
The number-field sieve

Finding small factors of integers

Speed of the number-field sieve

D. J. Bernstein

University of Illinois at Chicago



Prelude: finding denominators

817=366 � 2:23224044 in R.

Easily compute digits 2:23224044

given 817; 366.

Can we work backwards: find

817; 366 given digits 2:23224044?

“2-dim integer-relation finding”;

“2-dim lattice-basis reduction”;

“half-gcd computation”; etc.

Yes, via continued fractions.



Compute successively

1=(2:23224044� 2) � 4:3058823;

1=(4:3058823� 4) � 3:269231;

1=(3:269231� 3) � 3:71428;

1=(3:71428� 3) � 1:4000;

1=(1:4000� 1) � 2:500;

1=(2:500� 2) � 2:00 � 2.

Evidently 2:23224044 is very close

to the continued fraction

2 +
1

4 + 1
3+ 1

3+ 1

1+ 1

2+ 1
2

=
817

366
.



Can obtain y-digit numerator

and y-digit denominator

from 2y digits of quotient.

y(lg y)O(1) bit operations

using fast multiplication,

fast continued fractions.

Analogous polynomial algorithms

find two y-coefficient polynomials

from 2y coefficients of their

power-series quotient.

y(lg y)O(1) coefficient operations

using fast algorithms.



Linear algebra

y � y matrix M over F2

specifies linear map F
y

2 ! F
y

2 .

e.g. M =

0

B

�

0 1 1 1
0 1 1 0
1 1 1 0
1 0 1 1

1

C

A

specifies (v1; v2; v3; v4) 7!

(0v1 + 1v2 + 1v3 + 1v4;

0v1 + 1v2 + 1v3 + 0v4;

1v1 + 1v2 + 1v3 + 0v4;

1v1 + 0v2 + 1v3 + 1v4).



Subroutine in Q sieve etc.,

combining smooth congruences

to form a square:

“Find linear dependency” =

“find nonzero kernel element” =

“find nonzero nullspace element”:

find nonzero v 2 F
y

2 with Mv = 0.

e.g. previous M(v1; v2; v3; v4)

is 0 only if (v1; v2; v3; v4) = 0,

so can’t find linear dependency.



“Solve linear equations”:

given w 2 F
y

2 ,

find some v 2 F
y

2 with Mv = w.

e.g. given w = (1; 1; 0; 0) and

M =

0

B

�

0 1 1 1
0 1 1 0
1 1 1 0
1 0 1 1

1

C

A

:

find (v1; v2; v3; v4) with

(0v1 + 1v2 + 1v3 + 1v4;

0v1 + 1v2 + 1v3 + 0v4;

1v1 + 1v2 + 1v3 + 0v4;

1v1 + 0v2 + 1v3 + 1v4) = w.



We have fast methods

to solve linear equations.

Easily apply those methods

to find linear dependencies,

if any dependencies exist.

Choose uniform random r 2 F
y

2 ;

compute w = Mr;

use linear-equation solver

to find v with Mv = w.

This produces uniform random

kernel element, namely v � r.

Try again if v = r.



“Elimination”

solves linear equations

using O(y3) bit operations.

“Series denominators”

solve linear equations

using y

2+o(1) bit operations

if the equations are sparse.

“Sparse”: can evaluate v 7! Mv

using y

1+o(1) bit operations.

Certainly true in Q sieve

with usual choices of y.



Series denominators

e.g. Given w =

0

B

�

1
1
0
0

1

C

A

and

M =

0

B

�

0 1 1 1
0 1 1 0
1 1 1 0
1 0 1 1

1

C

A

:

Have magic equation

w +M

3
w +M

4
w = 0 implying

w = Mv for v = �M

2
w �M

3
w.

How did I find magic equation?

First explore its consequences.



Consider the power series

S = w+(Mw)t+(M2
w)t2+ � � � =

0

B

�

1
1
0
0

1

C

A

+

0

B

�

1
1
0
1

1

C

A

t +

0

B

�

0
1
0
0

1

C

A

t

2 +

0

B

�

1
1
1
0

1

C

A

t

3 +

0

B

�

0
0
1
0

1

C

A

t

4 +

0

B

�

1
1
1
1

1

C

A

t

5 +

0

B

�

1
0
1
1

1

C

A

t

6 +

0

B

�

0
1
0
1

1

C

A

t

7 + � � � in F4
2[[t]].



S is rational:

S(1 + t+ t

4) =

0

B

�

1
1
0
0

1

C

A

+

0

B

�

0
0
0
1

1

C

A

t+

0

B

�

1
0
0
1

1

C

A

t

2 +

0

B

�

1
0
1
0

1

C

A

t

3.

For n � 4, coefficient of tn

in (
P

i�0 M
i

wt

i)(1 + t+ t

4) is

M

n

w +M

n�1
w +M

n�4
w

= M

n�4(M4
w +M

3
w +w) = 0

by magic equation.



Squeeze S by projecting

from F4
2[[t]] to F2[[t]].

e.g. Define r = (0 0 0 1).

rS = rw + rMwt+ rM

2
wt

2 + � � �

= t+ t

5 + t

6 + t

7 + t

8 + t

10 + � � �.

Have rS(1 + t+ t

4) = t+ t

2.

Similar for every r : F4
2 ! F2.

The series rS 2 F2[[t]] is rational,

specifically a poly of degree < 4

divided by 1 + t+ t

4.

Can use continued fractions to

quickly find denominator 1+ t+ t

4,

and thus to find magic equation.



In general, given w 2 F
y

2

and M : F
y

2 ! F
y

2 ,

find magic equation as follows.

Pick r : F
y

2 ! F2.

Compute first 2y terms of series

rw + rMwt + rM

2
wt

2 + � � � in

F2[[t]]. Use continued fractions

to find denominator of series.

Repeat for a few random r’s,

compute lcm of denominators.

With very high probability

obtain denominator of series

w +Mwt+M

2
wt

2 + � � �.



If final denominator is

p0t
y + p1t

y�1 + � � �+ p

y

t

0 then

p0w + p1Mw + � � �+ p

y

M

y

w = 0.

If p0 = 1 then w = Mv where

v = �p1w � � � � � p

y

M

y�1
w.

If p0 = 0 then use slightly more

complicated algorithm to solve

linear equation. But still easy to

find linear dependency.

Overall there are

O(y) applications of M.

Total y2+o(1) bit operations

if M is sparse.



Asymptotic cost exponents

Number of bit operations

in number-field sieve,

with theorists’ parameters,

is L1:90:::+o(1) where L =

exp((logn)1=3(log logn)2=3).

What are theorists’ parameters?

Choose degree d with

d=(logn)1=3(log logn)�1=3

2 1:40 : : :+ o(1).



Choose integer m � n

1=d.

Write n as

m

d + f

d�1m
d�1 + � � �+ f1m+ f0

with each f

k

below n

(1+o(1))=d.

Choose f with some randomness

in case there are bad f ’s.

Test smoothness of i� jm

for all coprime pairs (i; j)

with 1 � i; j � L

0:95:::+o(1),

using primes � L

0:95:::+o(1).

L

1:90:::+o(1) pairs.

Conjecturally L1:65:::+o(1)

smooth values of i� jm.



Use L0:12:::+o(1) number fields.

For each (i; j)

with smooth i� jm,

test smoothness of i� j�

and i� j� and so on,

using primes � L

0:82:::+o(1).

L

1:77:::+o(1) tests.

Each jjdf(i=j)j �m

2:86:::+o(1).

Conjecturally L0:95:::+o(1)

smooth congruences.

L

0:95:::+o(1) components

in the exponent vectors.



Three sizes of numbers here:

(logn)1=3(log logn)2=3 bits:

y, i, j.

(logn)2=3(log logn)1=3 bits:

m, i� jm, jdf(i=j).

logn bits: n.

Unavoidably 1=3 in exponent:

usual smoothness optimization

forces (log y)2 � logm;

balancing norms with m

forces d log y � logm;

and d logm � logn.



The number-field sieve

is asymptotically much faster

than the quadratic sieve

and the elliptic-curve method.

Also works well in practice.

Latest record: NFS found

two prime factors � 2332

of “RSA-200” challenge, using

� 5 � 1018 Opteron cycles.



Batch NFS

The number-field sieve used

L

1:90:::+o(1) bit operations

finding smooth i� jm; only

L

1:77:::+o(1) bit operations

finding smooth j

d

f(i=j).

Many n’s can share one m;

L

1:90:::+o(1) bit operations

to find squares for all n’s.

Oops, linear algebra hurts;

fix by reducing y.

But still end up factoring

batch in much less time than

factoring each n separately.



Polynomial selection

Many choices of NFS polynomial.

Which choices are best?

Consider, e.g., poly degree d = 5.

Select integer m 2 [n1=6
; n

1=5];

find integers f5; f4; : : : ; f0

with n = f5m
5 + f4m

4 + � � �+ f0;

for various integers i; j inspect

(i� jm)(f5i
5 +f4i

4
j+ � � �+f0j

5).

Practically every choice of m

will succeed in factoring n.

For speed want smallest possible

(i� jm)(f5i
5 +f4i

4
j+ � � �+f0j

5).



e.g. n = 314159265358979323:

Can choose m = 1000,

f5 = 314, f4 = 159, f3 = 265,

f2 = 358, f1 = 979, f0 = 323.

NFS succeeds in factoring n

by inspecting congruences

(i� 1000j)(314i5 + � � �+ 323j5)

for various integer pairs (i; j).

But NFS succeeds more quickly

using m = 1370, inspecting

(i� 1370j)(65i5 + 130i4j +

38i3j2 + 377i2j3 + 127ij4 + 33j5).



Consider, e.g.,

245 possible choices of m.

Quickly identify, e.g.,

225 attractive candidates.

Will choose one m later.

If jij � SR and jjj � S

�1
R then

�

�(i� jm)(f5i
5 + � � �+ f0j

5)
�

�

�

�(m;S)R6 where �(m;S) =

(mS

�1+S)(
�

�

f5S
5
�

�+ � � �+
�

�

f0S
�5
�

�).

Attractive m;S: small �(m;S).



Choosing one typical m � n

1=6

produces �(m; 1) � n

2=6.

Question: How much time do we

need to save factor of B—to find

m;S with �(m;S) � B

�1
n

2=6?

This has as much impact as

chopping � 3 lgB bits out of n.

Searching for good values of m

takes noticeable fraction of

total time of optimized NFS.

(If not, consider more m’s!)

End up with rather large B.



Conjectured time B7:5+o(1):

Enumerate many possibilities

for m near B0:25
n

1=6.

Have f5 � B

�1:25
n

1=6.

f4; f3; f2; f1; f0 could be

as large as B0:25
n

1=6.

Hope that they are smaller,

on scale of B�1:25
n

1=6,

so �(m; 1) � B

�1
n

2=6.

Conjecturally this happens

within roughly B7:5 trials.



Conjectured time B6+o(1):

Skip through m’s with small f4.

Say n = f5m
5 + f4m

4 + � � �+ f0.

Choose integer k � f4=5f5.

Write n in base m+ k:

n = f5(m+ k)5

+ (f4 � 5kf5)(m+ k)4 + � � �.

Now degree-4 coefficient

is on same scale as f5.

Hope for small f3; f2; f1; f0.



Conjectured time B4:5+o(1):

Increase S.

Enumerate many possibilities

for m near Bn1=6.

Have f5 � B

�5
n

1=6.

f4; f3; f2; f1; f0 could be

as large as Bn1=6.

Force small f4. Hope for

f3 on scale of B�2
n

1=6,

f2 on scale of B�0:5
n

1=6.

Then �(m;B

0:75) � B

�1
n

2=6.



Conjectured time B3:5+o(1):

Partly control f3.

Say n = f5m
5 + f4m

4 + � � �+ f0.

Choose integer k � f4=5f5

and integer ` �m=5f5.

Find all short vectors

in lattice generated by

(m=B

3
; 0; 0; 10f5k

2
� 4f4k+ f3),

(0;m=B

4
; 0; 20f5k`� 4f4`),

(0; 0;m=B

5
; 10f5`

2),

(0; 0; 0 ;m).



Hope for v below B

1

with (10f5k
2
� 4f4k+ f3)

+ (20f5k`� 4f4`)v

+ (10f5`
2)v2

below m=B

3 modulo m.

Write n in base m+ k+ v`.

Obtain degree-5 coefficient

on scale of B�5
n

1=6;

degree-4 coefficient

on scale of B�4
n

1=6;

degree-3 coefficient

on scale of B�2
n

1=6.

Hope for good degree 2.



After selecting attractive m’s,

how to identify best (m;y)?

Could check smoothness of

some congruences for each m

to estimate smoothness chance.

But this is expensive:

smooth congruences are rare;

need quite a few of them

before estimate is reliable.

Want something faster,

to test more (m;y)’s.



Quickly and accurately estimate

number of small congruences

by numerically approximating

a “superelliptic integral.”

Quickly and accurately estimate

congruence smoothness chance

by approximating distribution of

a “Dirichlet series.”

So can estimate cost of

finding more smooth congruences

than exponent-vector length.

In practice: Fewer required.

Open: Estimate how many.



Given H;m; f5; : : : ; f0:

How many congruences

survive initial selection

of small congruences?

Consider integer pairs (i; j)

with iZ + jZ = Z and j > 0.

How many congruences

(i� jm)(f5i
5 + � � �+ f0j

5)

are in [�H;H]?

� bound is quite crude.

Can instead enumerate j’s,

count i’s for each j.



Faster: Numerically

approximate the area of

f(i; j) 2 R� R : � � � 2 [�H;H]g.

Number of qualifying pairs

is extremely close to

(3=�2)H2=6
R

1

�1

dx=(F (x)2)1=6

where

F (x) = (x�m)(f5x
5 + � � �+ f0).

Evaluate superelliptic integral

by standard techniques:

partition, use series expansions.



What is chance that a

uniform random integer in [1; H]

is, e.g., 1000000-smooth?

Define S as the set of

1000000-smooth integers n � 1.

The Dirichlet series for S

is
P

[n 2 S]xlgn =

(1 + x

lg 2 + x

2 lg 2 + x

3 lg 2 + � � �)

(1 + x

lg 3 + x

2 lg 3 + x

3 lg 3 + � � �)

(1 + x

lg 5 + x

2 lg 5 + x

3 lg 5 + � � �)

� � �

(1 + x

lg 999983 + x

2 lg 999983 + � � �).



Replace primes 2; 3; 5; : : : ; 999983

with slightly larger real numbers

2 = 1:18, 3 = 1:112, 5 = 1:117,

: : : , 999983 = 1:1145.

Replace each 2a3b � � � in S with

2
a

3
b

� � �, obtaining multiset S.

The Dirichlet series for S

is
P

[n 2 S]xlgn =

(1 + x

lg 2 + x

2 lg 2 + x

3 lg 2 + � � �)

(1 + x

lg 3 + x

2 lg 3 + x

3 lg 3 + � � �)

(1 + x

lg 5 + x

2 lg 5 + x

3 lg 5 + � � �)

� � �

(1 + x

lg 999983 + x

2 lg 999983 + � � �).



This is simply a power series

0y
0 + 1y

1 + � � � =

(1 + y

8 + y

2�8 + y

3�8 + � � �)

(1 + y

12 + y

2�12 + y

3�12 + � � �)

(1 + y

17 + y

2�17 + y

3�17 + � � �)

� � � (1 + y

145 + y

2�145 + � � �)

in the variable y = x

lg 1:1.

Compute series mod (e.g.) y2910;

i.e., compute 0; 1; : : : ; 2909.

S has 0 + � � �+ 2909 elements

� 1:12909
< 2400, so S has

at least that many elements

< 2400.



Can modify Dirichlet series

to modify notion of smoothness.

Use 1 + x

lg 999983 instead of

(1 + x

lg 999983 + x

2 lg 999983 + � � �)

to throw away n’s having

more than one factor 999983.

Multiply 0y
0 + � � �+ 2909y

2909

by xlg 1000003 + � � �+ x

lg 999999937

to allow n’s that are

1000000-smooth integers < 2400

times one prime in [106
; 109].



Number-field smoothness: replace

1 + x

lg p + x

2 lg p + � � � with

1 + x

lgN(P ) + x

2 lgN(P ) + � � �

where P is ideal, N is norm.

In all of these situations,

can compute an upper bound

on number of smooth values

to check tightness of lower bound.

If looser than desired,

move 1:1 closer to 1.

Achieve any desired accuracy.



Smoothness chance for i� j�

in Q(�) is, conjecturally,

very close to smoothness chance

for ideals of the same size.

Same for (i� jm; i� j�)

in Q�Q(�).

Integrate size distribution

of (i� jm)(i� j�) against

smoothness distribution of ideals.


