
High-speed

cryptographic functions

D. J. Bernstein

Typical Internet protocol:

message generator

m
²²

sender

m
²²

network

m0
²²

receiver



High-speed

cryptographic functions

D. J. Bernstein

Typical Internet protocol:

message generator

m
²²

sender

m
²²

network

m0
²²

receiver

A message generator

creates a message m,

a string of bytes.

Message generator

gives m to a sender.

Sender gives m to a network.

Network gives a message m0

to a receiver.

Maybe m0 = m; maybe not.

Maybe network is

controlled by an attacker

who changed m into m0 6= m.



Typical Internet protocol:

message generator

m
²²

sender

m
²²

network

m0
²²

receiver

A message generator

creates a message m,

a string of bytes.

Message generator

gives m to a sender.

Sender gives m to a network.

Network gives a message m0

to a receiver.

Maybe m0 = m; maybe not.

Maybe network is

controlled by an attacker

who changed m into m0 6= m.



Typical Internet protocol:

message generator

m
²²

sender

m
²²

network

m0
²²

receiver

A message generator

creates a message m,

a string of bytes.

Message generator

gives m to a sender.

Sender gives m to a network.

Network gives a message m0

to a receiver.

Maybe m0 = m; maybe not.

Maybe network is

controlled by an attacker

who changed m into m0 6= m.

Protocol eliminating forgeries:

message generator

m
²²

sender using r; s

m; a
²²

network

m0; a0
²²

receiver using r; s



A message generator

creates a message m,

a string of bytes.

Message generator

gives m to a sender.

Sender gives m to a network.

Network gives a message m0

to a receiver.

Maybe m0 = m; maybe not.

Maybe network is

controlled by an attacker

who changed m into m0 6= m.

Protocol eliminating forgeries:

message generator

m
²²

sender using r; s

m; a
²²

network

m0; a0
²²

receiver using r; s



A message generator

creates a message m,

a string of bytes.

Message generator

gives m to a sender.

Sender gives m to a network.

Network gives a message m0

to a receiver.

Maybe m0 = m; maybe not.

Maybe network is

controlled by an attacker

who changed m into m0 6= m.

Protocol eliminating forgeries:

message generator

m
²²

sender using r; s

m; a
²²

network

m0; a0
²²

receiver using r; s

Fix a finite field k.

Typically #k ı 2128.

Sender, receiver share a secret:

uniform random (r; s) 2 kˆ k.

Network’s function m;a 7!m0; a0

is independent of (r; s).

Sender encodes message m

as polynomial m 2 xk[x].

Sender then computes

authenticator a = m(r) + s.

Receiver discards m0; a0

if a0 6= m0(r) + s.



Protocol eliminating forgeries:

message generator

m
²²

sender using r; s

m; a
²²

network

m0; a0
²²

receiver using r; s

Fix a finite field k.

Typically #k ı 2128.

Sender, receiver share a secret:

uniform random (r; s) 2 kˆ k.

Network’s function m;a 7!m0; a0

is independent of (r; s).

Sender encodes message m

as polynomial m 2 xk[x].

Sender then computes

authenticator a = m(r) + s.

Receiver discards m0; a0

if a0 6= m0(r) + s.



Protocol eliminating forgeries:

message generator

m
²²

sender using r; s

m; a
²²

network

m0; a0
²²

receiver using r; s

Fix a finite field k.

Typically #k ı 2128.

Sender, receiver share a secret:

uniform random (r; s) 2 kˆ k.

Network’s function m;a 7!m0; a0

is independent of (r; s).

Sender encodes message m

as polynomial m 2 xk[x].

Sender then computes

authenticator a = m(r) + s.

Receiver discards m0; a0

if a0 6= m0(r) + s.

If m0 6= m then

Pr[receiver accepts m0]
» max

˘
degm; degm0

¯
=#k.

e.g. Pr » 2`98 if #k = 2128

and message degree » 230.

Proof: m0 6= m in xk[x]

so m0 ` a0 6= m` a in k[x].

#k pairs (r; s) 2 kˆ k
satisfy a = m(r) + s.

» max
˘

degm; degm0
¯

pairs

also satisfy a0 = m0(r) + s.



Fix a finite field k.

Typically #k ı 2128.

Sender, receiver share a secret:

uniform random (r; s) 2 kˆ k.

Network’s function m;a 7!m0; a0

is independent of (r; s).

Sender encodes message m

as polynomial m 2 xk[x].

Sender then computes

authenticator a = m(r) + s.

Receiver discards m0; a0

if a0 6= m0(r) + s.

If m0 6= m then

Pr[receiver accepts m0]
» max

˘
degm; degm0

¯
=#k.

e.g. Pr » 2`98 if #k = 2128

and message degree » 230.

Proof: m0 6= m in xk[x]

so m0 ` a0 6= m` a in k[x].

#k pairs (r; s) 2 kˆ k
satisfy a = m(r) + s.

» max
˘

degm; degm0
¯

pairs

also satisfy a0 = m0(r) + s.



Fix a finite field k.

Typically #k ı 2128.

Sender, receiver share a secret:

uniform random (r; s) 2 kˆ k.

Network’s function m;a 7!m0; a0

is independent of (r; s).

Sender encodes message m

as polynomial m 2 xk[x].

Sender then computes

authenticator a = m(r) + s.

Receiver discards m0; a0

if a0 6= m0(r) + s.

If m0 6= m then

Pr[receiver accepts m0]
» max

˘
degm; degm0

¯
=#k.

e.g. Pr » 2`98 if #k = 2128

and message degree » 230.

Proof: m0 6= m in xk[x]

so m0 ` a0 6= m` a in k[x].

#k pairs (r; s) 2 kˆ k
satisfy a = m(r) + s.

» max
˘

degm; degm0
¯

pairs

also satisfy a0 = m0(r) + s.

Many messages, unprotected:

message generator

m1;m2; : : :
²²

sender

1;m1; 2;m2; : : :
²²

network

n01;m
0
1;n02;m

0
2; : : :

²²

receiver



If m0 6= m then

Pr[receiver accepts m0]
» max

˘
degm; degm0

¯
=#k.

e.g. Pr » 2`98 if #k = 2128

and message degree » 230.

Proof: m0 6= m in xk[x]

so m0 ` a0 6= m` a in k[x].

#k pairs (r; s) 2 kˆ k
satisfy a = m(r) + s.

» max
˘

degm; degm0
¯

pairs

also satisfy a0 = m0(r) + s.

Many messages, unprotected:

message generator

m1;m2; : : :
²²

sender

1;m1; 2;m2; : : :
²²

network

n01;m
0
1;n02;m

0
2; : : :

²²

receiver



If m0 6= m then

Pr[receiver accepts m0]
» max

˘
degm; degm0

¯
=#k.

e.g. Pr » 2`98 if #k = 2128

and message degree » 230.

Proof: m0 6= m in xk[x]

so m0 ` a0 6= m` a in k[x].

#k pairs (r; s) 2 kˆ k
satisfy a = m(r) + s.

» max
˘

degm; degm0
¯

pairs

also satisfy a0 = m0(r) + s.

Many messages, unprotected:

message generator

m1;m2; : : :
²²

sender

1;m1; 2;m2; : : :
²²

network

n01;m
0
1;n02;m

0
2; : : :

²²

receiver

Many messages, protected:

message generator

m1;m2; : : :
²²

sender using r; s

1;m1; a1; 2;m2; a2; : : :
²²

network

n01;m
0
1; a
0
1;n02;m

0
2; a
0
2; : : :

²²

receiver using r; s



Many messages, unprotected:

message generator

m1;m2; : : :
²²

sender

1;m1; 2;m2; : : :
²²

network

n01;m
0
1;n02;m

0
2; : : :

²²

receiver

Many messages, protected:

message generator

m1;m2; : : :
²²

sender using r; s

1;m1; a1; 2;m2; a2; : : :
²²

network

n01;m
0
1; a
0
1;n02;m

0
2; a
0
2; : : :

²²

receiver using r; s



Many messages, unprotected:

message generator

m1;m2; : : :
²²

sender

1;m1; 2;m2; : : :
²²

network

n01;m
0
1;n02;m

0
2; : : :

²²

receiver

Many messages, protected:

message generator

m1;m2; : : :
²²

sender using r; s

1;m1; a1; 2;m2; a2; : : :
²²

network

n01;m
0
1; a
0
1;n02;m

0
2; a
0
2; : : :

²²

receiver using r; s

Secret here is uniform random

(r; s) 2 kˆ kf1;2;:::g;
i.e., r 2 k; s(1) 2 k; s(2) 2 k; : : :.

e.g. 128000 secret bits

to handle 999 messages

if #k = 2128.

Sender transmits nth message m

as n;m;m(r) + s(n).

Receiver discards n0;m0; a0

if a0 6= m0(r) + s(n0).

Forged n0;m0; a0 has negligible

chance of being accepted.



Many messages, protected:

message generator

m1;m2; : : :
²²

sender using r; s

1;m1; a1; 2;m2; a2; : : :
²²

network

n01;m
0
1; a
0
1;n02;m

0
2; a
0
2; : : :

²²

receiver using r; s

Secret here is uniform random

(r; s) 2 kˆ kf1;2;:::g;
i.e., r 2 k; s(1) 2 k; s(2) 2 k; : : :.

e.g. 128000 secret bits

to handle 999 messages

if #k = 2128.

Sender transmits nth message m

as n;m;m(r) + s(n).

Receiver discards n0;m0; a0

if a0 6= m0(r) + s(n0).

Forged n0;m0; a0 has negligible

chance of being accepted.



Many messages, protected:

message generator

m1;m2; : : :
²²

sender using r; s

1;m1; a1; 2;m2; a2; : : :
²²

network

n01;m
0
1; a
0
1;n02;m

0
2; a
0
2; : : :

²²

receiver using r; s

Secret here is uniform random

(r; s) 2 kˆ kf1;2;:::g;
i.e., r 2 k; s(1) 2 k; s(2) 2 k; : : :.

e.g. 128000 secret bits

to handle 999 messages

if #k = 2128.

Sender transmits nth message m

as n;m;m(r) + s(n).

Receiver discards n0;m0; a0

if a0 6= m0(r) + s(n0).

Forged n0;m0; a0 has negligible

chance of being accepted.

How did sender, receiver

create and share r; s?

Must have had previous channel

providing secrecy, authenticity.

Why not use that channel

for new messages?

Answer 1: Extend security

through time. Previous channel

can disappear after sending r; s.

New channel sends new messages.

Answer 2: Expand bandwidth.

Messages can be much longer

than r; s.



Secret here is uniform random

(r; s) 2 kˆ kf1;2;:::g;
i.e., r 2 k; s(1) 2 k; s(2) 2 k; : : :.

e.g. 128000 secret bits

to handle 999 messages

if #k = 2128.

Sender transmits nth message m

as n;m;m(r) + s(n).

Receiver discards n0;m0; a0

if a0 6= m0(r) + s(n0).

Forged n0;m0; a0 has negligible

chance of being accepted.

How did sender, receiver

create and share r; s?

Must have had previous channel

providing secrecy, authenticity.

Why not use that channel

for new messages?

Answer 1: Extend security

through time. Previous channel

can disappear after sending r; s.

New channel sends new messages.

Answer 2: Expand bandwidth.

Messages can be much longer

than r; s.



Secret here is uniform random

(r; s) 2 kˆ kf1;2;:::g;
i.e., r 2 k; s(1) 2 k; s(2) 2 k; : : :.

e.g. 128000 secret bits

to handle 999 messages

if #k = 2128.

Sender transmits nth message m

as n;m;m(r) + s(n).

Receiver discards n0;m0; a0

if a0 6= m0(r) + s(n0).

Forged n0;m0; a0 has negligible

chance of being accepted.

How did sender, receiver

create and share r; s?

Must have had previous channel

providing secrecy, authenticity.

Why not use that channel

for new messages?

Answer 1: Extend security

through time. Previous channel

can disappear after sending r; s.

New channel sends new messages.

Answer 2: Expand bandwidth.

Messages can be much longer

than r; s.

For b-bit security, dlg #ke = b,

c messages, total length d:

transmit r; s through

old channel providing

secrecy and authenticity

for b+ bc bits

®¶

transmit m1;m2; : : : through

new channel providing

authenticity

for d bits



How did sender, receiver

create and share r; s?

Must have had previous channel

providing secrecy, authenticity.

Why not use that channel

for new messages?

Answer 1: Extend security

through time. Previous channel

can disappear after sending r; s.

New channel sends new messages.

Answer 2: Expand bandwidth.

Messages can be much longer

than r; s.

For b-bit security, dlg #ke = b,

c messages, total length d:

transmit r; s through

old channel providing

secrecy and authenticity

for b+ bc bits

®¶

transmit m1;m2; : : : through

new channel providing

authenticity

for d bits



How did sender, receiver

create and share r; s?

Must have had previous channel

providing secrecy, authenticity.

Why not use that channel

for new messages?

Answer 1: Extend security

through time. Previous channel

can disappear after sending r; s.

New channel sends new messages.

Answer 2: Expand bandwidth.

Messages can be much longer

than r; s.

For b-bit security, dlg #ke = b,

c messages, total length d:

transmit r; s through

old channel providing

secrecy and authenticity

for b+ bc bits

®¶

transmit m1;m2; : : : through

new channel providing

authenticity

for d bits

Authenticated-encryption variant

using n; ((m;m(r)) + s(n)):

transmit r; s through

old channel providing

secrecy and authenticity

for b+ bc+ d bits

®¶

transmit m1;m2; : : : through

new channel providing

secrecy and authenticity

for d bits



For b-bit security, dlg #ke = b,

c messages, total length d:

transmit r; s through

old channel providing

secrecy and authenticity

for b+ bc bits

®¶

transmit m1;m2; : : : through

new channel providing

authenticity

for d bits

Authenticated-encryption variant

using n; ((m;m(r)) + s(n)):

transmit r; s through

old channel providing

secrecy and authenticity

for b+ bc+ d bits

®¶

transmit m1;m2; : : : through

new channel providing

secrecy and authenticity

for d bits



For b-bit security, dlg #ke = b,

c messages, total length d:

transmit r; s through

old channel providing

secrecy and authenticity

for b+ bc bits

®¶

transmit m1;m2; : : : through

new channel providing

authenticity

for d bits

Authenticated-encryption variant

using n; ((m;m(r)) + s(n)):

transmit r; s through

old channel providing

secrecy and authenticity

for b+ bc+ d bits

®¶

transmit m1;m2; : : : through

new channel providing

secrecy and authenticity

for d bits

Can multiply in k

using b1+o(1) bit operations;

more precisely, b(lg b)1+o(1).

Can evaluate m(r)

using b(lg b)1+o(1) bit operations

for each b-bit block of m.

Overall (bc+ d)(lg b)1+o(1)

bit operations.

Normally d dominates bc,

so (lg b)1+o(1) bit operations

for each message bit.



Authenticated-encryption variant

using n; ((m;m(r)) + s(n)):

transmit r; s through

old channel providing

secrecy and authenticity

for b+ bc+ d bits

®¶

transmit m1;m2; : : : through

new channel providing

secrecy and authenticity

for d bits

Can multiply in k

using b1+o(1) bit operations;

more precisely, b(lg b)1+o(1).

Can evaluate m(r)

using b(lg b)1+o(1) bit operations

for each b-bit block of m.

Overall (bc+ d)(lg b)1+o(1)

bit operations.

Normally d dominates bc,

so (lg b)1+o(1) bit operations

for each message bit.



Authenticated-encryption variant

using n; ((m;m(r)) + s(n)):

transmit r; s through

old channel providing

secrecy and authenticity

for b+ bc+ d bits

®¶

transmit m1;m2; : : : through

new channel providing

secrecy and authenticity

for d bits

Can multiply in k

using b1+o(1) bit operations;

more precisely, b(lg b)1+o(1).

Can evaluate m(r)

using b(lg b)1+o(1) bit operations

for each b-bit block of m.

Overall (bc+ d)(lg b)1+o(1)

bit operations.

Normally d dominates bc,

so (lg b)1+o(1) bit operations

for each message bit.

Can analyze cost more precisely.

Can modify m(r)

to improve constants in cost.

Can account for real CPUs.

Can focus on useful b.

Speed records: Poly1305.

See cr.yp.to/mac.html and

papers.html#poly1305.

128-bit coefficients of m;

k = Z=(2130 ` 5); restricted r;

ı 0:5 CPU cycles per bit.

Survey of alternatives: Sections

8–10 of papers.html#hash127.



Can multiply in k

using b1+o(1) bit operations;

more precisely, b(lg b)1+o(1).

Can evaluate m(r)

using b(lg b)1+o(1) bit operations

for each b-bit block of m.

Overall (bc+ d)(lg b)1+o(1)

bit operations.

Normally d dominates bc,

so (lg b)1+o(1) bit operations

for each message bit.

Can analyze cost more precisely.

Can modify m(r)

to improve constants in cost.

Can account for real CPUs.

Can focus on useful b.

Speed records: Poly1305.

See cr.yp.to/mac.html and

papers.html#poly1305.

128-bit coefficients of m;

k = Z=(2130 ` 5); restricted r;

ı 0:5 CPU cycles per bit.

Survey of alternatives: Sections

8–10 of papers.html#hash127.



Can multiply in k

using b1+o(1) bit operations;

more precisely, b(lg b)1+o(1).

Can evaluate m(r)

using b(lg b)1+o(1) bit operations

for each b-bit block of m.

Overall (bc+ d)(lg b)1+o(1)

bit operations.

Normally d dominates bc,

so (lg b)1+o(1) bit operations

for each message bit.

Can analyze cost more precisely.

Can modify m(r)

to improve constants in cost.

Can account for real CPUs.

Can focus on useful b.

Speed records: Poly1305.

See cr.yp.to/mac.html and

papers.html#poly1305.

128-bit coefficients of m;

k = Z=(2130 ` 5); restricted r;

ı 0:5 CPU cycles per bit.

Survey of alternatives: Sections

8–10 of papers.html#hash127.

We’ll see better protocols

that dramatically reduce

requirements on old channel:

1. Reduce bandwidth

far below b+ bc+ d bits.

2. Eliminate secrecy.

Disadvantage: no known way to

prove security of better protocols.



Can analyze cost more precisely.

Can modify m(r)

to improve constants in cost.

Can account for real CPUs.

Can focus on useful b.

Speed records: Poly1305.

See cr.yp.to/mac.html and

papers.html#poly1305.

128-bit coefficients of m;

k = Z=(2130 ` 5); restricted r;

ı 0:5 CPU cycles per bit.

Survey of alternatives: Sections

8–10 of papers.html#hash127.

We’ll see better protocols

that dramatically reduce

requirements on old channel:

1. Reduce bandwidth

far below b+ bc+ d bits.

2. Eliminate secrecy.

Disadvantage: no known way to

prove security of better protocols.



Can analyze cost more precisely.

Can modify m(r)

to improve constants in cost.

Can account for real CPUs.

Can focus on useful b.

Speed records: Poly1305.

See cr.yp.to/mac.html and

papers.html#poly1305.

128-bit coefficients of m;

k = Z=(2130 ` 5); restricted r;

ı 0:5 CPU cycles per bit.

Survey of alternatives: Sections

8–10 of papers.html#hash127.

We’ll see better protocols

that dramatically reduce

requirements on old channel:

1. Reduce bandwidth

far below b+ bc+ d bits.

2. Eliminate secrecy.

Disadvantage: no known way to

prove security of better protocols.

How to reduce bandwidth?

Expand a short shared secret

into a long shared secret.

e.g. Expand t; u0; u1; : : : into

4t mod q,

4tu0 mod q,

4tu1 mod q,

4tu0u1 mod q,

4tu2 mod q,

4tu0u2 mod q,

4tu1u2 mod q,

4tu0u1u2 mod q,

etc., where q = 22000 ` 1553657.



We’ll see better protocols

that dramatically reduce

requirements on old channel:

1. Reduce bandwidth

far below b+ bc+ d bits.

2. Eliminate secrecy.

Disadvantage: no known way to

prove security of better protocols.

How to reduce bandwidth?

Expand a short shared secret

into a long shared secret.

e.g. Expand t; u0; u1; : : : into

4t mod q,

4tu0 mod q,

4tu1 mod q,

4tu0u1 mod q,

4tu2 mod q,

4tu0u2 mod q,

4tu1u2 mod q,

4tu0u1u2 mod q,

etc., where q = 22000 ` 1553657.



We’ll see better protocols

that dramatically reduce

requirements on old channel:

1. Reduce bandwidth

far below b+ bc+ d bits.

2. Eliminate secrecy.

Disadvantage: no known way to

prove security of better protocols.

How to reduce bandwidth?

Expand a short shared secret

into a long shared secret.

e.g. Expand t; u0; u1; : : : into

4t mod q,

4tu0 mod q,

4tu1 mod q,

4tu0u1 mod q,

4tu2 mod q,

4tu0u2 mod q,

4tu1u2 mod q,

4tu0u1u2 mod q,

etc., where q = 22000 ` 1553657.

Conjecture: Hard to distinguish

this expanded secret

from a uniform random sequence

of squares modulo q.

Could try to do it by computing

discrete logs modulo q:

extract t from 4t mod q,

tu0 from 4tu0 mod q, etc.,

and see (t)(tu0u1) = (tu0)(tu1).

But discrete logs seem hard!

Thus (e.g.) bottom halves

seem hard to distinguish

from a uniform random string.



How to reduce bandwidth?

Expand a short shared secret

into a long shared secret.

e.g. Expand t; u0; u1; : : : into

4t mod q,

4tu0 mod q,

4tu1 mod q,

4tu0u1 mod q,

4tu2 mod q,

4tu0u2 mod q,

4tu1u2 mod q,

4tu0u1u2 mod q,

etc., where q = 22000 ` 1553657.

Conjecture: Hard to distinguish

this expanded secret

from a uniform random sequence

of squares modulo q.

Could try to do it by computing

discrete logs modulo q:

extract t from 4t mod q,

tu0 from 4tu0 mod q, etc.,

and see (t)(tu0u1) = (tu0)(tu1).

But discrete logs seem hard!

Thus (e.g.) bottom halves

seem hard to distinguish

from a uniform random string.



How to reduce bandwidth?

Expand a short shared secret

into a long shared secret.

e.g. Expand t; u0; u1; : : : into

4t mod q,

4tu0 mod q,

4tu1 mod q,

4tu0u1 mod q,

4tu2 mod q,

4tu0u2 mod q,

4tu1u2 mod q,

4tu0u1u2 mod q,

etc., where q = 22000 ` 1553657.

Conjecture: Hard to distinguish

this expanded secret

from a uniform random sequence

of squares modulo q.

Could try to do it by computing

discrete logs modulo q:

extract t from 4t mod q,

tu0 from 4tu0 mod q, etc.,

and see (t)(tu0u1) = (tu0)(tu1).

But discrete logs seem hard!

Thus (e.g.) bottom halves

seem hard to distinguish

from a uniform random string.

For b bits of security, b!1:

Fix q with q; (q ` 1)=2 prime

and with lg q 2 b3+o(1);

more precisely, with

6:8 : : : (lg q)(lg log q)2 ı b3.

Transmit short shared secret:

independent uniform random

t; u0; u1; : : : 2 f1; 2; : : : ; 22bg.
These sizes just barely resist

fastest discrete-log methods

that we know.



Conjecture: Hard to distinguish

this expanded secret

from a uniform random sequence

of squares modulo q.

Could try to do it by computing

discrete logs modulo q:

extract t from 4t mod q,

tu0 from 4tu0 mod q, etc.,

and see (t)(tu0u1) = (tu0)(tu1).

But discrete logs seem hard!

Thus (e.g.) bottom halves

seem hard to distinguish

from a uniform random string.

For b bits of security, b!1:

Fix q with q; (q ` 1)=2 prime

and with lg q 2 b3+o(1);

more precisely, with

6:8 : : : (lg q)(lg log q)2 ı b3.

Transmit short shared secret:

independent uniform random

t; u0; u1; : : : 2 f1; 2; : : : ; 22bg.
These sizes just barely resist

fastest discrete-log methods

that we know.



Conjecture: Hard to distinguish

this expanded secret

from a uniform random sequence

of squares modulo q.

Could try to do it by computing

discrete logs modulo q:

extract t from 4t mod q,

tu0 from 4tu0 mod q, etc.,

and see (t)(tu0u1) = (tu0)(tu1).

But discrete logs seem hard!

Thus (e.g.) bottom halves

seem hard to distinguish

from a uniform random string.

For b bits of security, b!1:

Fix q with q; (q ` 1)=2 prime

and with lg q 2 b3+o(1);

more precisely, with

6:8 : : : (lg q)(lg log q)2 ı b3.

Transmit short shared secret:

independent uniform random

t; u0; u1; : : : 2 f1; 2; : : : ; 22bg.
These sizes just barely resist

fastest discrete-log methods

that we know.

Expand t; u0; u1; : : : into

4t mod q; : : : ; 4tu0u2 mod q; : : :.

e.g. Expand t; u0; u1; : : : ; u63

into 264 integers modulo q.

Extract bottom d(1=2) lg qe bits

of each integer.

Compute results sequentially.

Only O(b) mults mod q

for each integer, so

b(lg b)1+o(1) bit ops per bit.

Random access is slow:

– b4+o(1) bit ops.



For b bits of security, b!1:

Fix q with q; (q ` 1)=2 prime

and with lg q 2 b3+o(1);

more precisely, with

6:8 : : : (lg q)(lg log q)2 ı b3.

Transmit short shared secret:

independent uniform random

t; u0; u1; : : : 2 f1; 2; : : : ; 22bg.
These sizes just barely resist

fastest discrete-log methods

that we know.

Expand t; u0; u1; : : : into

4t mod q; : : : ; 4tu0u2 mod q; : : :.

e.g. Expand t; u0; u1; : : : ; u63

into 264 integers modulo q.

Extract bottom d(1=2) lg qe bits

of each integer.

Compute results sequentially.

Only O(b) mults mod q

for each integer, so

b(lg b)1+o(1) bit ops per bit.

Random access is slow:

– b4+o(1) bit ops.



For b bits of security, b!1:

Fix q with q; (q ` 1)=2 prime

and with lg q 2 b3+o(1);

more precisely, with

6:8 : : : (lg q)(lg log q)2 ı b3.

Transmit short shared secret:

independent uniform random

t; u0; u1; : : : 2 f1; 2; : : : ; 22bg.
These sizes just barely resist

fastest discrete-log methods

that we know.

Expand t; u0; u1; : : : into

4t mod q; : : : ; 4tu0u2 mod q; : : :.

e.g. Expand t; u0; u1; : : : ; u63

into 264 integers modulo q.

Extract bottom d(1=2) lg qe bits

of each integer.

Compute results sequentially.

Only O(b) mults mod q

for each integer, so

b(lg b)1+o(1) bit ops per bit.

Random access is slow:

– b4+o(1) bit ops.

Do better by replacing

(Z=q)˜ with E(Z=q)

for a safe elliptic curve E.

Discrete logs in E(Z=q)

seem relatively difficult,

so can take q smaller:

specifically, lg q ı 2b.

Much faster random access:

b2+o(1) bit ops.

Sequential access again takes

b(lg b)1+o(1) bit ops per bit.



Expand t; u0; u1; : : : into

4t mod q; : : : ; 4tu0u2 mod q; : : :.

e.g. Expand t; u0; u1; : : : ; u63

into 264 integers modulo q.

Extract bottom d(1=2) lg qe bits

of each integer.

Compute results sequentially.

Only O(b) mults mod q

for each integer, so

b(lg b)1+o(1) bit ops per bit.

Random access is slow:

– b4+o(1) bit ops.

Do better by replacing

(Z=q)˜ with E(Z=q)

for a safe elliptic curve E.

Discrete logs in E(Z=q)

seem relatively difficult,

so can take q smaller:

specifically, lg q ı 2b.

Much faster random access:

b2+o(1) bit ops.

Sequential access again takes

b(lg b)1+o(1) bit ops per bit.



Expand t; u0; u1; : : : into

4t mod q; : : : ; 4tu0u2 mod q; : : :.

e.g. Expand t; u0; u1; : : : ; u63

into 264 integers modulo q.

Extract bottom d(1=2) lg qe bits

of each integer.

Compute results sequentially.

Only O(b) mults mod q

for each integer, so

b(lg b)1+o(1) bit ops per bit.

Random access is slow:

– b4+o(1) bit ops.

Do better by replacing

(Z=q)˜ with E(Z=q)

for a safe elliptic curve E.

Discrete logs in E(Z=q)

seem relatively difficult,

so can take q smaller:

specifically, lg q ı 2b.

Much faster random access:

b2+o(1) bit ops.

Sequential access again takes

b(lg b)1+o(1) bit ops per bit.

Can do much better.

Maybe non-constant speedups;

certainly constant speedups;

just one b-bit secret instead of

several 2b-bit secrets t; u0; u1; : : :;

focus on useful b; etc.

Many choices of expansion

functions (“stream ciphers”).

Fastest expansion functions

don’t have discrete-log structure.

Speed records: see eSTREAM,

www.ecrypt.eu.org/stream.

Often < 1 CPU cycle per bit;

random access < 1000 cycles.



Do better by replacing

(Z=q)˜ with E(Z=q)

for a safe elliptic curve E.

Discrete logs in E(Z=q)

seem relatively difficult,

so can take q smaller:

specifically, lg q ı 2b.

Much faster random access:

b2+o(1) bit ops.

Sequential access again takes

b(lg b)1+o(1) bit ops per bit.

Can do much better.

Maybe non-constant speedups;

certainly constant speedups;

just one b-bit secret instead of

several 2b-bit secrets t; u0; u1; : : :;

focus on useful b; etc.

Many choices of expansion

functions (“stream ciphers”).

Fastest expansion functions

don’t have discrete-log structure.

Speed records: see eSTREAM,

www.ecrypt.eu.org/stream.

Often < 1 CPU cycle per bit;

random access < 1000 cycles.



Do better by replacing

(Z=q)˜ with E(Z=q)

for a safe elliptic curve E.

Discrete logs in E(Z=q)

seem relatively difficult,

so can take q smaller:

specifically, lg q ı 2b.

Much faster random access:

b2+o(1) bit ops.

Sequential access again takes

b(lg b)1+o(1) bit ops per bit.

Can do much better.

Maybe non-constant speedups;

certainly constant speedups;

just one b-bit secret instead of

several 2b-bit secrets t; u0; u1; : : :;

focus on useful b; etc.

Many choices of expansion

functions (“stream ciphers”).

Fastest expansion functions

don’t have discrete-log structure.

Speed records: see eSTREAM,

www.ecrypt.eu.org/stream.

Often < 1 CPU cycle per bit;

random access < 1000 cycles.

Channels at this point:

transmit secret through

old channel providing

secrecy and authenticity

for b bits

®¶

transmit m1;m2; : : : through

new channel providing

secrecy and authenticity

for d bits



Can do much better.

Maybe non-constant speedups;

certainly constant speedups;

just one b-bit secret instead of

several 2b-bit secrets t; u0; u1; : : :;

focus on useful b; etc.

Many choices of expansion

functions (“stream ciphers”).

Fastest expansion functions

don’t have discrete-log structure.

Speed records: see eSTREAM,

www.ecrypt.eu.org/stream.

Often < 1 CPU cycle per bit;

random access < 1000 cycles.

Channels at this point:

transmit secret through

old channel providing

secrecy and authenticity

for b bits

®¶

transmit m1;m2; : : : through

new channel providing

secrecy and authenticity

for d bits



Can do much better.

Maybe non-constant speedups;

certainly constant speedups;

just one b-bit secret instead of

several 2b-bit secrets t; u0; u1; : : :;

focus on useful b; etc.

Many choices of expansion

functions (“stream ciphers”).

Fastest expansion functions

don’t have discrete-log structure.

Speed records: see eSTREAM,

www.ecrypt.eu.org/stream.

Often < 1 CPU cycle per bit;

random access < 1000 cycles.

Channels at this point:

transmit secret through

old channel providing

secrecy and authenticity

for b bits

®¶

transmit m1;m2; : : : through

new channel providing

secrecy and authenticity

for d bits

How to use old channel

providing only authenticity,

not secrecy?

Sender generates secret ff,

sends public key 4ff mod q

through old channel.

Receiver generates secret fi ,

sends public key 4fi mod q

back through old channel.

Sender and receiver now

compute 4fffi mod q,

extract b bits,

expand into long shared secret.



Channels at this point:

transmit secret through

old channel providing

secrecy and authenticity

for b bits

®¶

transmit m1;m2; : : : through

new channel providing

secrecy and authenticity

for d bits

How to use old channel

providing only authenticity,

not secrecy?

Sender generates secret ff,

sends public key 4ff mod q

through old channel.

Receiver generates secret fi ,

sends public key 4fi mod q

back through old channel.

Sender and receiver now

compute 4fffi mod q,

extract b bits,

expand into long shared secret.



Channels at this point:

transmit secret through

old channel providing

secrecy and authenticity

for b bits

®¶

transmit m1;m2; : : : through

new channel providing

secrecy and authenticity

for d bits

How to use old channel

providing only authenticity,

not secrecy?

Sender generates secret ff,

sends public key 4ff mod q

through old channel.

Receiver generates secret fi ,

sends public key 4fi mod q

back through old channel.

Sender and receiver now

compute 4fffi mod q,

extract b bits,

expand into long shared secret.

Conjecture: Given 4ff mod q,

4fi mod q, hard to distinguish

4fffi mod q from

uniform random square mod q.

As before, can distinguish

by computing discrete logs,

but that seems hard.

As before, reduce costs

by switching to elliptic curves.

Many choices of functions?

No! Need discrete-log structure.



How to use old channel

providing only authenticity,

not secrecy?

Sender generates secret ff,

sends public key 4ff mod q

through old channel.

Receiver generates secret fi ,

sends public key 4fi mod q

back through old channel.

Sender and receiver now

compute 4fffi mod q,

extract b bits,

expand into long shared secret.

Conjecture: Given 4ff mod q,

4fi mod q, hard to distinguish

4fffi mod q from

uniform random square mod q.

As before, can distinguish

by computing discrete logs,

but that seems hard.

As before, reduce costs

by switching to elliptic curves.

Many choices of functions?

No! Need discrete-log structure.



How to use old channel

providing only authenticity,

not secrecy?

Sender generates secret ff,

sends public key 4ff mod q

through old channel.

Receiver generates secret fi ,

sends public key 4fi mod q

back through old channel.

Sender and receiver now

compute 4fffi mod q,

extract b bits,

expand into long shared secret.

Conjecture: Given 4ff mod q,

4fi mod q, hard to distinguish

4fffi mod q from

uniform random square mod q.

As before, can distinguish

by computing discrete logs,

but that seems hard.

As before, reduce costs

by switching to elliptic curves.

Many choices of functions?

No! Need discrete-log structure.

Again improve cost constants,

focus on useful b, etc.

Speed records: Curve25519.

See cr.yp.to/ecdh.html and

papers.html#curve25519.

Curve y2 = x3 + 486662x2 + x

mod 2255 ` 19; eliminate y;

< 1000000 CPU cycles.

New records from Jacobians

of genus-2 hyperelliptic curves?

Come to ECC 2006 in Toronto.

www.fields.utoronto.ca

/programs/scientific

/06-07/crypto/



Conjecture: Given 4ff mod q,

4fi mod q, hard to distinguish

4fffi mod q from

uniform random square mod q.

As before, can distinguish

by computing discrete logs,

but that seems hard.

As before, reduce costs

by switching to elliptic curves.

Many choices of functions?

No! Need discrete-log structure.

Again improve cost constants,

focus on useful b, etc.

Speed records: Curve25519.

See cr.yp.to/ecdh.html and

papers.html#curve25519.

Curve y2 = x3 + 486662x2 + x

mod 2255 ` 19; eliminate y;

< 1000000 CPU cycles.

New records from Jacobians

of genus-2 hyperelliptic curves?

Come to ECC 2006 in Toronto.

www.fields.utoronto.ca

/programs/scientific

/06-07/crypto/



Conjecture: Given 4ff mod q,

4fi mod q, hard to distinguish

4fffi mod q from

uniform random square mod q.

As before, can distinguish

by computing discrete logs,

but that seems hard.

As before, reduce costs

by switching to elliptic curves.

Many choices of functions?

No! Need discrete-log structure.

Again improve cost constants,

focus on useful b, etc.

Speed records: Curve25519.

See cr.yp.to/ecdh.html and

papers.html#curve25519.

Curve y2 = x3 + 486662x2 + x

mod 2255 ` 19; eliminate y;

< 1000000 CPU cycles.

New records from Jacobians

of genus-2 hyperelliptic curves?

Come to ECC 2006 in Toronto.

www.fields.utoronto.ca

/programs/scientific

/06-07/crypto/

Many other public-key structures.

e.g. “Public-key signing”

reduces costs of securely

sending a public message

to many recipients.

Sender signs message

independently of receiver,

without any shared secrets.

Each receiver verifies signature;

very fast computation.



Again improve cost constants,

focus on useful b, etc.

Speed records: Curve25519.

See cr.yp.to/ecdh.html and

papers.html#curve25519.

Curve y2 = x3 + 486662x2 + x

mod 2255 ` 19; eliminate y;

< 1000000 CPU cycles.

New records from Jacobians

of genus-2 hyperelliptic curves?

Come to ECC 2006 in Toronto.

www.fields.utoronto.ca

/programs/scientific

/06-07/crypto/

Many other public-key structures.

e.g. “Public-key signing”

reduces costs of securely

sending a public message

to many recipients.

Sender signs message

independently of receiver,

without any shared secrets.

Each receiver verifies signature;

very fast computation.



Again improve cost constants,

focus on useful b, etc.

Speed records: Curve25519.

See cr.yp.to/ecdh.html and

papers.html#curve25519.

Curve y2 = x3 + 486662x2 + x

mod 2255 ` 19; eliminate y;

< 1000000 CPU cycles.

New records from Jacobians

of genus-2 hyperelliptic curves?

Come to ECC 2006 in Toronto.

www.fields.utoronto.ca

/programs/scientific

/06-07/crypto/

Many other public-key structures.

e.g. “Public-key signing”

reduces costs of securely

sending a public message

to many recipients.

Sender signs message

independently of receiver,

without any shared secrets.

Each receiver verifies signature;

very fast computation.

e.g. “Public-key encryption”

generates new shared secret

for each message.

Always increases costs,

as far as I know.

The literature on

“public-key encryption”

is a historical accident.

Best to reuse one secret

for many messages.

Minimize public-key operations.



Many other public-key structures.

e.g. “Public-key signing”

reduces costs of securely

sending a public message

to many recipients.

Sender signs message

independently of receiver,

without any shared secrets.

Each receiver verifies signature;

very fast computation.

e.g. “Public-key encryption”

generates new shared secret

for each message.

Always increases costs,

as far as I know.

The literature on

“public-key encryption”

is a historical accident.

Best to reuse one secret

for many messages.

Minimize public-key operations.



Many other public-key structures.

e.g. “Public-key signing”

reduces costs of securely

sending a public message

to many recipients.

Sender signs message

independently of receiver,

without any shared secrets.

Each receiver verifies signature;

very fast computation.

e.g. “Public-key encryption”

generates new shared secret

for each message.

Always increases costs,

as far as I know.

The literature on

“public-key encryption”

is a historical accident.

Best to reuse one secret

for many messages.

Minimize public-key operations.

If large quantum computers

are built then they will

compute discrete logs quickly.

Huge effects on cryptography!

Some public-key systems seem to

survive quantum computers.

See PQCrypto 2006 abstracts:

postquantum.cr.yp.to.

Exactly how fast are RSA,

DSA, ECDH, post-quantum

cryptosystems, etc.?

www.ecrypt.eu.org/ebats is

benchmarking public-key systems.



e.g. “Public-key encryption”

generates new shared secret

for each message.

Always increases costs,

as far as I know.

The literature on

“public-key encryption”

is a historical accident.

Best to reuse one secret

for many messages.

Minimize public-key operations.

If large quantum computers

are built then they will

compute discrete logs quickly.

Huge effects on cryptography!

Some public-key systems seem to

survive quantum computers.

See PQCrypto 2006 abstracts:

postquantum.cr.yp.to.

Exactly how fast are RSA,

DSA, ECDH, post-quantum

cryptosystems, etc.?

www.ecrypt.eu.org/ebats is

benchmarking public-key systems.


