The number-field sieve

- Finding small factors of integers
- Speed of the number-field sieve
- Proving primality in polynomial time
- Proving primality more quickly
- D. J. Bernstein University of Illinois at Chicago

Compositeness proofs

If n is prime and $b \in \mathbb{Z}$ then $b^n - b \in n\mathbb{Z}$.

Have easy difference-of-squares factorization of $b^n - b$, depending on $\operatorname{ord}_2(n-1)$.

e.g.: If $n \in 5 + 8\mathbb{Z}$ is prime and $b \in \mathbb{Z}$ then $b \in n\mathbb{Z}$ or $b^{(n-1)/2} + 1 \in n\mathbb{Z}$ or $b^{(n-1)/4} + 1 \in n\mathbb{Z}$ or $b^{(n-1)/4} - 1 \in n\mathbb{Z}$. An integer $n \ge 2$ is "b-sprp" iff it divides one of the difference-of-squares factors of $b^n - b$.

Every prime is *b*-sprp.

For each composite *n*, most *b*'s have *n* not *b*-sprp.

Very few composites are 2-sprp. No *known* composites are "BPSW-\$620-prp." But we think that there are infinitely many exceptions.

Given n > 2: Try random b. If n is not b-sprp, have proven n composite. Otherwise keep trying. Given composite n, this algorithm finds compositeness certificate b. Proven random cost $(\lg n)^{2+o(1)}$ to find certificate. Proven deterministic cost $(\lg n)^{2+o(1)}$ to verify certificate. Can we do better? Open: Is there a compositeness certificate findable in cost $(\lg n)^{O(1)}$, verifiable in cost $(\lg n)^{1+o(1)}$?

Given prime *n*, this algorithm loops forever. After many *b*'s we are confident that *n* is prime ... but we don't have a proof.

Do we need a proof?

For competent cryptographers: No.

For paranoid bankers: Yes.

For pure computational number theorists: Who cares? Proving primality is an interesting challenge.

Combinatorial primality proofs

Recall primality algorithm discussed yesterday.

Output of algorithm: primality proof for *n*, or compositeness proof for *n*.

Proven deterministic cost $\leq (\lg n)^{10.5+o(1)}$. Conjectured deterministic cost $\leq (\lg n)^{6+o(1)}$.

Can we do better?

Complicated variant of algorithm and complicated proof produce better theorem: Proven deterministic cost $\leq (\lg n)^{6+o(1)}$.

Open: Is there a primality-proving algorithm with proven deterministic cost $\leq (\lg n)^{5+o(1)}$?

Another variant of algorithm achieves better exponent at the expense of determinism. Proven random cost $\leq (\lg n)^{4+o(1)}$.

Open: Is there a primality-proving algorithm with proven random cost $\leq (\lg n)^{3+o(1)}$?

Open: Is there a primality-proving algorithm reasonably conjectured to have cost $\leq (\lg n)^{3+o(1)}$?

Precomputed primality proofs

e.g.: An integer $n \in [2, 2^{48}]$ is prime iff it is a 2-sprp, 3-sprp, 5-sprp, 7-sprp, 11-sprp, 13-sprp, and 17-sprp.

Verifying this was extremely slow; but now that we know it, can quickly check primality of any $n \in [2, 2^{48}]$.

Conjectured cost $\leq (\lg n)^{3+o(1)}$ for primality proof after massive precomputation. e.g.: An integer $n \in [2^{20}, 2^{100}]$ is prime iff

r^{(n-1)/2} ≡ ±1 (mod n) for all primes r ≤ 367;
r^{(n-1)/2} ≡ −1 (mod n) for some odd prime r ≤ 367

if
$$n \mod 8 = 1;$$

- $2^{(n-1)/2} \equiv -1$ if $n \mod 8 = 5$;
- *n* is not a perfect power; and
- n has no prime divisors $< 2^{20}$.

Conjectured cost $\leq (\lg n)^{3+o(1)}$ for these "pseudosquares" primality proofs after somewhat less massive precomputation. Open: Is there a primality-proving algorithm reasonably conjectured to have cost $\leq (\lg n)^{2+o(1)}$ after precomputation?

Open: Is there a primality-proving algorithm reasonably conjectured to have cost $\leq (\lg n)^{3+o(1)}$ after $n^{1/2+o(1)}$ precomputation?

Open: Is there a primality-proving algorithm reasonably conjectured to handle $(\lg n)^{O(1)}$ inputs $\approx n$ in cost $\leq (\lg n)^{3+o(1)}$ per input?

Primality proofs using curves

"Fast elliptic-curve primality proving" (FastECPP): Conjectured cost $\leq (\lg n)^{4+o(1)}$ to find certificate proving primality of n.

Proven deterministic cost $\leq (\lg n)^{3+o(1)}$ to verify certificate.

Variant using genus-2 hyperelliptic curves:

Proven random cost $(\lg n)^{O(1)}$ to find certificate proving primality of n.

Proven deterministic cost $\leq (\lg n)^{3+o(1)}$ to verify certificate.

Variant using elliptic curves with large power-of-2 factors:

Proven existence of certificate proving primality of n.

Proven deterministic cost $\leq (\lg n)^{2+o(1)}$ to verify certificate.

Open: Is there

a primality certificate

verifiable in cost $(\lg n)^{1+o(1)}$?

Verifying curve proofs

Main theorem in a nutshell: If an elliptic curve $E(\mathbf{Z}/n)$ has a point of prime order $q > (\lceil n^{1/4} \rceil + 1)^2$ then n must be prime.

Proof in a nutshell: If p is a prime divisor of nthen the same point mod phas order q in $E(\mathbf{F}_p)$, but $\#E(\mathbf{F}_p) \leq (\sqrt{p}+1)^2$, so $n^{1/2} < p$. More concretely:

Given odd integer $n \ge 2$, $a \in \{6, 10, 14, 18, \ldots\}$, integer b, $gcd\{n, b^3 + ab^2 + b\} = 1$, $gcd\{n, a^2 - 4\} = 1$, prime $q > (\lceil n^{1/4} \rceil + 1)^2$:

Define $x_1 = b$, $z_1 = 1$, $x_{2i} = (x_i^2 - z_i^2)^2$, $z_{2i} = 4x_i z_i (x_i^2 + ax_i z_i + z_i^2)$, $x_{2i+1} = 4(x_i x_{i+1} - z_i z_{i+1})^2$, $z_{2i+1} = 4b(x_i z_{i+1} - z_i x_{i+1})^2$.

Claim: If $z_q \in n {\sf Z}$ and $\gcd\{n, x_q\} = 1$ then n is prime.

For each prime p dividing n:

$$(a^2-4)(b^3+ab^2+b)
eq 0$$
 in ${f F}_p$,
so $(b^3+ab^2+b)y^2=x^3+ax^2+x$
is an elliptic curve over ${f F}_p$.
 $(b,1)$ is a point on curve.

Inductive claims: if $z_i \neq 0$ in \mathbf{F}_p then $i(b, 1) = (x_i/z_i, ...)$ on curve; if $x_i \neq 0$, $z_i = 0$ in \mathbf{F}_p then $i(b, 1) = \infty$ on curve.

 $x_q
eq 0$, $z_q = 0$ in \mathbf{F}_p so $q(b, 1) = \infty$ on curve. So n is prime. Oops: Nobody has written down full proofs of these claims.

Maybe the claims aren't true in certain annoying special cases.

Traditional solution: Recognize and exclude all of the annoying cases by checking conditions such as $gcd\{n, z_i\} = 1$ for each *i* used in computation.

Messy; slows down computation; but adequate for current proofs.

Finding curve proofs

To prove primality of n: Choose random E. Use Schoof's algorithm to compute $\#E(\mathbf{Z}/n)$.

Compute $q = \#E(\mathbf{Z}/n)/2$. If q doesn't seem prime, try another E.

- If $q \geq n$ or $q \leq (\lceil n^{1/4} \rceil + 1)^2$:
- n is small; easy base case.

Otherwise:

Recursively prove primality of q. Choose random point P on E. If $2P = \infty$, try another P. Now 2P has prime order q. Schoof's algorithm costs $(\lg n)^{5+o(1)}$.

Conjecturally find prime q after $(\lg n)^{1+o(1)}$ curves on average. Reduce number of curves by allowing larger ratios $\#E(\mathbf{Z}/n)/q$. Recursion involves $(\lg n)^{1+o(1)}$ levels. Reduce number of levels by allowing and demanding larger ratios $\#E(\mathbf{Z}/n)/q$.

Overall cost $(\lg n)^{7+o(1)}$.

Faster way to generate curves with known number of points: generate curves with small-discriminant

"complex multiplication" (CM). Reduces conjectured cost to $(\lg n)^{4+o(1)}$.

CM has applications beyond primality proofs: e.g., can generate CM curves with low embedding degree for pairing-based cryptography.

Complex multiplication

Consider positive squarefree integers $D \in 3 + 4\mathbb{Z}$. (Can allow some other *D*'s too.)

If prime n equals $(u^2 + Dv^2)/4$ then "CM with discriminant -D" produces curves over \mathbf{Z}/n with $n+1 \pm u$ points.

Assuming $D \leq (\lg n)^{2+o(1)}$: Cost $(\lg n)^{2.5+o(1)}$. Fancier algorithms: $(\lg n)^{2+o(1)}$. First step: Find all vectors $(a, b, c) \in \mathbb{Z}^3$ with $gcd\{a, b, c\} = 1$, $-D = b^2 - 4ac$, $|b| \le a \le c$, and $b \le 0 \Rightarrow |b| < a < c$.

How?

Try each integer *b* between $-\lfloor \sqrt{D/3} \rfloor$ and $\lfloor \sqrt{D/3} \rfloor$. Find all small factors of $b^2 + D$. Find all factors $a \leq \lfloor \sqrt{D/3} \rfloor$. For each (a, b), find *c* and check conditions. Second step: For each (a, b, c)compute $j(-b/2a + \sqrt{-D}/2a) \in \mathbf{C}$ to high precision.

Some wacky standard notations:

 $egin{aligned} q(z) &= \exp(2\pi i z). \ \eta^{24} &= q \Big(1 + \sum\limits_{k\geq 1} (-1)^k q^{k(3k-1)/2} \ &+ \sum\limits_{k\geq 1} (-1)^k q^{k(3k+1)/2} \Big)^{24}. \end{aligned}$

 $f_1^{24}(z) = \eta^{24}(z/2)/\eta^{24}(z).$

 $j = (f_1^{24} + 16)^3 / f_1^{24}.$

How much precision is needed?

Answer: $\leq (\lg n)^{1+o(1)}$ bits; $\leq (\lg n)^{0.5+o(1)}$ terms in sum; $\leq (\lg n)^{1+o(1)}$ inputs (a, b, c); total cost $\leq (\lg n)^{2.5+o(1)}$.

In practice: No need to carefully analyze precision. Start with low precision; if precision is too small, retry with double precision.

Later steps of computation will notice if precision is too small.

Third step: Compute product $H_{-D} \in \mathbf{C}[x]$ of $x - j(-b/2a + \sqrt{-D}/2a)$ over all (a, b, c).

Amazing fact: $H_{-D} \in \mathbf{Z}[x]$. The *j* values are algebraic integers generating a "class field."

 $\leq (\lg n)^{1+o(1)}$ factors. Cost $\leq (\lg n)^{2+o(1)}$. Fourth step: Find a root r of H_{-D} in \mathbf{Z}/n .

Easy since n is prime.

Amazing fact: the curve $y^2 = x^3 + (3x + 2)r/(1728 - r)$ has n + 1 + u points for some (u, v) with $4n = u^2 + Dv^2$.

FastECPP using CM

To prove primality of n: Choose $y \in (\lg n)^{1+o(1)}$. For each odd prime $p \leq y$, compute square root of pin quadratic extension of \mathbf{Z}/n . Also square root of -1.

Each square root costs $(\lg n)^{2+o(1)}$. Total cost $(\lg n)^{3+o(1)}$. For each positive squarefree y-smooth $D \in 3 + 4\mathbb{Z}$ below $(\lg n)^{2+o(1)}$, compute square root of -Din quadratic extension of \mathbb{Z}/n .

Each square root costs $(\lg n)^{1+o(1)}$: simply multiply square roots of primes.

Total cost $(\lg n)^{3+o(1)}$.

For each D having $\sqrt{-D} \in \mathbf{Z}/n$, find u, v with $4n = u^2 + Dv^2$, if possible.

This can be done by a half-gcd computation. Each D costs $(\lg n)^{1+o(1)}$. Total cost $(\lg n)^{3+o(1)}$. Conjecturally there are $(\lg n)^{1+o(1)}$ choices of (D, u, v).

Look for $n + 1 \pm u$ having form 2q where q is prime. More generally: remove small factors from $n + 1 \pm u$; then look for primes.

Each compositeness proof costs $(\lg n)^{2+o(1)}$. Total cost $(\lg n)^{3+o(1)}$. Conjecturally have several choices of (D, u, v, q), when o(1)'s are large enough.

Use CM to construct curve with order divisible by q. Cost $\leq (\lg n)^{2.5+o(1)}$; negligible.

Problems can occur. Might have n + 1 + uwhen n + 1 - u was desired, or vice versa. Curve might not be isomorphic to curve of desired form $y^2 = x^3 + ax^2 + x$. Can work around problems, or simply try next curve. Recursively prove q prime. Deduce that n is prime.

 $\leq (\lg n)^{1+o(1)}$ levels of recursion. Total cost $\leq (\lg n)^{4+o(1)}$.

Verification cost $\leq (\lg n)^{3+o(1)}$.