The number-field sieve

Finding small factors of integers

D. J. Bernstein

University of Illinois at Chicago

The \mathbf{Q} sieve factors n

 by combining enough y-smooth congruences $i(n+i)$. "Enough" $\approx ">y / \log y . "$Plausible conjecture: if $y \in$ $\exp \sqrt{\left(\frac{1}{2}+o(1)\right) \log n \log \log n}$ then $y^{2+o(1)}$ congruences have enough smooth congruences.

Linear sieve, quadratic sieve, random-squares method, number-field sieve, etc.: similar.

Also combine congruences for discrete logs, class groups, etc.

Finding small factors

Find smooth congruences
by finding small factors of many congruences:

Neverending supply of congruences \downarrow select
Smallest congruences
\downarrow find small factors
Partial factorizations
using primes $\leq y$
\downarrow abort non-smooth
Smooth congruences

How to find small factors?

Could use trial division:
For each congruence,
remove factors of 2 ,
remove factors of 3 , remove factors of 5 , etc.; use all primes $p \leq y$.
$y^{3+o(1)}$ bit operations:
$y^{1+o(1)}$ per congruence.
Want something faster!

Early aborts

Neverending supply of congruences \downarrow select
Smallest congruences
\downarrow
Partial factorizations
using primes $\leq y^{1 / 2}$
\downarrow early abort
Smallest unfactored parts
\downarrow
Partial factorizations using primes $\leq y$
\downarrow final abort
Smooth congruences

Find small primes by trial division. Cost $y^{1 / 2+o(1)}$ for primes $\leq y^{1 / 2}$. Cost $y^{1+o(1)}$ for primes $\leq y$.

Say we choose "smallest" so that each congruence has chance $y^{1 / 2+o(1)} / y^{1+o(1)}$ of surviving early abort. Have reduced trial-division cost by factor $y^{1 / 2+o(1)}$.

Fact: A y-smooth congruence has chance $y^{-1 / 4+o(1)}$ of surviving early abort. Have reduced identify-a-smooth cost by factor $y^{1 / 4+o(1)}$.

Example from Andrew Shallue:

A uniform random integer in
$\left[1,2^{64}-1\right]$ has chance about $2^{-8.1}$
of being 2^{15}-smooth, chance about $2^{-3.5}$ of having 2^{7}-unfactored part below 2^{44}, and chance about $2^{-9.8}$ of satisfying both conditions.

Given congruence, find primes $\leq 2^{7}$; abort if unfactored part is above 2^{44}; then find primes $\leq 2^{15}$. Compared to skipping the abort: about $2^{3.5}$ times faster, about $2^{1.7}$ times less productive; gain $2^{1.8}$.

More generally, can abort at $y^{1 / k}, y^{2 / k}$, etc. Balance stages to reduce cost per congruence from $y^{1+o(1)}$ to $y^{1 / k+o(1)}$.

Fact: A y-smooth congruence has relatively good chance of surviving early abort. Have reduced identify-a-smooth cost by factor $y^{(1-1 / k) / 2+o(1)}$. Increase k slowly with y. Find enough smooth congruences using $y^{2.5+o(1)}$ bit operations.

Want something faster!

Sieving

Textbook answer: Sieving
finds enough smooth congruences
using only $y^{2+o(1)}$ bit operations.
To sieve: Generate in order of p, then sort in order of i,
all pairs (i, p) with
i in range and $i(n+i) \in p \mathbf{Z}$.
Pairs for one p are
$(p, p),(2 p, p),(3 p, p)$, etc.
and $(p-(n \bmod p), p)$ etc.
e.g. $y=10, n=611$,
$i \in\{1,2, \ldots, 100\}$:

For $p=2$ generate pairs
$(2,2),(4,2),(6,2), \ldots,(100,2)$
and $(1,2),(3,2),(5,2), \ldots,(99,2)$.
For $p=3$ generate pairs
$(3,3),(6,3), \ldots,(99,3)$ and
$(1,3),(4,3), \ldots,(100,3)$.
For $p=5$ generate pairs
$(5,5),(10,5), \ldots,(100,5)$ and
$(4,5),(9,5), \ldots,(99,5)$.
For $p=7$ generate pairs
$(7,7),(14,7), \ldots,(98,7)$ and
$(5,7),(12,7), \ldots,(96,7)$.

Sort pairs by first coordinate:
$(1,2),(1,3),(2,2),(3,2),(3,3)$,
$(4,2),(4,3),(4,5), \ldots,(98,2)$,
$(98,7),(99,2),(99,3),(99,5)$,
$(100,2),(100,3),(100,5)$.
Sorted list shows that
the small primes in $i(n+i)$ are
2,3 for $i=1$;
2 for $i=2$;

2,7 for $i=98$;
2,3,5 for $i=99$;
$2,3,5$ for $i=100$.

In general, for $i \in\left\{1, \ldots, y^{2}\right\}$:
Prime p produces $\approx y^{2} / p$ pairs $(p, p),(2 p, p),(3 p, p)$, etc. and produces $\approx y^{2} / p$ pairs $(p-(n \bmod p), p)$ etc.

Total number of pairs \approx
$\sum_{p \leq y} 2 y^{2} / p \approx 2 y^{2} \log \log y$.
Easily generate pairs, sort, and finish checking smoothness, in $y^{2}(\lg y)^{O(1)}$ bit operations.
Only $(\lg y)^{O(1)}$ bit operations per congruence.

Hidden costs

Is that what we do
in record-setting factorizations?
No!
Sieving has two big problems.
First problem:
Sieving needs large i range.
For speed, must use batch of $\geq y^{1+o(1)}$ consecutive i^{\prime} s.
Limits number of sublattices,
so limits smoothness chance.
Can eliminate this problem using "remainder trees."

Product trees

Given $c_{1}, c_{2}, \ldots, c_{m}$,
together having $y(\lg y)^{O(1)}$ bits:
Can compute $c_{1} c_{2} \cdots c_{m}$
with $y(\lg y)^{O(1)}$ operations.
Actually compute
"product tree" of $c_{1}, c_{2}, \ldots, c_{m}$.
Root: $c_{1} c_{2} \cdots c_{m}$.
Left subtree if $m \geq 2$:
product tree of $c_{1}, \ldots, c_{\lceil m / 2\rceil}$.
Right subtree if $m \geq 2$:
product tree of $c_{\lceil m / 2\rceil+1}, \ldots, c_{m}$.
e.g. tree for $23,29,84,15,58,19$:

926142840			
π <			
	28		16530
	\uparrow		1 1
667	84	870	19
$1 \uparrow$			
$23 \quad 29$		15	58

Obtain each level of tree with $y(\lg y)^{O(1)}$ operations by multiplying lower-level pairs. Use FFT-based multiplication.

Remainder trees

Remainder tree
of $P, c_{1}, c_{2}, \ldots, c_{m}$ has one node $P \bmod C$ for each node C in product tree of $c_{1}, c_{2}, \ldots, c_{m}$. e.g. remainder tree of 223092870, 23, 29, 84, 15, 58, 19:

Use product tree to compute product P of primes $p \leq y$.

Use remainder tree to compute $P \bmod c_{1}, P \bmod c_{2}, \ldots$.

Now c_{1} is y-smooth iff $P^{2^{k}} \bmod c_{1}=0$ for minimal $k \geq 0$ with $2^{2^{k}} \geq c_{1}$. Similarly c_{2} etc.

Total $y(\lg y)^{O(1)}$ operations
if c_{1}, c_{2}, \ldots together
have $y(\lg y)^{O(1)}$ bits.

Hidden costs, continued

Second problem with sieving, not fixed by remainder trees: Need $y^{1+o(1)}$ bits of storage.

Real machines don't have much fast memory: it's expensive.

Effect is not visible for small computations on single serial CPUs, but becomes critical in huge parallel computations.

How to quickly find primes above size of fast memory?

The rho method

Define $\rho_{0}=0, \rho_{k+1}=\rho_{k}^{2}+11$.
Every prime $\leq 2^{20}$ divides $S=$
$\left(\rho_{1}-\rho_{2}\right)\left(\rho_{2}-\rho_{4}\right)\left(\rho_{3}-\rho_{6}\right)$
$\cdots\left(\rho_{3575}-\rho_{7150}\right)$.
Also many larger primes.
Can compute $\operatorname{gcd}\{c, S\}$ using $\approx 2^{14}$ multiplications mod c, very little memory.

Compare to $\approx 2^{16}$ divisions for trial division up to 2^{20}.

More generally: Choose z.
Compute $\operatorname{gcd}\{c, S\}$ where $S=$
$\left(\rho_{1}-\rho_{2}\right)\left(\rho_{2}-\rho_{4}\right) \cdots\left(\rho_{z}-\rho_{2 z}\right)$.
How big does z have to be for all primes $\leq y$ to divide S ?

Plausible conjecture: $y^{1 / 2+o(1)}$; so $y^{1 / 2+o(1)}$ milts $\bmod c$. Early-abort rho: $y^{1 / 4+o(1)}$ mults.

Reason: Consider first collision in $\rho_{1} \bmod p, \rho_{2} \bmod p, \ldots$ If $\rho_{i} \bmod p=\rho_{j} \bmod p$ then $\rho_{k} \bmod p=\rho_{2 k} \bmod p$ for $k \in(j-i) \mathbf{Z} \cap[i, \infty] \cap[j, \infty]$.

The $p-1$ method

Have built an integer S divisible by all primes $\leq y$. Less costly way to do this?

First attempt: Choose z. Define $S_{1}=2^{\mathrm{lcm}\{1,2,3, \ldots, z\}}-1$.

If Icm $\in(p-1) \mathbf{Z}$ then $S_{1} \in p \mathbf{Z}$.
Can tweak to find more p 's: e.g., could instead use product of $2^{\mathrm{lcm}}-1$ and $2^{\mathrm{lcm} \cdot q}-1$ for all primes $q \in[z+1, z \log z]$; could replace Icm by Icm^{2}.
e.g. $z=20$:
$\mathrm{Icm}=\operatorname{lcm}\{1,2,3, \ldots, 20\}$

$$
\begin{aligned}
& =2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \\
& =232792560
\end{aligned}
$$

$S_{1}=2^{\mathrm{lcm}}-1$ has prime divisors $3,5,7,11,13,17,19,23,29,31$, $37,41,43,53,61,67,71,73,79$, 89, 97, 103, 109, 113, 127, 131, $137,151,157,181,191,199$, etc.

Compute S_{1} with 34 mults.

As $z \rightarrow \infty:(1.44 \ldots+o(1)) z$ multiplications to compute S_{1}.

Dividing $\operatorname{Icm}\{1, \ldots, z\}$ is stronger than z-smoothness but not much.

Plausible conjecture: if $z \in$
$\exp \sqrt{\left(\frac{1}{2}+o(1)\right) \log y \log \log y}$ then $p-1$ divides $\operatorname{lcm}\{1, \ldots, z\}$ with chance $1 / z^{1+o(1)}$
for uniform random prime $p \leq y$.
So method finds some primes at surprisingly high speed.
What about the other primes?

The $p+1$ method

Second attempt:
Define $v_{0}=2, v_{1}=10$,
$v_{2 i}=v_{i}^{2}-2$,
$v_{2 i+1}=v_{i} v_{i+1}-v_{1}$.
Define $S_{2}=v_{\text {lcm }\{1,2,3, \ldots, z\}}-2$.
Point of v_{i} formulas:
$v_{i}=\alpha^{i}+\alpha^{-i}$
in $\mathbf{Z}[\alpha] /\left(\alpha^{2}-10 \alpha+1\right)$.
If $\operatorname{Icm}\{1,2,3, \ldots, z\} \in(p+1) Z$ and $10^{2}-4$ non-square in \mathbf{F}_{p} then $\mathbf{F}_{p}[\alpha] /\left(\alpha^{2}-10 \alpha+1\right)$
is a field so $S_{2} \in p \mathbf{Z}$.
e.g. $z=20$, Icm $=232792560$:
$S_{2}=v_{\text {Icm }}-2$ has prime divisors 3 , $5,7,11,13,17,19,23,29,37,41$, $43,53,59,67,71,73,79,83,89$, $97,103,109,113,131,151,179$, 181, 191, 211, 227, 233, 239, 241, 251, 271, 307, 313, 331, 337, 373, 409, 419, 439, 457, 467, 547, 569, 571, 587, 593, 647, 659, 673, 677, 683, 727, 857, 859, 881, 911, 937, 967, 971, etc.

The elliptic-curve method

Fix $a \in\{6,10,14,18, \ldots\}$.
Define $x_{1}=2, d_{1}=1$,
$x_{2 i}=\left(x_{i}^{2}-d_{i}^{2}\right)^{2}$,
$d_{2 i}=4 x_{i} d_{i}\left(x_{i}^{2}+a x_{i} d_{i}+d_{i}^{2}\right)$,
$x_{2 i+1}=4\left(x_{i} x_{i+1}-d_{i} d_{i+1}\right)^{2}$, $d_{2 i+1}=8\left(x_{i} d_{i+1}-d_{i} x_{i+1}\right)^{2}$.

Define $S_{a}=d_{\mathrm{lcm}\{1,2,3, \ldots, z\}}$.
Have now supplemented S_{1}, S_{2} with S_{6}, S_{10}, S_{14}, etc. Variability of a is important.

Point of x_{i}, d_{i} formulas:
If $d_{i}\left(a^{2}-4\right)(4 a+10) \notin p \mathbf{Z}$ then i th multiple of $(2,1)$
on the elliptic curve
$(4 a+10) y^{2}=x^{3}+a x^{2}+x$
over \mathbf{F}_{p} is $\left(x_{i} / d_{i}, \ldots\right)$.
If $\left(a^{2}-4\right)(4 a+10) \notin p \mathbf{Z}$ and $\operatorname{lcm} \in($ order of $(2,1)) \mathbf{Z}$ then $S_{a} \in p \mathbf{Z}$.

Order of elliptic-curve group depends on a but is always in $[p+1-2 \sqrt{p}, p+1+2 \sqrt{p}]$.
e.g. $z=20, a=10, p=105239$:
p divides S_{10}.
Have $232792560(2,1)=\infty$
on the elliptic curve
$50 y^{2}=x^{3}+10 x^{2}+x$ over \mathbf{F}_{p}.
In fact, $(2,1)$ has order
$13167=3^{2} \cdot 7 \cdot 11 \cdot 19$
on this curve.
Number of $\boldsymbol{F}_{p \text {-points }}$ of curve is $105336=2^{3} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 19$.

Consider smallest z
such that product of S_{a}
for first z choices of a
is divisible by every $p \leq y$.
Plausible conjecture: $z \in$
$\exp \sqrt{\left(\frac{1}{2}+o(1)\right) \log y \log \log y}$.
Computing this product takes $\approx 12 z^{2}$ mults; i.e. $\exp \sqrt{(2+o(1)) \log y \log \log y}$.

Early-abort ECM:
$\exp \sqrt{(8 / 9+o(1)) \log y \log \log y}$ after careful optimization.

Are all primes small?

Instead of using these methods to find smooth congruences c, can apply them directly to n.

Worst case: n is product of two primes $\approx \sqrt{n}$.

Take $y \approx \sqrt{n}$.
Number of milts mod n in elliptic-curve method:
$\exp \sqrt{(2+o(1)) \log y \log \log y}=$
$\exp \sqrt{(1+o(1)) \log n \log \log n}$.

Faster than \mathbf{Q} sieve.

Comparable to quadratic sieve, using much less memory.

Slower than number-field sieve for sufficiently large n.

One elliptic-curve computation found a prime $\approx 2^{219}$ in $\approx 3 \cdot 10^{12}$ Opteron cycles. Fairly lucky in retrospect.

