
The number-field sieve

Finding small factors of integers

Speed of the number-field sieve

Proving primality

in polynomial time

Proving primality more quickly

D. J. Bernstein

University of Illinois at Chicago



Compositeness proofs

If n is prime and b 2 Z

then b

n

� b 2 nZ.

Have easy difference-of-squares

factorization of bn � b,

depending on ord2(n� 1).

e.g.: If n 2 5 + 8Z is prime

and b 2 Z then b 2 nZ or

b

(n�1)=2 + 1 2 nZ or

b

(n�1)=4 + 1 2 nZ or

b

(n�1)=4
� 1 2 nZ.



An integer n � 2 is “b-sprp”

iff it divides one of the

difference-of-squares factors

of bn � b.

Every prime is b-sprp.

For each composite n,

most b’s have n not b-sprp.

Very few composites are 2-sprp.

No known composites

are “BPSW-$620-prp.”

But we think that there are

infinitely many exceptions.



Given n � 2: Try random b.

If n is not b-sprp, have proven n

composite. Otherwise keep trying.

Given composite n,

this algorithm finds

compositeness certificate b.

Proven random cost

(lgn)2+o(1) to find certificate.

Proven deterministic cost

(lgn)2+o(1) to verify certificate.

Can we do better? Open: Is there

a compositeness certificate

findable in cost (lgn)O(1),

verifiable in cost (lgn)1+o(1)?



Given prime n,

this algorithm loops forever.

After many b’s we are

confident that n is prime : : :

but we don’t have a proof.

Do we need a proof?

For competent cryptographers:

No.

For paranoid bankers: Yes.

For pure computational

number theorists: Who cares?

Proving primality

is an interesting challenge.



Combinatorial primality proofs

Recall primality algorithm

discussed yesterday.

Output of algorithm:

primality proof for n,

or compositeness proof for n.

Proven deterministic cost

� (lgn)10:5+o(1).

Conjectured deterministic cost

� (lgn)6+o(1).

Can we do better?



Complicated variant of algorithm

and complicated proof

produce better theorem:

Proven deterministic cost

� (lgn)6+o(1).

Open: Is there a

primality-proving algorithm with

proven deterministic cost

� (lgn)5+o(1)?



Another variant of algorithm

achieves better exponent

at the expense of determinism.

Proven random cost

� (lgn)4+o(1).

Open: Is there a primality-proving

algorithm with proven random cost

� (lgn)3+o(1)?

Open: Is there a primality-proving

algorithm reasonably conjectured

to have cost � (lgn)3+o(1)?



Precomputed primality proofs

e.g.: An integer n 2 [2; 248]

is prime iff it is a 2-sprp, 3-sprp,

5-sprp, 7-sprp, 11-sprp,

13-sprp, and 17-sprp.

Verifying this was extremely slow;

but now that we know it,

can quickly check primality

of any n 2 [2; 248].

Conjectured cost � (lgn)3+o(1)

for primality proof

after massive precomputation.



e.g.: An integer n 2 [220
; 2100]

is prime iff

� r

(n�1)=2
� �1 (mod n)

for all primes r � 367;

� r

(n�1)=2
� �1 (mod n)

for some odd prime r � 367

if n mod 8 = 1;

� 2(n�1)=2
� �1 if n mod 8 = 5;

� n is not a perfect power; and

� n has no prime divisors < 220.

Conjectured cost � (lgn)3+o(1)

for these “pseudosquares” primality

proofs after somewhat less massive

precomputation.



Open: Is there a primality-proving

algorithm reasonably conjectured

to have cost � (lgn)2+o(1)

after precomputation?

Open: Is there a primality-proving

algorithm reasonably conjectured

to have cost � (lgn)3+o(1)

after n1=2+o(1) precomputation?

Open: Is there a primality-proving

algorithm reasonably conjectured

to handle (lgn)O(1) inputs � n

in cost � (lgn)3+o(1) per input?



Primality proofs using curves

“Fast elliptic-curve

primality proving” (FastECPP):

Conjectured cost � (lgn)4+o(1)

to find certificate

proving primality of n.

Proven deterministic cost

� (lgn)3+o(1) to verify certificate.



Variant using

genus-2 hyperelliptic curves:

Proven random cost (lgn)O(1)

to find certificate

proving primality of n.

Proven deterministic cost

� (lgn)3+o(1) to verify certificate.



Variant using elliptic curves with

large power-of-2 factors:

Proven existence of certificate

proving primality of n.

Proven deterministic cost

� (lgn)2+o(1) to verify certificate.

Open: Is there

a primality certificate

verifiable in cost (lgn)1+o(1)?



Verifying curve proofs

Main theorem in a nutshell:

If an elliptic curve

E(Z=n) has a point

of prime order q > (dn1=4
e+ 1)2

then n must be prime.

Proof in a nutshell:

If p is a prime divisor of n

then the same point mod p

has order q in E(F
p

),

but #E(F
p

) � (
p

p + 1)2,

so n

1=2
< p.



More concretely:

Given odd integer n � 2,

a 2 f6; 10; 14; 18; : : :g, integer b,

gcd
�

n; b

3 + ab

2 + b

	

= 1,

gcd
�

n; a

2
� 4

	

= 1,

prime q > (dn1=4
e+ 1)2:

Define x1 = b, z1 = 1,

x2i = (x2
i

� z

2
i

)2,

z2i = 4x
i

z

i

(x2
i

+ ax

i

z

i

+ z

2
i

),

x2i+1 = 4(x
i

x

i+1 � z

i

z

i+1)
2,

z2i+1 = 4b(x
i

z

i+1 � z

i

x

i+1)
2.

Claim: If z
q

2 nZ and

gcd
�

n; x

q

	

= 1 then n is prime.



For each prime p dividing n:

(a2
� 4)(b3 + ab

2 + b) 6= 0 in F
p

,

so (b3 + ab

2 + b)y2 = x

3 + ax

2 + x

is an elliptic curve over F
p

.

(b; 1) is a point on curve.

Inductive claims:

if z
i

6= 0 in F
p

then

i(b; 1) = (x
i

=z

i

; : : :) on curve;

if x
i

6= 0, z
i

= 0 in F
p

then

i(b; 1) = 1 on curve.

x

q

6= 0, z
q

= 0 in F
p

so q(b; 1) = 1 on curve.

So n is prime.



Oops: Nobody has written down

full proofs of these claims.

Maybe the claims aren’t true in

certain annoying special cases.

Traditional solution:

Recognize and exclude

all of the annoying cases

by checking conditions

such as gcdfn; z
i

g = 1

for each i used in computation.

Messy; slows down computation;

but adequate for current proofs.



Finding curve proofs

To prove primality of n: Choose

random E. Use Schoof’s algorithm

to compute #E(Z=n).

Compute q = #E(Z=n)=2. If q

doesn’t seem prime, try another E.

If q � n or q � (dn1=4
e+ 1)2:

n is small; easy base case.

Otherwise:

Recursively prove primality of q.

Choose random point P on E.

If 2P = 1, try another P .

Now 2P has prime order q.



Schoof’s algorithm costs

(lgn)5+o(1).

Conjecturally find prime q after

(lgn)1+o(1) curves on average.

Reduce number of curves by

allowing larger ratios #E(Z=n)=q.

Recursion involves (lgn)1+o(1)

levels. Reduce number of levels

by allowing and demanding larger

ratios #E(Z=n)=q.

Overall cost (lgn)7+o(1).



Faster way to generate curves

with known number of points:

generate curves with

small-discriminant

“complex multiplication” (CM).

Reduces conjectured cost

to (lgn)4+o(1).

CM has applications

beyond primality proofs:

e.g., can generate CM curves

with low embedding degree

for pairing-based cryptography.



Complex multiplication

Consider positive squarefree

integers D 2 3 + 4Z.

(Can allow some other D’s too.)

If prime n equals (u2 + Dv

2)=4

then “CM with discriminant �D”

produces curves over Z=n with

n + 1� u points.

Assuming D � (lgn)2+o(1):

Cost (lgn)2:5+o(1).

Fancier algorithms: (lgn)2+o(1).



First step: Find all vectors

(a; b; 
) 2 Z3 with gcdfa; b; 
g = 1,

�D = b

2
� 4a
, jbj � a � 
,

and b � 0 ) jbj < a < 
.

How?

Try each integer b between

�b

p

D=3
 and b
p

D=3
.

Find all small factors of b2 + D.

Find all factors a � b

p

D=3
.

For each (a; b),

find 
 and check conditions.



Second step: For each (a; b; 
)

compute j(�b=2a+
p

�D=2a) 2 C

to high precision.

Some wacky standard notations:

q(z) = exp(2�iz).

�

24 = q

�

1 +
P

k�1
(�1)kqk(3k�1)=2

+
P

k�1
(�1)kqk(3k+1)=2

�24
.

f

24
1 (z) = �

24(z=2)=�24(z).

j = (f24
1 + 16)3=f24

1 .



How much precision is needed?

Answer: � (lgn)1+o(1) bits;

� (lgn)0:5+o(1) terms in sum;

� (lgn)1+o(1) inputs (a; b; 
);

total cost � (lgn)2:5+o(1).

In practice: No need to

carefully analyze precision.

Start with low precision;

if precision is too small,

retry with double precision.

Later steps of computation will

notice if precision is too small.



Third step: Compute product

H

�D

2 C[x]

of x� j(�b=2a +
p

�D=2a)

over all (a; b; 
).

Amazing fact: H

�D

2 Z[x].

The j values are algebraic integers

generating a “class field.”

� (lgn)1+o(1) factors.

Cost � (lgn)2+o(1).



Fourth step: Find a root

r of H
�D

in Z=n.

Easy since n is prime.

Amazing fact: the curve

y

2 = x

3 + (3x + 2)r=(1728� r)

has n + 1 + u points

for some (u; v) with

4n = u

2 + Dv

2.



FastECPP using CM

To prove primality of n:

Choose y 2 (lgn)1+o(1).

For each odd prime p � y,

compute square root of p

in quadratic extension of Z=n.

Also square root of �1.

Each square root costs

(lgn)2+o(1).

Total cost (lgn)3+o(1).



For each positive squarefree

y-smooth D 2 3 + 4Z

below (lgn)2+o(1),

compute square root of �D

in quadratic extension of Z=n.

Each square root costs

(lgn)1+o(1): simply multiply

square roots of primes.

Total cost (lgn)3+o(1).



For each D having
p

�D 2 Z=n,

find u; v with 4n = u

2 + Dv

2,

if possible.

This can be done by

a half-gcd computation.

Each D costs (lgn)1+o(1).

Total cost (lgn)3+o(1).



Conjecturally there are (lgn)1+o(1)

choices of (D;u; v).

Look for n + 1� u

having form 2q where q is prime.

More generally:

remove small factors

from n + 1� u;

then look for primes.

Each compositeness proof costs

(lgn)2+o(1).

Total cost (lgn)3+o(1).



Conjecturally have

several choices of (D;u; v; q),

when o(1)’s are large enough.

Use CM to construct curve with

order divisible by q.

Cost � (lgn)2:5+o(1); negligible.

Problems can occur.

Might have n + 1 + u

when n + 1� u was desired,

or vice versa. Curve might not be

isomorphic to curve of desired form

y

2 = x

3 + ax

2 + x.

Can work around problems,

or simply try next curve.



Recursively prove q prime.

Deduce that n is prime.

� (lgn)1+o(1) levels of recursion.

Total cost � (lgn)4+o(1).

Verification cost � (lgn)3+o(1).


