The number-field sieve
Finding small factors of integers
Speed of the number-field sieve

Proving primality

in polynomial time
Proving primality more quickly

D. J. Bernstein
University of lllinois at Chicago

Compositeness proofs

If n Is prime and b € Z
then 6™ — b € nZ.

Have easy difference-of-squares
factorization of 6™ — b,
depending on ords(n — 1).

e.g.. If n € b+ 8Z is prime
and b € Z then b € nZ or
p(n=1)/2 4 1 € nZ or
pin—1)/4 1 1 e nZor
pn—1)/4 _ 1 enz

An integer n > 2 is "b-sprp”
iff it divides one of the

difference-of-squares factors
of b™ — b.

Every prime is b-sprp.

For each composite n,
most b's have n not b-sprp.

Very few composites are 2-sprp.
No known composites

are "BPSW-$620-prp.”

But we think that there are
infinitely many exceptions.

Given n > 2: Try random b.
If n is not b-sprp, have proven n
composite. Otherwise keep trying.

Given composite n,

this algorithm finds
compositeness certificate b.
Proven random cost
(Ign)2T°1) to find certificate.
Proven deterministic cost

(Ig n)2T°1) to verify certificate.

Can we do better? Open: Is there
a compositeness certificate
findable in cost (Ign)°W),
verifiable in cost (Ign)ito(1)?

Given prime n,

this algorithm loops forever.
After many b's we are
confident that n is prime . ..
but we don't have a proof.

Do we need a proof?

For competent cryptographers:
No.

For paranoid bankers: Yes.

For pure computational
number theorists: Who cares?
Proving primality

Is an interesting challenge.

Combinatorial primality proofs

Recall primality algorithm
discussed yesterday.

Output of algorithm:
primality proof for n,
or compositeness proof for n.

Proven deterministic cost

< (lg n)10.5+0(1)_

Conjectured deterministic cost
< (|g ,n)6+o(1)_

Can we do better?

Complicated variant of algorithm
and complicated proof
produce better theorem:

Proven deterministic cost
S (lg ,n)6—|—0(1).

Open: Is there a
orimality-proving algorithm with

broven deterministic cost
< (|g n)5—|—0(1)?

Another variant of algorithm
achieves better exponent
at the expense of determinism.

Proven random cost
< (lg ,n)4+o(1)_

Open: Is there a primality-proving
algorithm with proven random cost
< (Ig ,n)3—|—0(1)?

Open: Is there a primality-proving
algorithm reasonably conjectured
to have cost < (Ign)3to(1)?

Precomputed primality proofs

e.g.: An integer n € [2,2%]
is prime iff it is a 2-sprp, 3-sprp,
5-sprp, 7-sprp, 11-sprp,

13-sprp, and 17-sprp.

Veritying this was extremely slow;
but now that we know It,

can quickly check primality

of any n € [2,2%].

Conjectured cost < (Ign)3Toll)
for primality proof
after massive precomputation.

e.g.: An integer n € [220,2100]

is prime iff

o r(»1)/2 =141 (mod n)
for all primes r < 367;

o r(»1)/2="_1 (mod n)

for some odd prime r < 367

if n mod 8 = 1;
¢ 2(n=1)/2 = _1if n mod 8 = 5:
e 1 is not a perfect power; and

e 1 has no prime divisors < 220,

Conjectured cost < (Ig n)3+0(1)
for these “pseudosquares” primality
oroofs after somewhat less massive

orecomputation.

Open: Is there a primality-proving
algorithm reasonably conjectured
to have cost < (Ign)2*+o(l)

after precomputation?

Open: Is there a primality-proving
algorithm reasonably conjectured
to have cost < (Ign)3*to(l)

after n1/27°(1) precomputation?

Open: Is there a primality-proving
algorithm reasonably conjectured
to handle (Ign)°W) inputs ~ n

in cost < (Ign)3t°) per input?

Primality proofs using curves

“Fast elliptic-curve
primality proving” (FastECPP):

Conjectured cost < (Ign)4+o(l)
to find certificate
proving primality of n.

Proven deterministic cost
< (Ilgn)3t°) to verify certificate.

Variant using

genus-2 hyperelliptic curves:

Proven random cost (Ign)91
to find certificate

proving primality of n.

Proven deterministic cost
< (Ilgn)3t°) to verify certificate.

Variant using elliptic curves with
large power-of-2 factors:

Proven existence of certificate
proving primality of n.

Proven deterministic cost
< (lg n)2+0(1) to verify certificate.

Open: Is there

a primality certificate
verifiable in cost (Ign)tto(l)?

Veritying curve proofs

Main theorem in a nutshell:

If an elliptic curve

E(Z/n) has a point

of prime order ¢ > ([n1/4] 4+ 1)?
then n must be prime.

Proof in a nutshell:

If pis a prime divisor of n
then the same point mod »
has order g in E(Fp),

but #E(Fp) < (/p+1)%
so nl/? < D.

More concretely:

Given odd integer n > 2,
a € {6,10, 14,18, ...}, integer b,
gcd{n, b3 + ab? + b} =1,
gcd{n, a’ — 4} =1,

prime g > ([n1/4] + 1)
Define 1 = b, 21 = 1,

To; = (7 — 22)?,

20, = 4:c7;z7;(:c72; +ax;z; + zf)
L2i+1 — 4(337;33z'+1 — Zz'27;+1)2,

_ y
22i+1 = 46(T52541 — 2iTi41)".

Claim: If z4 € nZ and
gcd{n, a:q} = 1 then n Is prime.

For each prime p dividing n:

(a? — 4)(6 + ab® +b) # 0 in Fy,
so (b3 + ab’ 4+ b)y? =23 +az’ + 2
Is an elliptic curve over Fy.

(b,1) is a point on curve.

Inductive claims:

if z; #0 in Fy, then

1(b,1) = (z;/z;,...) on curve;
if z; #0, z; =0 in Fy then
2(b, 1) = oo on curve.

zg #0, 2z =01in Fyp
so g(b,1) = oo on curve.
So n is prime.

Oops: Nobody has written down
full proofs of these claims.
Maybe the claims aren’t true In
certain annoying special cases.

Traditional solution:

Recognize and exclude

all of the annoying cases

by checking conditions

such as gcd{n, z;} =1

for each 1 used in computation.

Messy; slows down computation:;
but adequate for current proofs.

Finding curve proofs

To prove primality of n: Choose
random E. Use Schoof’s algorithm

to compute #E(Z/n).

Compute ¢ = #E(Z/n)/2. If q
doesn’'t seem prime, try another E.

If g > norq<([nY/4] +1)%
n 1s small; easy base case.

Otherwise:

Recursively prove primality of g.
Choose random point P on E.
If 2P = oo, try another P.

Now 2P has prime order g.

Schoof's algorithm costs
(|g n)5+o(1)_

Conjecturally find prime g after
(Ig n)1T°() curves on average.
Reduce number of curves by

allowing larger ratios #E(Z/n)/q.

Recursion involves (Ign)lTo(1)
evels. Reduce number of levels

oy allowing and demanding larger
ratios #E(Z/n)/q.

Overall cost (Ign)’*oll).

Faster way to generate curves
with known number of points:
generate curves with
small-discriminant

“complex multiplication” (CM).
Reduces conjectured cost
to (Ign)*toll),

CM has applications

beyond primality proofs:

e.g., can generate CM curves
with low embedding degree
for pairing-based cryptography.

Complex multiplication

Consider positive squarefree
integers D € 3+ 4Z.
(Can allow some other D's too.)

If prime n equals (u® + Dv?)/4
then “CM with discriminant —D"
produces curves over Z/n with

n + 1 = u points.

Assuming D < (Ign)2toll):
Cost (Ign)2->teoll).
Fancier algorithms: (Ign)2to(l).

First step: Find all vectors

(a,b,c) € Z3 with gcd{a, b, c} =1,
—D =b°—4ac, |b| <a<c
and b < 0= |b| <a<c.

How?

Try each integer b between

— |+/D/3| and |4/D/3].

Find all small factors of 62 + D.
Find all factors a < |4/D/3].
For each (a, b),

find ¢ and check conditions.

Second step: For each (a, b, c)
compute 7(—b/2a++/—D/2a) € C

to high precision.
Some wacky standard notations:
q(z) = exp(2miz).

nt — q(l LY (—1)kgk(Bk-1)/2
k>1

4 Z (_1)/cq/c(3/c+1)/2)24_
k>1

f4(z) = n**(2/2)/n*(2).
j = (ff*+16)°/ fi*

How much precision is needed?

Answer: < (Ign)1to() pits;
< (Ign)?5*t°) terms in sum;
< (Ign)1*t°) inputs (a, b, ¢);
total cost < (Ign)2>+o(l),

In practice: No need to
carefully analyze precision.
Start with low precision:
if precision is too small,
retry with double precision.

Later steps of computation will

notice If precision is too small.

Third step: Compute product
H_p € C[:E]
of £ — j(—b6/2a + v/—D/2a)

over all (a, b, c).

Amazing fact: H_p € Z|z].
The 7 values are algebraic integers
generating a “class field.”

< (Ilgn)tt°) factors.
Cost < (Ign)2toll),

Fourth step: Find a root
rof H_pinZ/n.

Easy since n Is prime.

Amazing fact: the curve

y?> = 23 + (3z + 2)r /(1728 —)
nas n + 1 4+ w points

for some (u, v) with

4n = u? + Dv?.

FastECPP using CM

To prove primality of n:
Choose y € (Ign)itoll),

For each odd prime p <y,
compute square root of p

in quadratic extension of Z/n.
Also square root of —1.

Each square root costs

(|g n)2+o(1)_

Total cost (Ign)3to(l).

For each positive squarefree
y-smooth D € 3+ 4Z
below (Ign)2+o(l),
compute square root of —D
in quadratic extension of Z/n.

Each square root costs
(Ign)1T°W): simply multiply
square roots of primes.

Total cost (Ign)3toll).

For each D having v—D € Z/n,
find u, v with 4n = u? + Dv?,
if possible.

This can be done by

a half-gcd computation.
Each D costs (Ign)ito(l).

Total cost (Ign)3to(l).

Conjecturally there are (Ign)i+o(l)
choices of (D, u, v).

Look form+1+u

having form 2g where g is prime.
More generally:

remove small factors

fromn+ 1+ u;
then look for primes.

Each compositeness proof costs

(|g n)2+o(1)_

Total cost (Ign)3to(l).

Conjecturally have
several choices of (D, u, v, q),
when o(1)'s are large enough.

Use CM to construct curve with
order divisible by g.
Cost < (Ig n)2'5+0(1); negligible.

Problems can occur.

Might have n +1+ u

when n + 1 — u was desired,

or vice versa. Curve might not be
isomorphic to curve of desired form
y2 :a:3+aa:2+a:.

Can work around problems,

or simply try next curve.

Recursively prove g prime.
Deduce that n Is prime.

< (Ign)t*°) levels of recursion.
Total cost < (Ign)*+oll).

Verification cost < (Ign)3to().

