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gives m to a sender.
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Fix a finite field k.
Typically #k ~ 2128

Sender, receiver share a secret:
uniform random (7, s) € k x k.
Network’'s function m,a — m’ a’

is independent of (7, s).

Sender encodes message m
as polynomial m € zk|z].
Sender then computes
authenticator a = m(r) + s.

Receiver discards m’, a’
if a’ #m/(r) + s.
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Fix a finite field k.
Typically #k ~ 2128

Sender, receiver share a secret:
uniform random (7, s) € k x k.
Network’'s function m,a — m’ a’

is independent of (7, s).

Sender encodes message m
as polynomial m € zk|z].
Sender then computes
authenticator a = m(r) + s.

Receiver discards m’, a’
if a’ 4 m'(r) + s.

If m’ 4 m then
Pr[receiver accepts m/]

< max{degm, degm'}/#k.

e.g. Pr<2 98 if 4k =218
and message degree < 230,

Proof: m' #4 m in zk[z]
som' —a' #m —a in k[z].
#k pairs (r,s) € k X k
satisfy a = m(r) + s.

< max{degm,degm’} pairs
also satisfy a’ = m/(r) + s.
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If m’ 4 m then
Pr[receiver accepts m']
< max{deg m, deg m’}/#k

e.g. Pr<2 98 if 4 =218
and message degree < 230,

Proof: m' #4 m in zk[z]
som' —a' #m —a in k[z].
#k pairs (r,s) € k x k
satisfy a = m(r) + s.

< max{degm,degm’} pairs
also satisfy a’ = m/(r) + s.
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Many messages, protected:

message generator

J/ml;mg; .

sender using 7, S
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network
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Secret here is uniform random
(r.s) € k x k{L2-}
e, 7 € k;s(l) € k;s(2) €k;. ...

e.g. 128000 secret bits
to handle 999 messages
if #k = 2125

Sender transmits nth message m
as n, m, m(r) + s(n).

Receiver discards n/, m’ a’
if a’ £ m/(r) + s(n').

Forged n/, m’, a’ has negligible
chance of being accepted.

How did sender, receiver

create and share r, s?

Must have had previous channel
providing secrecy, authenticity.

Why not use that channel
for new messages?

Answer 1: Extend security
through time. Previous channel
can disappear after sending 7, s.
New channel sends new messages.

Answer 2: Expand bandwidth.
Messages can be much longer
than 7, s.
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How did sender, receiver For b-bit security, |lg #k| = b,
create and share 7, s? c messages, total length d:
Must have had previous channel

providing secrecy, authenticity. transmit 7, s through
old channel providing
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Authenticated-encryption variant
using n, ((m, m(r)) + s(n)):

transmit 7, s through
old channel providing
secrecy and authenticity
for b + bc + d bits

\v/

transmit mi; mo; ... through
new channel providing
secrecy and authenticity

for d bits
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Authenticated-encryption variant
using n, ((m, m(r)) + s(n)):

transmit 7, s through
old channel providing
secrecy and authenticity
for b + bc + d bits

\v/

transmit mi; mo; ... through
new channel providing
secrecy and authenticity

for d bits

Can multiply in &
using b11°(1) bit operations:
more precisely, b(lg b)1o(1).

Can evaluate m(7r)
using b(lg b)11°(1) bit operations
for each b-bit block of m.

Overall (bc + d)(Ig b)1 o)
bit operations.

Normally d dominates bc,
so (Ig b)1t°(1) bit operations
for each message bit.



cryption variant

7)) + s(n)):

s through
providing
authenticity

+ d bits

5; ... through
| providing
authenticity
bits

Can multiply in &
using b11°(1) bit operations:
more precisely, b(lg b)1o(1).

Can evaluate m(r)
using b(lg b)11°(1) bit operations
for each b-bit block of m.

Overall (bc + d)(Ig b)1 o)
bit operations.

Normally d dominates bc,
so (Ig b)1t°(1) bit operations
for each message bit.

Can analyze cost
Can modify m(r
to Improve const
Can account for
Can focus on use

Speed records: F
See cr.yp.to/m
papers.html#pc«
128-bit coefficier
k=2/(2130 -5
~ 0.5 CPU cycle

Survey of alterns
8—10 of papers.



Can multiply in &
using b11°(1) bit operations:
more precisely, b(lg b)1o(1).

Can evaluate m(r)
using b(lg b)11°(1) bit operations
for each b-bit block of m.

Overall (bc + d)(Ig b)1 o)
bit operations.

Normally d dominates bc,
so (Ig b)1t°(1) bit operations
for each message bit.

Can analyze cost more precisely.
Can modify m(r)

to Improve constants in cost.
Can account for real CPUs.

Can focus on useful 6.

Speed records: Poly1305.
See cr.yp.to/mac.html and
papers.html#poly1305.
128-bit coefficients of m;
k =2Z/(2130 — 5); restricted ;
~ 0.5 CPU cycles per bit.

Survey of alternatives: Sections
8—10 of papers.html#hash127.
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Can analyze cost more precisely.
Can modify m(r)

to Improve constants in cost.
Can account for real CPUs.

Can focus on useful 6.

Speed records: Poly1305.
See cr.yp.to/mac.html and
papers.html#poly1305.
128-bit coefficients of m;
k=2Z/(2130 — 5): restricted 7;
~ 0.5 CPU cycles per bit.

Survey of alternatives: Sections
8—10 of papers.html#hash127.

We'll see better protocols
that dramatically reduce
requirements on old channel:

1. Reduce bandwidth
far below b6 + bc + d bits.

2. Eliminate secrecy.

Disadvantage: no known way to
prove security of better protocols.
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We'll see better protocols
that dramatically reduce
requirements on old channel:

1. Reduce bandwidth
far below b6 + bc + d bits.

2. Eliminate secrecy.

Disadvantage: no known way to

prove security of better protocols.

How to reduce bandwidth?

Expand a short shared secret
Into a long shared secret.

e.g. Expand t, ug, u1,... Into
4t mod g,

4140 mod g,

41 mod q,

ATUOUL mod q,

4142 mod g,

41U0%2 mod g,

AtU1U2 mod g,

ATUOUIU2 mod g,

etc., where g = 22090 _ 1553657.
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Expand a short shared secret
Into a long shared secret.

e.g. Expand ¢, ug, u1,... Into
4t mod g,

4140 mod g,

41 mod q,

ATUOUL mod q,
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How to reduce bandwidth?

Expand a short shared secret
Into a long shared secret.

e.g. Expand t, ug, u1,... Into
4t mod g,

4140 mod g,

41 mod q,

ATUOUL mod q,

4t%2 mod g,

41U0%2 mod g,

AtU1U2 mod g,

ATUOUIU2 mod g,

etc., where g = 22090 _ 1553657.

Conjecture: Hard to distinguish
this expanded secret

from a uniform random sequence
of squares modulo g.

Could try to do it by computing
discrete logs modulo g:

extract ¢ from 4t mod g,

tug from 41%0 mod g, etc.,

and see (t)(tugui) = (tug)(tuy).
But discrete logs seem hard!

Thus (e.g.) bottom halves
seem hard to distinguish
from a uniform random string.
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Could try to do it by computing
discrete logs modulo g:

extract t from 4* mod g,
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Conjecture: Hard to distinguish For 6 bits of security, 6 — oo:

this expanded secret Fix ¢ with g, (g — 1)/2 prime

and with Igg € p3+o(l).
more precisely, with

from a uniform random sequence

of squares modulo g.

Could try to do it by computing 6.8...(Igq)(Iglog q)* ~ b>.

discrete logs modulo g: .
& 9 Transmit short shared secret:

extract t from 4* mod g, . .
9 independent uniform random

tug
tug from 4**0 mod g, etc., t,ug, u1,... € {1,2,...,2%%

and see (t)(tugui) = (tug)(tuy).
But discrete logs seem hard! These sizes just barely resist

fastest discrete-log methods

Thus (e.g.) bottom halves that we know.

seem hard to distinguish
from a uniform random string.
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Fix g with g, (¢ — 1)/2 prime
and with Igg € p3+o(l).

more precisely, with
6.8...(Igq)(Iglogq)? ~ b3.

Transmit short shared secret:

independent uniform random
t,ug,u1, ... € {1,2,...,226}.

These sizes just barely resist
fastest discrete-log methods
that we know.

Expand t, ug, ui,
4t mod g, ..., 4%

e.g. Expand ¢, uq
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For b bits of security, b — oo:

Fix g with g, (¢ — 1)/2 prime
and with Igg € p3+o(l).

more precisely, with
6.8...(Igq)(Iglogq)? ~ b3.

Transmit short shared secret:

independent uniform random
t,ug, U1, ... € {1,2,...,226}.

These sizes just barely resist
fastest discrete-log methods
that we know.

Expand ¢, ug, uy, ... Into
4* mod q, ... 4TU0U2 mod q,....
e.g. Expand ¢, ug, u1,...,Up3

into 2°% integers modulo g.

Extract bottom [(1/2)Igq| bits
of each integer.

Compute results sequentially.
Only O(b) mults mod g
for each integer, so

b(Ig 6)11°(1) bit ops per bit.

Random access is slow:
> pA+o(1) pit ops.
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Extract bottom [(1/2)Iggq| bits
of each integer.

Compute results sequentially.
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for each integer, so
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Expand ¢, ug, uy, ... Into
4* mod q, ... 4TU0U2 mod q,....

e.g. Expand ¢, ug, u1, ..., Up3
into 2°% integers modulo g.

Extract bottom [(1/2)Igq| bits
of each integer.

Compute results sequentially.
Only O(b) mults mod g
for each integer, so

b(Ig 6)11°(1) bit ops per bit.

Random access is slow:
> pA+o(1) pit ops.

Do better by replacing

(Z/9)" with E(Z/q)
for a safe elliptic curve E.

Discrete logs in E(Z/q)
seem relatively difficult,
so can take g smaller:
specifically, lg g ~ 26.

Much faster random access:
p21o(1) bit ops.

Sequential access again takes
b(Ig 6)11°(1) bit ops per bit.
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Do better by replacing

(Z/9)" with E(Z/q)
for a safe elliptic curve E.

Discrete logs in E(Z/q)
seem relatively difficult,
so can take g smaller:
specifically, lg g ~ 26.

Much faster random access:
p21o(1) bit ops.

Sequential access again takes
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Do better by replacing

(Z/9)" with E(Z/q)
for a safe elliptic curve E.

Discrete logs in E(Z/q)
seem relatively difficult,
so can take g smaller:
specifically, lg g ~ 26.

Much faster random access:
p21o(1) bit ops.

Sequential access again takes
b(Ig 6)11°(1) bit ops per bit.

Can do much better.

Maybe non-constant speedups;
certainly constant speedups;

just one b-bit secret instead of
several 2b-bit secrets ¢, ug, uy, .. .;
focus on useful b; etc.

Many choices of expansion
functions ( “stream ciphers”).
Fastest expansion functions
don’'t have discrete-log structure.

Speed records: see eSTREAM,

WWW.ecrypt.eu.org/streamn.
Often < 1 CPU cycle per bit;
random access < 1000 cycles.
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Can do much better.

Maybe non-constant speedups;
certainly constant speedups;
just one b-bit secret instead of

several 26-bit secrets ¢, ug, uy, .. .;

focus on useful b: etc.

Many choices of expansion
functions ( “stream ciphers”).
Fastest expansion functions

don’'t have discrete-log structure.

Speed records: see eSTREAM,

WWW.ecrypt.eu.org/streamn.
Often < 1 CPU cycle per bit;
random access < 1000 cycles.

Channels at this point:

transmit secret through
old channel providing

secrecy and authenticity
for b bits
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transmit m1; mo; ... through
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Channels at this point:

transmit secret through
old channel providing

secrecy and authenticity
for b bits

\v/

transmit m1; mo; ... through
new channel providing

secrecy and authenticity
for d bits

How to use old channel
providing only authenticity,
not secrecy?

Sender generates secret o,
sends public key 49 mod g
through old channel.

Receiver generates secret T,
sends public key 47 mod ¢
back through old channel.

Sender and receiver now
A0 T

compute mod g,
extract b6 bits,

expand into long shared secret.
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How to use old channel
providing only authenticity,
not secrecy?

Sender generates secret o,
sends public key 49 mod g
through old channel.

Receiver generates secret T,
sends public key 47 mod ¢
back through old channel.

Sender and receiver now
A0 T

compute mod g,

extract b bits,

expand into long shared secret.

Conjecture: Given 49 mod g,
47 mod g, hard to distinguish
4°T mod g from

uniform random square mod gq.

As before, can distinguish
by computing discrete logs,
but that seems hard.

As before, reduce costs
by switching to elliptic curves.

Many choices of functions?
No! Need discrete-log structure.
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Conjecture: Given 49 mod g,
47 mod g, hard to distinguish
4°T mod g from

uniform random square mod gq.

As before, can distinguish
by computing discrete logs,
but that seems hard.

As before, reduce costs
by switching to elliptic curves.

Many choices of functions?

No! Need discrete-log structure.

Again improve cost constants,
focus on useful b, etc.

Speed records: Curve25519.
See cr.yp.to/ecdh.html and
papers.html#curve2b519.
Curve y?2 = z3 + 48666222 +
mod 22°° — 19; eliminate v;

< 1000000 CPU cycles.

New records from Jacobians

of genus-2 hyperelliptic curves?
Come to ECC 2006 in Toronto.
www.fields.utoronto.ca
/programs/scientific
/06-07/crypto/
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Again improve cost constants,
focus on useful b, etc.

Speed records: Curve25519.
See cr.yp.to/ecdh.html and
papers.html#curve2b519.
Curve y?2 = z3 + 48666222 +
mod 22°° — 19; eliminate v;

< 1000000 CPU cycles.
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Again improve cost constants,
focus on useful b, etc.

Speed records: Curve25519.
See cr.yp.to/ecdh.html and
papers.html#curve2b519.
Curve y2 = z3 + 48666222 + z
mod 22°° — 19; eliminate v;

< 1000000 CPU cycles.

New records from Jacobians

of genus-2 hyperelliptic curves?
Come to ECC 2006 in Toronto.
www.fields.utoronto.ca
/programs/scientific
/06-07/crypto/

Many other public-key structures.

e.g. "'Public-key signing”
reduces costs of securely
sending a public message

to many recipients.

Sender signs message

independently of receiver,
without any shared secrets.

Each receiver verities signature;
very fast computation.
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Many other public-key structures.

e.g. "'Public-key signing”
reduces costs of securely
sending a public message

to many recipients.

Sender signs message

independently of receiver,
without any shared secrets.

Each receiver verifies signature;
very fast computation.

e.g. 'Public-key encryption”
generates new shared secret
for each message.

Always Increases costs,
as far as | know.
The literature on
“public-key encryption”
Is a historical accident.

Best to reuse one secret
for many messages.
Minimize public-key operations.
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e.g. 'Public-key encryption” If large quantum computers
generates new shared secret are built then they will

for each message. compute discrete logs quickly.

|
Always increases costs, Huge effects on cryptography!

as far as | know. Some public-key systems seem to
The literature on survive quantum computers.
“public-key encryption” See PQCrypto 2006 abstracts:

Is a historical accident. postquantum.cr.yp.to.

Best to reuse one secret Exactly how fast are RSA,

for many messages. DSA, ECDH, post-quantum
Minimize public-key operations. cryptosystems, etc.?

WWW.ecrypt.eu.org/ebats is

benchmarking public-key systems.




