The number-field sieve

Finding small factors of integers
Speed of the number-field sieve
Proving primality in polynomial time

Proving primality more quickly
D. J. Bernstein University of Illinois at Chicago

Compositeness proofs

If n is prime and $b \in \mathbf{Z}$
then $b^{n}-b \in n \mathbf{Z}$.
Have easy difference-of-squares
factorization of $b^{n}-b$,
depending on $\operatorname{ord}_{2}(n-1)$.
e.g.: If $n \in 5+8 \mathbf{Z}$ is prime and $b \in \mathbf{Z}$ then $b \in n \mathbf{Z}$ or $b^{(n-1) / 2}+1 \in n \mathbf{Z}$ or $b^{(n-1) / 4}+1 \in n \mathbf{Z}$ or $b^{(n-1) / 4}-1 \in n \mathbf{Z}$.

An integer $n \geq 2$ is " b-sprp" iff it divides one of the difference-of-squares factors of $b^{n}-b$.

Every prime is b-sprp.
For each composite n, most b 's have n not b-sprp.

Very few composites are 2-sprp.
No known composites are "BPSW-\$620-prp."
But we think that there are infinitely many exceptions.

Given $n \geq 2$: Try random b.
If n is not b-sprp, have proven n composite. Otherwise keep trying.

Given composite n, this algorithm finds
compositeness certificate b.
Proven random cost
$(\lg n)^{2+o(1)}$ to find certificate.
Proven deterministic cost $(\lg n)^{2+o(1)}$ to verify certificate.

Can we do better? Open: Is there a compositeness certificate findable in cost $(\lg n)^{O(1)}$, verifiable in cost $(\lg n)^{1+o(1)}$?

Given prime n,
this algorithm loops forever.
After many b 's we are
confident that n is prime... but we don't have a proof.

Do we need a proof?
For competent cryptographers:
No.

For paranoid bankers: Yes.
For pure computational number theorists: Who cares?

Proving primality
is an interesting challenge.

Combinatorial primality proofs

Recall primality algorithm discussed yesterday.

Output of algorithm:
primality proof for n, or compositeness proof for n.

Proven deterministic cost $\leq(\lg n)^{10.5+o(1)}$.
Conjectured deterministic cost $\leq(\lg n)^{6+o(1)}$.

Can we do better?

Complicated variant of algorithm and complicated proof produce better theorem:
Proven deterministic cost
$\leq(\lg n)^{6+o(1)}$.
Open: Is there a primality-proving algorithm with proven deterministic cost $\leq(\lg n)^{5+o(1)}$?

Another variant of algorithm

 achieves better exponent at the expense of determinism. Proven random cost $\leq(\lg n)^{4+o(1)}$.Open: Is there a primality-proving algorithm with proven random cost $\leq(\lg n)^{3+o(1)}$?

Open: Is there a primality-proving algorithm reasonably conjectured to have cost $\leq(\lg n)^{3+o(1)}$?

Precomputed primality proofs

e.g.: An integer $n \in\left[2,2^{48}\right]$
is prime iff it is a 2 -sprp, 3 -sprp,
5-sprp, 7-sprp, 11-sprp,
13 -sprp, and 17-sprp.
Verifying this was extremely slow; but now that we know it, can quickly check primality of any $n \in\left[2,2^{48}\right]$.

Conjectured cost $\leq(\lg n)^{3+o(1)}$ for primality proof after massive precomputation.
e.g.: An integer $n \in\left[2^{20}, 2^{100}\right]$
is prime eff

- $r^{(n-1) / 2} \equiv \pm 1 \quad(\bmod n)$
for all primes $r \leq 367$;
- $r^{(n-1) / 2} \equiv-1 \quad(\bmod n)$
for some odd prime $r \leq 367$
if $n \bmod 8=1$;
- $2^{(n-1) / 2} \equiv-1$ if $n \bmod 8=5$;
- n is not a perfect power; and - n has no prime divisors $<2^{20}$.

Conjectured cost $\leq(\lg n)^{3+o(1)}$ for these "pseudosquares" primality proofs after somewhat less massive precomputation.

Open: Is there a primality-proving algorithm reasonably conjectured to have cost $\leq(\lg n)^{2+o(1)}$ after precomputation?

Open: Is there a primality-proving algorithm reasonably conjectured to have cost $\leq(\lg n)^{3+o(1)}$ after $n^{1 / 2+o(1)}$ precomputation?

Open: Is there a primality-proving algorithm reasonably conjectured to handle $(\lg n)^{O(1)}$ inputs $\approx n$ in cost $\leq(\lg n)^{3+o(1)}$ per input?

Primality proofs using curves

"Fast elliptic-curve primality proving" (FastECPP):

Conjectured cost $\leq(\lg n)^{4+o(1)}$ to find certificate proving primality of n.

Proven deterministic cost $\leq(\lg n)^{3+o(1)}$ to verify certificate.

Variant using genus-2 hyperelliptic curves:

Proven random cost $(\lg n)^{O(1)}$ to find certificate proving primality of n.

Proven deterministic cost $\leq(\lg n)^{3+o(1)}$ to verify certificate.

Variant using elliptic curves with large power-of-2 factors:

Proven existence of certificate proving primality of n.

Proven deterministic cost $\leq(\lg n)^{2+o(1)}$ to verify certificate.

Open: Is there a primality certificate verifiable in cost $(\lg n)^{1+o(1)}$?

Verifying curve proofs

Main theorem in a nutshell:
If an elliptic curve
$E(\mathbf{Z} / n)$ has a point
of prime order $q>\left(\left\lceil n^{1 / 4}\right\rceil+1\right)^{2}$ then n must be prime.

Proof in a nutshell:
If p is a prime divisor of n then the same point mod p has order q in $E\left(\mathbf{F}_{p}\right)$, but $\# E\left(\mathbf{F}_{p}\right) \leq(\sqrt{p}+1)^{2}$, so $n^{1 / 2}<p$.

More concretely:
Given odd integer $n \geq 2$, $a \in\{6,10,14,18, \ldots\}$, integer b, $\operatorname{gcd}\left\{n, b^{3}+a b^{2}+b\right\}=1$, $\operatorname{gcd}\left\{n, a^{2}-4\right\}=1$,
prime $q>\left(\left\lceil n^{1 / 4}\right\rceil+1\right)^{2}$:
Define $x_{1}=b, z_{1}=1$,
$x_{2 i}=\left(x_{i}^{2}-z_{i}^{2}\right)^{2}$,
$z_{2 i}=4 x_{i} z_{i}\left(x_{i}^{2}+a x_{i} z_{i}+z_{i}^{2}\right)$, $x_{2 i+1}=4\left(x_{i} x_{i+1}-z_{i} z_{i+1}\right)^{2}$, $z_{2 i+1}=4 b\left(x_{i} z_{i+1}-z_{i} x_{i+1}\right)^{2}$.

Claim: If $z_{q} \in n \mathbf{Z}$ and $\operatorname{gcd}\left\{n, x_{q}\right\}=1$ then n is prime .

For each prime p dividing n :
$\left(a^{2}-4\right)\left(b^{3}+a b^{2}+b\right) \neq 0$ in \mathbf{F}_{p}, so $\left(b^{3}+a b^{2}+b\right) y^{2}=x^{3}+a x^{2}+x$ is an elliptic curve over \mathbf{F}_{p}. $(b, 1)$ is a point on curve.

Inductive claims:
if $z_{i} \neq 0$ in \mathbf{F}_{p} then
$i(b, 1)=\left(x_{i} / z_{i}, \ldots\right)$ on curve;
if $x_{i} \neq 0, z_{i}=0$ in F_{p} then
$i(b, 1)=\infty$ on curve.
$x_{q} \neq 0, z_{q}=0$ in \mathbf{F}_{p}
so $q(b, 1)=\infty$ on curve.
So n is prime.

Oops: Nobody has written down full proofs of these claims.
Maybe the claims aren't true in certain annoying special cases.

Traditional solution:
Recognize and exclude all of the annoying cases by checking conditions such as $\operatorname{gcd}\left\{n, z_{i}\right\}=1$ for each i used in computation.

Messy; slows down computation; but adequate for current proofs.

Finding curve proofs

To prove primality of n : Choose random E. Use Schoof's algorithm to compute $\# E(\mathbf{Z} / n)$.

Compute $q=\# E(\mathbf{Z} / n) / 2$. If q doesn't seem prime, try another E.

If $q \geq n$ or $q \leq\left(\left\lceil n^{1 / 4}\right\rceil+1\right)^{2}$: n is small; easy base case.

Otherwise:
Recursively prove primality of q.
Choose random point P on E.
If $2 P=\infty$, try another P.
Now 2P has prime order q.

Schoof's algorithm costs $(\lg n)^{5+o(1)}$.

Conjecturally find prime q after $(\lg n)^{1+o(1)}$ curves on average.
Reduce number of curves by allowing larger ratios $\# E(\mathbf{Z} / n) / q$.

Recursion involves $(\lg n)^{1+o(1)}$ levels. Reduce number of levels by allowing and demanding larger ratios $\# E(\mathbf{Z} / n) / q$.

Overall cost $(\lg n)^{7+o(1)}$.

Faster way to generate curves with known number of points: generate curves with small-discriminant "complex multiplication" (CM). Reduces conjectured cost to $(\lg n)^{4+o(1)}$.

CM has applications beyond primality proofs: e.g., can generate CM curves with low embedding degree for pairing-based cryptography.

Complex multiplication

Consider positive squarefree integers $D \in 3+4 Z$.
(Can allow some other D's too.)
If prime n equals $\left(u^{2}+D v^{2}\right) / 4$ then "CM with discriminant $-D$ " produces curves over \mathbf{Z} / n with $n+1 \pm u$ points.

Assuming $D \leq(\lg n)^{2+o(1)}$:
Cost $(\lg n)^{2.5+o(1)}$.
Fancier algorithms: $(\lg n)^{2+o(1)}$.

First step: Find all vectors
$(a, b, c) \in \mathbf{Z}^{3}$ with $\operatorname{gcd}\{a, b, c\}=1$,
$-D=b^{2}-4 a c,|b| \leq a \leq c$,
and $b \leq 0 \Rightarrow|b|<a<c$.

How?

Try each integer b between $-\lfloor\sqrt{D / 3}\rfloor$ and $\lfloor\sqrt{D / 3}\rfloor$. Find all small factors of $b^{2}+D$. Find all factors $a \leq\lfloor\sqrt{D / 3}\rfloor$. For each (a, b), find c and check conditions.

Second step: For each (a, b, c) compute $j(-b / 2 a+\sqrt{-D} / 2 a) \in \mathbf{C}$ to high precision.

Some wacky standard notations:
$q(z)=\exp (2 \pi i z)$.
$\eta^{24}=q\left(1+\sum_{k \geq 1}(-1)^{k} q^{k(3 k-1) / 2}\right.$

$$
\left.+\sum_{k \geq 1}(-1)^{k} q^{k(3 k+1) / 2}\right)^{24}
$$

$f_{1}^{24}(z)=\eta^{24}(z / 2) / \eta^{24}(z)$.
$j=\left(f_{1}^{24}+16\right)^{3} / f_{1}^{24}$.

How much precision is needed?
Answer: $\leq(\lg n)^{1+o(1)}$ bits;
$\leq(\lg n)^{0.5+o(1)}$ terms in sum;
$\leq(\lg n)^{1+o(1)}$ inputs (a, b, c);
total cost $\leq(\lg n)^{2.5+o(1)}$.
In practice: No need to carefully analyze precision.
Start with low precision;
if precision is too small, retry with double precision.

Later steps of computation will notice if precision is too small.

Third step: Compute product $H_{-D} \in \mathbf{C}[x]$
of $x-j(-b / 2 a+\sqrt{-D} / 2 a)$
over all (a, b, c).
Amazing fact: $H_{-D} \in \mathbf{Z}[x]$. The j values are algebraic integers generating a "class field."
$\leq(\lg n)^{1+o(1)}$ factors.
Cost $\leq(\lg n)^{2+o(1)}$.

Fourth step: Find a root r of H_{-D} in \mathbf{Z} / n.

Easy since n is prime.
Amazing fact: the curve
$y^{2}=x^{3}+(3 x+2) r /(1728-r)$
has $n+1+u$ points
for some (u, v) with $4 n=u^{2}+D v^{2}$.

FastECPP using CM

To prove primality of n :
Choose $y \in(\lg n)^{1+o(1)}$.
For each odd prime $p \leq y$,
compute square root of p
in quadratic extension of \mathbf{Z} / n.
Also square root of -1 .
Each square root costs
$(\lg n)^{2+o(1)}$.
Total cost $(\lg n)^{3+o(1)}$.

For each positive squarefree y-smooth $D \in 3+4 Z$ below $(\lg n)^{2+o(1)}$, compute square root of $-D$ in quadratic extension of \mathbf{Z} / n.

Each square root costs $(\lg n)^{1+o(1)}$: simply multiply square roots of primes.

Total cost $(\lg n)^{3+o(1)}$.

For each D having $\sqrt{-D} \in \mathbf{Z} / n$, find u, v with $4 n=u^{2}+D v^{2}$, if possible.

This can be done by a half-gcd computation. Each D costs $(\lg n)^{1+o(1)}$.

Total cost $(\lg n)^{3+o(1)}$.

Conjecturally there are $(\lg n)^{1+o(1)}$ choices of (D, u, v).

Look for $n+1 \pm u$
having form $2 q$ where q is prime. More generally: remove small factors
from $n+1 \pm u$; then look for primes.

Each compositeness proof costs $(\lg n)^{2+o(1)}$.
Total cost $(\lg n)^{3+o(1)}$.

Conjecturally have several choices of (D, u, v, q), when $o(1)$'s are large enough.

Use CM to construct curve with order divisible by q.
Cost $\leq(\lg n)^{2.5+o(1)} ;$ negligible.
Problems can occur.
Might have $n+1+u$
when $n+1-u$ was desired,
or vice versa. Curve might not be isomorphic to curve of desired form $y^{2}=x^{3}+a x^{2}+x$.
Can work around problems,
or simply try next curve.

Recursively prove q prime. Deduce that n is prime.
$\leq(\lg n)^{1+o(1)}$ levels of recursion.
Total cost $\leq(\lg n)^{4+o(1)}$.
Verification cost $\leq(\lg n)^{3+o(1)}$.

