d dominates bc,
so (Ig b)1t°(1) bit operations
for each message bit.

cryption variant

7)) + s(n)):

s through
providing
authenticity

+ d bits

5; ... through
| providing
authenticity
bits

Can multiply in &
using b11°(1) bit operations:
more precisely, b(lg b)1o(1).

Can evaluate m(r)
using b(lg b)11°(1) bit operations
for each b-bit block of m.

Overall (bc + d)(Ig b)1 o)
bit operations.

Normally d dominates bc,
so (Ig b)1t°(1) bit operations
for each message bit.

Can analyze cost
Can modify m(r
to Improve const
Can account for
Can focus on use

Speed records: F
See cr.yp.to/m
papers.html#pc«
128-bit coefficier
k=2/(2130 -5
~ 0.5 CPU cycle

Survey of alterns
8—10 of papers.

Can multiply in &
using b11°(1) bit operations:
more precisely, b(lg b)1o(1).

Can evaluate m(r)
using b(lg b)11°(1) bit operations
for each b-bit block of m.

Overall (bc + d)(Ig b)1 o)
bit operations.

Normally d dominates bc,
so (Ig b)1t°(1) bit operations
for each message bit.

Can analyze cost more precisely.
Can modify m(r)

to Improve constants in cost.
Can account for real CPUs.

Can focus on useful 6.

Speed records: Poly1305.
See cr.yp.to/mac.html and
papers.html#poly1305.
128-bit coefficients of m;
k =2Z/(2130 — 5); restricted ;
~ 0.5 CPU cycles per bit.

Survey of alternatives: Sections
8—10 of papers.html#hash127.

operations;
:|g b)l—l—o(l)_

r)
) bit operations
ck of m.

|g b)l—l—o(l)

nates bc,

L operations
' bit.

Can analyze cost more precisely.
Can modify m(r)

to Improve constants in cost.
Can account for real CPUs.

Can focus on useful 6.

Speed records: Poly1305.
See cr.yp.to/mac.html and
papers.html#poly1305.
128-bit coefficients of m;
k = 2Z/(2130 — 5); restricted ;
~ 0.5 CPU cycles per bit.

Survey of alternatives: Sections

8—10 of papers.html#hash127.

We'll see better |
that dramatically
requirements on

1. Reduce bandv
far below b 4+ bc -

2. Eliminate sect

Disadvantage: ne
prove security of

Can analyze cost more precisely.
Can modify m(r)

to Improve constants in cost.
Can account for real CPUs.

Can focus on useful 6.

Speed records: Poly1305.
See cr.yp.to/mac.html and
papers.html#poly1305.
128-bit coefficients of m;
k=2Z/(2130 — 5): restricted 7;
~ 0.5 CPU cycles per bit.

Survey of alternatives: Sections
8—10 of papers.html#hash127.

We'll see better protocols
that dramatically reduce
requirements on old channel:

1. Reduce bandwidth
far below b6 + bc + d bits.

2. Eliminate secrecy.

Disadvantage: no known way to
prove security of better protocols.

“more precisely.

)

ants 1n cost.

real CPUs.
ful b.

oly1305.
ac.html and
b1y13065.
ts of m;
); restricted r;
s per bit.

tives: Sections

html#hashl127.

We'll see better protocols
that dramatically reduce
requirements on old channel:

1. Reduce bandwidth
far below b6 + bc + d bits.

2. Eliminate secrecy.

Disadvantage: no known way to

prove security of better protocols.

How to reduce b

Expand a short s
Into a long share

e.g. Expand t, u
4t mod g,

4140 mod g,

4t%1 mod g,
4TU0U1 mod g,
4t%2 mod g,
41U0%2 mod g,
AtU1U2 mod g,
ATUOUIU2 mod g,

etc., where g = =

We'll see better protocols
that dramatically reduce
requirements on old channel:

1. Reduce bandwidth
far below b6 + bc + d bits.

2. Eliminate secrecy.

Disadvantage: no known way to

prove security of better protocols.

How to reduce bandwidth?

Expand a short shared secret
Into a long shared secret.

e.g. Expand t, ug, u1,... Into
4t mod g,

4140 mod g,

41 mod q,

ATUOUL mod q,

4142 mod g,

41U0%2 mod g,

AtU1U2 mod g,

ATUOUIU2 mod g,

etc., where g = 22090 _ 1553657.

protocols
' reduce
old channel:

vidth
+ d bits.

ecy.

> known way to

better protocols.

How to reduce bandwidth?

Expand a short shared secret
Into a long shared secret.

e.g. Expand ¢, ug, u1,... Into
4t mod g,

4140 mod g,

41 mod q,

ATUOUL mod q,

4t%2 mod g,

41U0%2 mod g,

AtU1U2 mod g,

ATUOUIU2 mod g,

etc., where g = 22090 _ 1553657.

Conjecture: Harc
this expanded se
from a uniform r

of squares modul

Could try to do i
discrete logs moc«
extract t from 4%
tug from 4*%0 m
and see (t)(tuou
But discrete logs

Thus (e.g.) bott
seem hard to dis
from a uniform r

How to reduce bandwidth?

Expand a short shared secret
Into a long shared secret.

e.g. Expand t, ug, u1,... Into
4t mod g,

4140 mod g,

41 mod q,

ATUOUL mod q,

4t%2 mod g,

41U0%2 mod g,

AtU1U2 mod g,

ATUOUIU2 mod g,

etc., where g = 22090 _ 1553657.

Conjecture: Hard to distinguish
this expanded secret

from a uniform random sequence
of squares modulo g.

Could try to do it by computing
discrete logs modulo g:

extract ¢ from 4t mod g,

tug from 41%0 mod g, etc.,

and see (t)(tugui) = (tug)(tuy).
But discrete logs seem hard!

Thus (e.g.) bottom halves
seem hard to distinguish
from a uniform random string.

andwidth?

hared secret
d secret.

2000 _ 1553657.

Conjecture: Hard to distinguish
this expanded secret

from a uniform random sequence
of squares modulo g.

Could try to do it by computing
discrete logs modulo g:

extract t from 4* mod g,

tug from 4¥%0 mod g, etc.,

and see (t)(tugui) = (tug)(tuy).

But discrete logs seem hard!

Thus (e.g.) bottom halves
seem hard to distinguish
from a uniform random string.

For b bits of sect

Fix g with g, (g -
and with Igg € 6
more precisely, w

6.8...(lgg)(lglo

Transmit short sl
independent unif
t, ug, u1, ... € {1

T hese sizes just |
fastest discrete-l«
that we know.

Conjecture: Hard to distinguish For 6 bits of security, 6 — oo:

this expanded secret Fix ¢ with g, (g — 1)/2 prime

and with Igg € p3+o(l).
more precisely, with

from a uniform random sequence

of squares modulo g.

Could try to do it by computing 6.8...(Igq)(Iglog q)* ~ b>.

discrete logs modulo g: .
& 9 Transmit short shared secret:

extract t from 4* mod g, . .
9 independent uniform random

tug
tug from 4**0 mod g, etc., t,ug, u1,... € {1,2,...,2%%

and see (t)(tugui) = (tug)(tuy).
But discrete logs seem hard! These sizes just barely resist

fastest discrete-log methods

Thus (e.g.) bottom halves that we know.

seem hard to distinguish
from a uniform random string.

1 to distinguish
cret

andom sequence
0 q.

t by computing
lulo g:

mod g,

od g, etc.,

1) = (tuo)(tu1).

seem hard!

>m halves
tinguish
andom string.

For b bits of security, b — oo:

Fix g with g, (¢ — 1)/2 prime
and with Igg € p3+o(l).

more precisely, with
6.8...(Igq)(Iglogq)? ~ b3.

Transmit short shared secret:

independent uniform random
t,ug,u1, ... € {1,2,...,226}.

These sizes just barely resist
fastest discrete-log methods
that we know.

Expand t, ug, ui,
4t mod g, ..., 4%

e.g. Expand ¢, uq
into 264 Integers

Extract bottom |
of each integer.

Compute results
Only O(6) mults
for each integer,
b(lg 6)1 o) bit ¢

Random access 1
> pA+o(1) bit ops

For b bits of security, b — oo:

Fix g with g, (¢ — 1)/2 prime
and with Igg € p3+o(l).

more precisely, with
6.8...(Igq)(Iglogq)? ~ b3.

Transmit short shared secret:

independent uniform random
t,ug, U1, ... € {1,2,...,226}.

These sizes just barely resist
fastest discrete-log methods
that we know.

Expand ¢, ug, uy, ... Into
4* mod q, ... 4TU0U2 mod q,....
e.g. Expand ¢, ug, u1,...,Up3

into 2°% integers modulo g.

Extract bottom [(1/2)Igq| bits
of each integer.

Compute results sequentially.
Only O(b) mults mod g
for each integer, so

b(Ig 6)11°(1) bit ops per bit.

Random access is slow:
> pA+o(1) pit ops.

Irity, b — 00:

-1)/2 prime
,3——0(1);

1th
gq)° ~ b,

1ared secret:

orm random
,2, ..., 2%

parely resist
g methods

Expand ¢, ug, uy, ... Into
4* mod q, ... 4TU0U2 mod q,....
e.g. Expand ¢, ug, u1, ..., Up3

into 2°% integers modulo g.

Extract bottom [(1/2)Iggq| bits
of each integer.

Compute results sequentially.
Only O(b) mults mod g
for each integer, so

b(Ig 6)11°(1) bit ops per bit.

Random access is slow:
> pA+o(1) pit ops.

Do better by rep
(Z/q)* with E(Z
for a safe elliptic

Discrete logs in |
seem relatively d
so can take g sm
specifically, Ig g ~

Much faster ranc
p21o(1) bit ops.

Sequential acces:
b(Ig 6)1 o) bit ¢

Expand ¢, ug, uy, ... Into
4* mod q, ... 4TU0U2 mod q,....

e.g. Expand ¢, ug, u1, ..., Up3
into 2°% integers modulo g.

Extract bottom [(1/2)Igq| bits
of each integer.

Compute results sequentially.
Only O(b) mults mod g
for each integer, so

b(Ig 6)11°(1) bit ops per bit.

Random access is slow:
> pA+o(1) pit ops.

Do better by replacing

(Z/9)" with E(Z/q)
for a safe elliptic curve E.

Discrete logs in E(Z/q)
seem relatively difficult,
so can take g smaller:
specifically, lg g ~ 26.

Much faster random access:
p21o(1) bit ops.

Sequential access again takes
b(Ig 6)11°(1) bit ops per bit.

. Into
‘0%2 mod g,

(1/2)Ig q] bits

sequentially.
mod g

SO

OpPS per bit.

s slow:

) .

Do better by replacing

(Z/9)" with E(Z/q)
for a safe elliptic curve E.

Discrete logs in E(Z/q)
seem relatively difficult,
so can take g smaller:
specifically, lg g ~ 26.

Much faster random access:
p21o(1) bit ops.

Sequential access again takes
b(Ig 6)11°(1) bit ops per bit.

Can do much be
Maybe non-const
certainly constan
just one b-bit sec
several 2b6-bit sec
focus on useful b6

Many choices of
functions (“strea
Fastest expansiol
don’t have discre

Speed records: s
WWW.ecrypt.eu

Often < 1 CPU
random access <

Do better by replacing

(Z/9)" with E(Z/q)
for a safe elliptic curve E.

Discrete logs in E(Z/q)
seem relatively difficult,
so can take g smaller:
specifically, lg g ~ 26.

Much faster random access:
p21o(1) bit ops.

Sequential access again takes
b(Ig 6)11°(1) bit ops per bit.

Can do much better.

Maybe non-constant speedups;
certainly constant speedups;

just one b-bit secret instead of
several 2b-bit secrets ¢, ug, uy, .. .;
focus on useful b; etc.

Many choices of expansion
functions (“stream ciphers”).
Fastest expansion functions
don’'t have discrete-log structure.

Speed records: see eSTREAM,

WWW.ecrypt.eu.org/streamn.
Often < 1 CPU cycle per bit;
random access < 1000 cycles.

lacing Can do much better. Channels at this
/q) Maybe non-constant speedups;

curve E. certainly constant speedups; transmit sec

just one b-bit secret instead of old channel

=(Z/q) -
o several 2b-bit secrets t, ug, u1, . . .: secrecy and .
ifficult, for b
focus on useful b; etc.
aller: -
> 2b. Many choices of expansion
functions (“stream ciphers”). v
lom access: _ _ . |
Fastest expansion functions transmit my; 7
don’t have discrete-log structure. new channe
5 again takes secrecy and ;
. Speed records: see eSTREAM,
Ops per bit. for d

WWW.ecrypt.eu.org/streamn.

Often < 1 CPU cycle per bit;
random access < 1000 cycles.

Can do much better.

Maybe non-constant speedups;
certainly constant speedups;
just one b-bit secret instead of

several 26-bit secrets ¢, ug, uy, .. .;

focus on useful b: etc.

Many choices of expansion
functions (“stream ciphers”).
Fastest expansion functions

don’'t have discrete-log structure.

Speed records: see eSTREAM,

WWW.ecrypt.eu.org/streamn.
Often < 1 CPU cycle per bit;
random access < 1000 cycles.

Channels at this point:

transmit secret through
old channel providing

secrecy and authenticity
for b bits

N

4

\'

transmit m1; mo; ... through
new channel providing

secrecy and authenticity
for d bits

(ter.

ant speedups;
t speedups;
ret instead of

rets t, up, u1, .. .;

- etc.

expansion
m ciphers”).
1 functions

te-log structure.

ce eSTREAM,
.org/streamn.
cycle per bit;
1000 cycles.

Channels at this point:

transmit secret through
old channel providing

secrecy and authenticity
for b bits

\v/

transmit m1; mo; ... through
new channel providing

secrecy and authenticity
for d bits

How to use old ¢
providing only at
not secrecy?

Sender generates
sends public key
through old chan

Recelver generat:
sends public key
back through old

Sender and recer
compute 497
extract b bits,

expand into long

Mo

Channels at this point:

transmit secret through
old channel providing

secrecy and authenticity
for b bits

\v/

transmit m1; mo; ... through
new channel providing

secrecy and authenticity
for d bits

How to use old channel
providing only authenticity,
not secrecy?

Sender generates secret o,
sends public key 49 mod g
through old channel.

Receiver generates secret T,
sends public key 47 mod ¢
back through old channel.

Sender and receiver now
A0 T

compute mod g,
extract b6 bits,

expand into long shared secret.

point:

ret through

providing
quthenticity
bits

5; ... through
| providing
authenticity
bits

How to use old channel
providing only authenticity,
not secrecy?

Sender generates secret o,
sends public key 49 mod g
through old channel.

Receiver generates secret T,
sends public key 47 mod ¢
back through old channel.

Sender and receiver now
40T

compute mod g,

extract b bits,

expand into long shared secret.

Conjecture: Give
47 mod ¢q, hard t
4°T mod g from

uniform random

As before, can di
by computing dis
but that seems h

As before, reduce
by switching to e

Many choices of
No! Need discret

How to use old channel
providing only authenticity,
not secrecy?

Sender generates secret o,
sends public key 49 mod g
through old channel.

Receiver generates secret T,
sends public key 47 mod ¢
back through old channel.

Sender and receiver now
A0 T

compute mod g,

extract b bits,

expand into long shared secret.

Conjecture: Given 49 mod g,
47 mod g, hard to distinguish
4°T mod g from

uniform random square mod gq.

As before, can distinguish
by computing discrete logs,
but that seems hard.

As before, reduce costs
by switching to elliptic curves.

Many choices of functions?
No! Need discrete-log structure.

hannel
ithenticity,

- secret o,
49 mod g
nel.

2S secret T,
47 mod q
" channel.

VEr NOW

d g,

shared secret.

Conjecture: Given 49 mod g,
47 mod g, hard to distinguish
4°T mod g from

uniform random square mod gq.

As before, can distinguish
by computing discrete logs,
but that seems hard.

As before, reduce costs
by switching to elliptic curves.

Many choices of functions?

No! Need discrete-log structure.

Again iImprove cc
focus on useful 6

Speed records: C
See cr.yp.to/e
papers.html#ca
Curve y2 = 23 +
mod 22°° — 10; ¢
< 1000000 CPU

New records fron
of genus-2 hyper
Come to ECC 2C
www.fields.ut«
/programs/scie
/06-07/crypto,

Conjecture: Given 49 mod g,
47 mod g, hard to distinguish
4°T mod g from

uniform random square mod gq.

As before, can distinguish
by computing discrete logs,
but that seems hard.

As before, reduce costs
by switching to elliptic curves.

Many choices of functions?

No! Need discrete-log structure.

Again improve cost constants,
focus on useful b, etc.

Speed records: Curve25519.
See cr.yp.to/ecdh.html and
papers.html#curve2b519.
Curve y?2 = z3 + 48666222 +
mod 22°° — 19; eliminate v;

< 1000000 CPU cycles.

New records from Jacobians

of genus-2 hyperelliptic curves?
Come to ECC 2006 in Toronto.
www.fields.utoronto.ca
/programs/scientific
/06-07/crypto/

n 49 mod g,
o distinguish
square mod g.

stinguish
crete logs,
ard.

> COsts

[liptic curves.

functions?

e-log structure.

Again improve cost constants,
focus on useful b, etc.

Speed records: Curve25519.
See cr.yp.to/ecdh.html and
papers.html#curve2b519.
Curve y?2 = z3 + 48666222 +
mod 22°° — 19; eliminate v;

< 1000000 CPU cycles.

New records from Jacobians

of genus-2 hyperelliptic curves?
Come to ECC 2006 in Toronto.
www.fields.utoronto.ca
/programs/scientific
/06-07/crypto/

Many other publ

e.g. 'Public-key
reduces costs of
sending a public

to many recipien

Sender signs mes

independently of
without any shar

Each receiver ver
very fast comput

Again improve cost constants,
focus on useful b, etc.

Speed records: Curve25519.
See cr.yp.to/ecdh.html and
papers.html#curve2b519.
Curve y2 = z3 + 48666222 + z
mod 22°° — 19; eliminate v;

< 1000000 CPU cycles.

New records from Jacobians

of genus-2 hyperelliptic curves?
Come to ECC 2006 in Toronto.
www.fields.utoronto.ca
/programs/scientific
/06-07/crypto/

Many other public-key structures.

e.g. "'Public-key signing”
reduces costs of securely
sending a public message

to many recipients.

Sender signs message

independently of receiver,
without any shared secrets.

Each receiver verities signature;
very fast computation.

)St constants,
, etcC.

urve25519.
cdh.html and
1rve25519.
486662z° +
liminate y;
cycles.

n Jacobians
elliptic curves?
06 In Toronto.
oronto.ca
antific

/

Many other public-key structures.

e.g. “Public-

key signing”

reduces costs of securely

sending a pu
to many reci

Sender signs

olic message

blents.

message

independently of receiver,

without any shared secrets.

Each receiver verifies signature;

very fast computation.

e.g. "'Public-key
generates new sh
for each message

Always increases
as far as | know.
The literature on
“public-key encn
Is @ historical acc

Best to reuse on
for many messag
Minimize public-

Many other public-key structures.

e.g. "'Public-key signing”
reduces costs of securely
sending a public message

to many recipients.

Sender signs message

independently of receiver,
without any shared secrets.

Each receiver verifies signature;
very fast computation.

e.g. 'Public-key encryption”
generates new shared secret
for each message.

Always Increases costs,
as far as | know.
The literature on
“public-key encryption”
Is a historical accident.

Best to reuse one secret
for many messages.
Minimize public-key operations.

ic-key structures.

signing”’
securely
message

ts.

sage
recelver,
ed secrets.

1fies signature;

ation.

e.g. 'Public-key encryption”
generates new shared secret
for each message.

Always Increases costs,
as far as | know.
The literature on
“public-key encryption”
Is a historical accident.

Best to reuse one secret
for many messages.
Minimize public-key operations.

If large quantum
are built then the
compute discrete
Huge effects on «

Some public-key
survive quantum
See PQCrypto 2(

postquantum. C:

Exactly how fast
DSA, ECDH, po:
cryptosystems, e
WWW.ecrypt.eu

benchmarking pt

e.g. 'Public-key encryption” If large quantum computers
generates new shared secret are built then they will

for each message. compute discrete logs quickly.

|
Always increases costs, Huge effects on cryptography!

as far as | know. Some public-key systems seem to
The literature on survive quantum computers.
“public-key encryption” See PQCrypto 2006 abstracts:

Is a historical accident. postquantum.cr.yp.to.

Best to reuse one secret Exactly how fast are RSA,

for many messages. DSA, ECDH, post-quantum
Minimize public-key operations. cryptosystems, etc.?

WWW.ecrypt.eu.org/ebats is

benchmarking public-key systems.

