The number-field sieve

Finding small factors of integers
Speed of the number-field sieve
Proving primality
in polynomial time
D. J. Bernstein University of Illinois at Chicago

Problem: Completely factor 314159265358979323.

Eventually find that
$314159265358979323=$
317213509 - 990371647.
Factorization completed? Yes:
317213509, 990371647 are prime.
"Prove it!"

Next 15 slides are the world's longest proof that 317213509 is prime.

Exercise: Do the same for 990371647.

First step: 3391 is prime.
Proof: 3391 is not divisible by 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, $14,15,16,17,18,19,20,21,22$, $23,24,25,26,27,28,29,30,31$, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58. Note that $59^{2}=3481>3391$.

Next: Define $n=317213509$. Then n is not divisible by any prime <3364.

Proof: n is not divisible by
$2,3,4,5,6,7,8,9,10,11,12$,
$13,14,15,16,17,18,19,20,21$,
$22,23,24,25,26,27,28,29,30$,
$31,32,33,34,35,36,37,38,39$,
40, 41, 42, 43, 44, 45, 46, 47, 48,
$49,50,51,52,53,54,55,56,57$, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, ..., 3363.

Define p as the smallest prime divisor of n.

Then $p \geq 3364$.
In other words:
In $\mathrm{F}_{p}[x]$, the polynomials
$x-1, x-2, \ldots, x-3364$ are distinct.

Unique factorization: The product
$(x-1)^{e_{1}} \cdots(x-3364)^{e_{3364}}$
in $\mathbf{F}_{p}[x]$ determines
the vector $\left(e_{1}, \ldots, e_{3364}\right)$.

Next:
n is a primitive root modulo 3391 ; i.e., has order 3390 modulo 3391.

Proof:
$n \bmod 3391=2414 \neq 1$; $n^{2} \bmod 3391=1658 \neq 1$; $n^{3} \bmod 3391=1032 \neq 1$; $n^{4} \bmod 3391=2254 \neq 1$;
$n^{3389} \bmod 3391=2558 \neq 1$; $n^{3390} \bmod 3391=1$.

Next:
$(x-1)^{n}=x^{n}-1$
in the ring $(\mathbf{Z} / n)[x] /\left(x^{3391}-1\right)$.
Proof:
$(x-1)^{2}=x^{2}+317213507 x+1 ;$
.
.
$(x-1)^{158606754}$
$=7406606 x^{3390}+\cdots ;$
$(x-1)^{317213508}$

$$
=93545 x^{3390}+\cdots ;
$$

$(x-1)^{317213509}$

$$
\begin{aligned}
& =x^{2414}+317213508 \\
& =x^{n \bmod 3391}-1
\end{aligned}
$$

Next:
$(x-2)^{n}=x^{n}-2$
in the ring $(\mathbf{Z} / n)[x] /\left(x^{3391}-1\right)$.
Proof:
$(x-2)^{2}=x^{2}+317213505 x+4 ;$
:
$(x-2)^{158606754}$

$$
=114354286 x^{3390}+\cdots ;
$$

$(x-2)^{317213508}$

$$
=164442849 x^{3390}+\cdots ;
$$

$(x-2)^{317213509}$

$$
\begin{aligned}
& =x^{2414}+317213507 \\
& =x^{n \bmod 3391}-2
\end{aligned}
$$

More exponentiations:
$(x-3)^{n}=x^{n}-3$,
$(x-4)^{n}=x^{n}-4$,
$(x-5)^{n}=x^{n}-5$,
$(x-6)^{n}=x^{n}-6$,
$(x-7)^{n}=x^{n}-7$,
$(x-8)^{n}=x^{n}-8$,
$(x-9)^{n}=x^{n}-9$,
$(x-10)^{n}=x^{n}-10$,
$(x-11)^{n}=x^{n}-11$,
$(x-12)^{n}=x^{n}-12$,
$(x-13)^{n}=x^{n}-13$,
$(x-14)^{n}=x^{n}-14$,
$(x-15)^{n}=x^{n}-15$,
$(x-16)^{n}=x^{n}-16$,
$(x-17)^{n}=x^{n}-17$,
$(r-18)^{n}=r^{n}-18$

Last exponentiation:
$(x-3364)^{n}=x^{n}-3364$
in the ring $(\mathbf{Z} / n)[x] /\left(x^{3391}-1\right)$.
Proof:
:
$(x-3364)^{158606754}$

$$
=261799987 x^{3390}+\cdots ;
$$

$(x-3364)^{317213508}$
$=196658336 x^{3390}+\cdots ;$
$(x-3364)^{317213509}$

$$
\begin{aligned}
& =x^{2414}+317210145 \\
& =x^{n \bmod 3391}-3364
\end{aligned}
$$

Now play with equations.
p divides n
so $(x-a)^{n}=x^{n}-a$
in $\mathbf{F}_{p}[x] /\left(x^{3391}-1\right)$
for each $a \in\{1,2, \ldots, 3364\}$.
For each integer $i \geq 0$,
substitute $x^{n^{i}}$ for x :
$\left(x^{n^{i}}-a\right)^{n}=x^{n^{i+1}}-a$ in
$\mathbf{F}_{p}[x] /\left(\left(x^{n^{i}}\right)^{3391}-1\right)$,
hence in $F_{p}[x] /\left(x^{3391}-1\right)$.
By induction $(x-a)^{n^{i}}=x^{n^{i}}-a$ in $F_{p}[x] /\left(x^{3391}-1\right)$.

For each integer $j \geq 0$, apply Fermat's little theorem: $(x-a)^{n^{i} p^{j}}=\left(x^{n^{i}}-a\right)^{p^{j}}=$ $x^{n^{i} p^{j}}-a$ in $\mathbf{F}_{p}[x] /\left(x^{3391}-1\right)$.

Define $h \in \mathbf{F}_{p}[x]$ as the smallest irreducible polynomial dividing $\left(x^{3391}-1\right) /(x-1)$.

Then $(x-a)^{n^{i} p^{j}}=x^{n^{i} p^{j}}-a$ in the field $\mathbf{F}_{p}[x] / h$.

Have $x^{3391}=1$ in $\mathbf{F}_{p}[x] / h$, so x has order 1 or 3391 .

Can x have order 1 in $\mathbf{F}_{p}[x] / h$? If so then h divides $x-1$ in $\mathbf{F}_{p}[x]$ so h^{2} divides $x^{3391}-1$ in $\mathbf{F}_{p}[x]$. But $x^{3391}-1$ is squarefree in $\mathbf{F}_{p}[x]$ since $3391 \neq 0$ in \mathbf{F}_{p}.
Contradiction.
Thus x has order 3391 in $\mathbf{F}_{p}[x] / h$.
Recall that $n \bmod 3391 \neq 1$.
Thus $x^{n} \neq x$ in $\mathbf{F}_{p}[x] / h$.
Thus $(x-a)^{n}=x^{n}-a \neq x-a$ in $\mathbf{F}_{p}[x] / h$.

Thus $x-a$ is nonzero in $\mathbf{F}_{p}[x] / h$.

For each subset

$T \subseteq\{1,2, \ldots, 3364\}$
define $\pi_{T} \in \mathbf{F}_{p}[x]$
by $\pi_{T}=\prod_{a \in T}(x-a)$.
e.g. $\pi_{\{6,9\}}=(x-6)(x-9)$.

Each π_{T} has degree ≤ 3364.
Critical equation in $\mathbf{F}_{p}[x] / h$: $\pi_{T}^{n^{i} p^{j}}=$
$\prod_{a \in T}(x-a)^{n^{i} p^{j}}=$ $\prod_{a \in T}\left(x^{n^{i} p^{j}}-a\right)=$ $\pi_{T}\left(x^{n^{i} p^{j}}\right)$.

Assume $\pi_{T}=\pi_{U}$ in $\mathbf{F}_{p}[x] / h$.
Then $\pi_{T}^{n^{i} p^{j}}=\pi_{U}^{n^{i} p^{j}}$ in $\mathbf{F}_{p}[x] / h$ so $\pi_{T}\left(x^{n^{i} p^{j}}\right)=\pi_{U}\left(x^{n^{i} p^{j}}\right)$ in $\mathbf{F}_{p}[x] / h$.

Thus $x^{n^{i} p^{j}}$ is a root in $\mathbf{F}_{p}[x] / h$ of the polynomial $\pi_{T}-\pi_{U}$.

Thus $\pi_{T}-\pi_{U}$ has
3390 distinct roots in $F_{p}[x] / h$.
But $\pi_{T}-\pi_{U}$ has degree ≤ 3364. Hence $\pi_{T}=\pi_{U}$.

By unique factorization, $T=U$.

There are 2^{3364} subsets T. The 2^{3364} polys $\pi_{T}=\bigcap_{a \in T}(x-a)$ are all different in $\mathbf{F}_{p}[x] / h$.

Consider the products $n^{i} p^{j}$ with $i, j \in\{0,1, \ldots, 58\}$. Have $1 \leq n^{i} p^{j} \leq\left(2^{29}\right)^{58+58}=2^{3364}$.

There are $59^{2}=3481$ pairs (i, j). Products mod 3391 must collide: $n^{i} p^{j} \bmod 3391=n^{k} p^{\ell} \bmod 3391$ with $(i, j) \neq(k, \ell)$. Have $\left|n^{i} p^{j}-n^{k} p^{\ell}\right| \leq 2^{3364}-1$.

In $\mathbf{F}_{p}[x] / h$ have $\pi_{T}^{n^{i} p^{j}}=$
$\pi_{T}\left(x^{n^{i} p^{j}}\right)=\pi_{T}\left(x^{n^{k} p^{\ell}}\right)=\pi_{T}^{n^{k} p^{\ell}}$
so $\pi_{T}^{n^{i} p^{j}-n^{k} p^{\ell}}=1$.
If $n^{i} p^{j}-n^{k} p^{\ell} \neq 0$: Number
of $\left(n^{i} p^{j}-n^{k} p^{\ell}\right)$ th roots of 1 in a field is at most $2^{3364}-1$, contradiction.

Thus $n^{i} p^{j}=n^{k} p^{\ell}$.
If $i=k$ then $p^{j}=p^{\ell}$ so
$(i, j)=(k, \ell)$, contradiction.
Thus n is a power of p.
None of $n^{1 / 2}, n^{1 / 3}, \ldots, n^{1 / 29}$ are integers, so $n=p$.

We'll see that every prime n has a similar primality proof.

Can find and verify the proof using $(\lg n)^{O(1)}$ bit operations.

No randomness required.
No conjectures required.
The proof is
much slower than trial division
for n as small as 317213509,
but it scales surprisingly well to larger values of n.

One complication:

We believe that, for each $n \geq 2$, there is a prime q in
$\left[4\lceil\lg n\rceil^{2}+3, O\left((\lg n)^{2}\right)\right]$
for which n is a primitive root.
But we don't know how to prove that q exists.

So we loosen the q requirements. Then easy to prove that q exists.
Compensate with slightly more work in the rest of the proof.

Given integer $n>1$:

Find smallest prime number q that does not divide
$n(n-1)\left(n^{2}-1\right)\left(n^{3}-1\right) \cdots$
$\left(n^{4\lceil\lg n\rceil^{2}}-1\right)$; i.e., such that n has order $>4\lceil\lg n\rceil^{2}$ modulo q.

How? For each small integer p, check primality by trial division, and inspect powers of n modulo p. Fast since q is small.

Conjecture: $q \in O\left((\lg n)^{2}\right)$. Theorem: $q \in O\left((\lg n)^{5}\right)$.

How to prove $q \in O\left((\lg n)^{5}\right)$?

Prime-number theorem says that $\prod_{p \leq k} p \approx \exp k$.

Weak, relatively easy to prove:
$\prod_{p \leq k} p$ grows exponentially.
In particular, have $\prod_{p \leq k} p>$ $n(n-1)\left(n^{2}-1\right)\left(n^{3}-1\right) \cdots$ $\left(n^{4\lceil\lg n\rceil^{2}}-1\right)$
for some $k \in O\left((\lg n)^{5}\right)$.
So $n(n-1)\left(n^{2}-1\right)\left(n^{3}-1\right) \cdots$ $\left(n^{4}\lceil\lg n\rceil^{2}-1\right)$ cant be divisible by all $p \leq k$.

Compute $\beta=2\lceil\lg n\rceil\lfloor\sqrt{q-1}\rfloor$.
Conjecture: $\beta \in O\left((\lg n)^{2}\right)$.
Theorem: $\beta \in O\left((\lg n)^{3.5}\right)$.
Enumerate primes $<\beta$.
If n equals a prime $<\beta$, stop: n is prime. Otherwise, if n is divisible by a prime $<\beta$, stop: n is composite.

Assume from now on that n is not divisible by any of the primes $<\beta$.

Define p as the smallest prime divisor of n.

Evidently $p \geq \beta$.

In $\mathrm{F}_{p}[x]$, the polynomials
$x-1, x-2, \ldots, x-\beta$ are distinct.

Unique factorization: The product
$(x-1)^{e_{1} \cdots(x-\beta)^{e_{\beta}}}$
in $F_{p}[x]$ determines
the vector $\left(e_{1}, \ldots, e_{\beta}\right)$.

Define

$G=\left\{n^{i} p^{j} \bmod q: i \geq 0, j \geq 0\right\}$ and $\gamma=2\lceil\lg n\rceil\lfloor\sqrt{\# G}\rfloor$.
Then $n^{2\lfloor\sqrt{\# G}\rfloor} \leq 2^{\gamma}$.
$0 \notin G$ so $\# G \leq q-1$ and $\gamma \leq 2\lceil\lg n\rceil\lfloor\sqrt{q-1}\rfloor=\beta$.
G includes all $n^{i} \bmod q$
so $\# G>4\lceil\lg n\rceil^{2}$ and
$\gamma \leq 2\lceil\lg n\rceil \sqrt{\# G}<\# G$.

For each $a \in\{1,2, \ldots, \beta\}$ check whether $(x-a)^{n}=x^{n}-a$ in the ring $(\mathbf{Z} / n)[x] /\left(x^{q}-1\right)$.

These exponentiations take \leq
$\beta\left(q(\lg n)^{2}\right)^{1+o(1)}$ bit operations.
Conjecture: $\leq(\lg n)^{6+o(1)}$.
Theorem: $\leq(\lg n)^{10.5+o(1)}$.
Slow arithmetic: $\leq(\lg n)^{16.5+o(1)}$.
If $(x-a)^{n} \neq x^{n}-a$, stop: n is composite.

Assume from now on
that $(x-a)^{n}=x^{n}-a$
for each $a \in\{1,2, \ldots, \beta\}$.

Play with equations as before.
$(x-a)^{n^{i} p^{j}}=\left(x^{n^{i}}-a\right)^{p^{j}}=$ $x^{n^{i} p^{j}}-a$ in $\mathbf{F}_{p}[x] /\left(x^{q}-1\right)$
for each $a \in\{1,2, \ldots, \beta\}$, each $i \geq 0$, each $j \geq 0$.

Define $h \in \mathbf{F}_{p}[x]$ as the smallest irreducible polynomial dividing $\left(x^{q}-1\right) /(x-1)$.
$(x-a)^{n^{i} p^{j}}=x^{n^{i} p^{j}}-a$ in the field $\mathbf{F}_{p}[x] / h$. x has order q in $\mathbf{F}_{p}[x] / h$. $x-a$ is nonzero in $F_{p}[x] / h$.

For each subset $T \subseteq\{1,2, \ldots, \gamma\}$ define $\pi_{T} \in \mathbf{F}_{p}[x]$
by $\pi_{T}=\prod_{a \in T}(x-a)$.
Each π_{T} has degree $\leq \boldsymbol{\gamma}$.
Critical equation in $\mathbf{F}_{p}[x] / h$:
$\pi_{T}^{n^{i} p^{j}}=$
$\prod_{a \in T}(x-a)^{n^{i} p^{j}}=$
$\prod_{a \in T}\left(x^{n^{i} p^{j}}-a\right)=$
$\pi_{T}\left(x^{n^{i} p^{j}}\right)$.

Assume $\pi_{T}=\pi_{U}$ in $\mathbf{F}_{p}[x] / h$.
Then $\pi_{T}^{n^{i} p^{j}}=\pi_{U}^{n^{i} p^{j}}$ in $\mathbf{F}_{p}[x] / h$ so $\pi_{T}\left(x^{n^{i} p^{j}}\right)=\pi_{U}\left(x^{n^{i} p^{j}}\right)$ in $\mathbf{F}_{p}[x] / h$.

Thus $x^{n^{i} p^{j}}$ is a root in $\mathbf{F}_{p}[x] / h$ of the polynomial $\pi_{T}-\pi_{U}$.

Thus $\pi_{T}-\pi_{U}$ has
$\# G$ distinct roots in $F_{p}[x] / h$. But $\operatorname{deg}\left(\pi_{T}-\pi_{U}\right) \leq \gamma<\# G$. Hence $\pi_{T}=\pi_{U}$.

By unique factorization, $T=U$.

There are 2^{γ} subsets T. The 2^{γ} polys $\pi_{T}=\prod_{a \in T}(x-a)$ are all different in $\mathbf{F}_{p}[x] / h$.

Consider the products $n^{i} p^{j}$ with $i, j \in\{0,1, \ldots,\lfloor\sqrt{\# G}\rfloor\}$. Have $1 \leq n^{i} p^{j} \leq n^{2\lfloor\sqrt{\# G}\rfloor} \leq 2^{\gamma}$.

There are $>\# G$ pairs (i, j).
Products mod q must collide:
$n^{i} p^{j} \bmod q=n^{k} p^{\ell} \bmod q$
with $(i, j) \neq(k, \ell)$. Have $\left|n^{i} p^{j}-n^{k} p^{\ell}\right| \leq 2^{\gamma}-1$.

In $\mathbf{F}_{p}[x] / h$ have $\pi_{T}^{n^{i} p^{j}}=$
$\pi_{T}\left(x^{n^{i} p^{j}}\right)=\pi_{T}\left(x^{n^{k} p^{\ell}}\right)=\pi_{T}^{n^{k} p^{\ell}}$
so $\pi_{T}^{n^{i} p^{j}-n^{k} p^{\ell}}=1$.
If $n^{i} p^{j}-n^{k} p^{\ell} \neq 0$: Number
of $\left(n^{i} p^{j}-n^{k} p^{\ell}\right)$ th roots of 1 in a field is at most $2^{\gamma}-1$, contradiction.

Thus $n^{i} p^{j}=n^{k} p^{\ell}$.
If $i=k$ then $p^{j}=p^{\ell}$ so
$(i, j)=(k, \ell)$, contradiction.
Thus n is a power of p.

Finally check whether n is a square, cube, etc. If so, stop: n is composite.

Otherwise $n=p$ so n is prime.
Done! Have proven primality of n, or have proven compositeness of n.

Length of proof,
including all computations, is $(\lg n)^{O(1)}$.
Conjecture: $\leq(\lg n)^{6+o(1)}$.
Theorem: $\leq(\lg n)^{10.5+o(1)}$.
Easiest theorem: $\leq(\lg n)^{16.5+o(1)}$.
Bottleneck is the exponentiations.

Appendix: exponential growth

Weak prime-number theorem:
$\prod_{1<p \leq 2 k} p \geq 2^{2 k} /(2 k+1)(2 k)^{\sqrt{2 k}}$.
Proof: What is $\operatorname{ord}_{p}\binom{2 k}{k}$?
0 if $p>2 k$.
≤ 1 if $\sqrt{2 k}<p \leq 2 k$.
$\leq(\lg 2 k) / \lg p$ if $1<p \leq \sqrt{2 k}$.
Thus $2^{2 k} /(2 k+1) \leq\binom{ 2 k}{k} \leq$
$\left(\prod_{\sqrt{2 k}<p \leq 2 k} p\right) \prod_{p \leq \sqrt{2 k}} 2 k \leq$
$\left(\prod_{1<p \leq 2 k} p\right)(2 k)^{\sqrt{2 k}}$.

