
The number-field sieve

Finding small factors of integers

D. J. Bernstein

University of Illinois at Chicago

The Q sieve factors n

by combining enough

y-smooth congruences i(n + i).

“Enough” � “> y=log y.”

Plausible conjecture: if y 2

exp
q

�

1
2 + o(1)

�

logn log logn

then y

2+o(1) congruences

have enough smooth congruences.

Linear sieve, quadratic sieve,

random-squares method,

number-field sieve, etc.: similar.

Also combine congruences for

discrete logs, class groups, etc.

Finding small factors

Find smooth congruences

by finding small factors

of many congruences:

Neverending supply
of congruences

select��
Smallest congruences

find small factors��
Partial factorizations

using primes � y

abort non-smooth��
Smooth congruences

How to find small factors?

Could use trial division:

For each congruence,

remove factors of 2,

remove factors of 3,

remove factors of 5,

etc.; use all primes p � y.

y

3+o(1) bit operations:

y

1+o(1) per congruence.

Want something faster!

Early aborts

Neverending supply
of congruences

select��
Smallest congruences

��
Partial factorizations
using primes � y

1=2

early abort��
Smallest unfactored parts

��
Partial factorizations

using primes � y

final abort��
Smooth congruences

Find small primes by trial division.

Cost y1=2+o(1) for primes � y

1=2.

Cost y1+o(1) for primes � y.

Say we choose “smallest”

so that each congruence

has chance y

1=2+o(1)
=y

1+o(1)

of surviving early abort.

Have reduced trial-division

cost by factor y1=2+o(1).

Fact: A y-smooth congruence

has chance y

�1=4+o(1)

of surviving early abort.

Have reduced identify-a-smooth

cost by factor y1=4+o(1).

Example from Andrew Shallue:

A uniform random integer in

[1; 264
� 1] has chance about 2�8:1

of being 215-smooth, chance about

2�3:5 of having 27-unfactored part

below 244, and chance about 2�9:8

of satisfying both conditions.

Given congruence, find primes

� 27; abort if unfactored part is

above 244; then find primes � 215.

Compared to skipping the abort:

about 23:5 times faster, about 21:7

times less productive; gain 21:8.

More generally, can abort at

y

1=k, y2=k, etc. Balance stages

to reduce cost per congruence

from y

1+o(1) to y

1=k+o(1).

Fact: A y-smooth congruence

has relatively good chance

of surviving early abort.

Have reduced identify-a-smooth

cost by factor y(1�1=k)=2+o(1).

Increase k slowly with y.

Find enough smooth congruences

using y

2:5+o(1) bit operations.

Want something faster!

Sieving

Textbook answer: Sieving

finds enough smooth congruences

using only y

2+o(1) bit operations.

To sieve: Generate in order of p,

then sort in order of i,

all pairs (i; p) with

i in range and i(n + i) 2 pZ.

Pairs for one p are

(p; p), (2p; p), (3p; p), etc.

and (p� (n mod p); p) etc.

e.g. y = 10, n = 611,

i 2 f1; 2; : : : ; 100g:

For p = 2 generate pairs

(2; 2); (4; 2); (6; 2); : : : ; (100; 2)

and (1; 2); (3; 2); (5; 2); : : : ; (99; 2).

For p = 3 generate pairs

(3; 3); (6; 3); : : : ; (99; 3) and

(1; 3); (4; 3); : : : ; (100; 3).

For p = 5 generate pairs

(5; 5); (10; 5); : : : ; (100; 5) and

(4; 5); (9; 5); : : : ; (99; 5).

For p = 7 generate pairs

(7; 7); (14; 7); : : : ; (98; 7) and

(5; 7); (12; 7); : : : ; (96; 7).

Sort pairs by first coordinate:

(1; 2), (1; 3), (2; 2), (3; 2), (3; 3),

(4; 2), (4; 3), (4; 5), : : :, (98; 2),

(98; 7), (99; 2), (99; 3), (99; 5),

(100; 2), (100; 3), (100; 5).

Sorted list shows that

the small primes in i(n + i) are

2; 3 for i = 1;

2 for i = 2;

: : :

2; 7 for i = 98;

2; 3; 5 for i = 99;

2; 3; 5 for i = 100.

In general, for i 2
�

1; : : : ; y2
	

:

Prime p produces � y

2
=p pairs

(p; p), (2p; p), (3p; p), etc.

and produces � y

2
=p pairs

(p� (n mod p); p) etc.

Total number of pairs �
P

p�y

2y2
=p � 2y2 log log y.

Easily generate pairs, sort,

and finish checking smoothness,

in y

2(lg y)O(1) bit operations.

Only (lg y)O(1) bit operations

per congruence.

Hidden costs

Is that what we do

in record-setting factorizations?

No!

Sieving has two big problems.

First problem:

Sieving needs large i range.

For speed, must use batch of

� y

1+o(1) consecutive i’s.

Limits number of sublattices,

so limits smoothness chance.

Can eliminate this problem

using “remainder trees.”

Product trees

Given 1; 2; : : : ; m,

together having y(lg y)O(1) bits:

Can compute 12 � � � m

with y(lg y)O(1) operations.

Actually compute

“product tree” of 1; 2; : : : ; m.

Root: 12 � � � m.

Left subtree if m � 2:

product tree of 1; : : : ; dm=2e.

Right subtree if m � 2:

product tree of
dm=2e+1; : : : ; m.

e.g. tree for 23; 29; 84; 15; 58; 19:

926142840

56028

=={{{
16530

hhQQQQQ

667

=={{{
84

XX111

870

=={{{
19

XX111

23

FF
29

XX111

15

FF
58

XX111

Obtain each level of tree

with y(lg y)O(1) operations

by multiplying lower-level pairs.

Use FFT-based multiplication.

Remainder trees

Remainder tree

of P; 1; 2; : : : ; m has one

node P mod C for each node C

in product tree of 1; 2; : : : ; m.

e.g. remainder tree of

223092870; 23; 29; 84; 15; 58; 19:

223092870
||zz

z
((RRRRRR

45402
||zz

z
��2

22
3990

||zz
z

��2
22

46
����� ��2

22
42 510

����� ��2
22

0

0 17 0 46

Use product tree to compute

product P of primes p � y.

Use remainder tree to compute

P mod 1; P mod 2; : : :.

Now 1 is y-smooth

iff P

2k mod 1 = 0 for

minimal k � 0 with 22k
� 1.

Similarly 2 etc.

Total y(lg y)O(1) operations

if 1; 2; : : : together

have y(lg y)O(1) bits.

Hidden costs, continued

Second problem with sieving,

not fixed by remainder trees:

Need y

1+o(1) bits of storage.

Real machines don’t have much

fast memory: it’s expensive.

Effect is not visible for

small computations on

single serial CPUs,

but becomes critical in

huge parallel computations.

How to quickly find primes

above size of fast memory?

The rho method

Define �0 = 0, �
k+1 = �

2
k

+ 11.

Every prime � 220 divides S =

(�1 � �2)(�2 � �4)(�3 � �6)

� � � (�3575 � �7150).

Also many larger primes.

Can compute gcdf; Sg using

� 214 multiplications mod ,

very little memory.

Compare to � 216 divisions

for trial division up to 220.

More generally: Choose z.

Compute gcdf; Sg where S =

(�1 � �2)(�2 � �4) � � � (�z � �2z).

How big does z have to be

for all primes � y to divide S?

Plausible conjecture: y

1=2+o(1);

so y

1=2+o(1) mults mod .

Early-abort rho: y

1=4+o(1) mults.

Reason: Consider first collision in

�1 mod p; �2 mod p; : : :.

If �
i

mod p = �

j

mod p

then �

k

mod p = �2k mod p

for k 2 (j � i)Z \ [i;1] \ [j;1].

The p� 1 method

Have built an integer S

divisible by all primes � y.

Less costly way to do this?

First attempt: Choose z.

Define S1 = 2lcmf1;2;3;:::;zg
� 1.

If lcm 2 (p� 1)Z then S1 2 pZ.

Can tweak to find more p’s:

e.g., could instead use product

of 2lcm
� 1 and 2lcm�q

� 1

for all primes q 2 [z + 1; z log z];

could replace lcm by lcm2.

e.g. z = 20:

lcm = lcmf1; 2; 3; : : : ; 20g

= 24
� 32

� 5 � 7 � 11 � 13 � 17 � 19

= 232792560.

S1 = 2lcm
� 1 has prime divisors

3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 53, 61, 67, 71, 73, 79,

89, 97, 103, 109, 113, 127, 131,

137, 151, 157, 181, 191, 199, etc.

Compute S1 with 34 mults.

As z !1: (1:44 : : : + o(1))z

multiplications to compute S1.

Dividing lcmf1; : : : ; zg is stronger

than z-smoothness but not much.

Plausible conjecture: if z 2

exp
q

�

1
2 + o(1)

�

log y log log y

then p� 1 divides lcmf1; : : : ; zg

with chance 1=z1+o(1)

for uniform random prime p � y.

So method finds some primes

at surprisingly high speed.

What about the other primes?

The p + 1 method

Second attempt:

Define v0 = 2, v1 = 10,

v2i = v

2
i

� 2,

v2i+1 = v

i

v

i+1 � v1.

Define S2 = vlcmf1;2;3;:::;zg � 2.

Point of v
i

formulas:

v

i

= �

i + �

�i

in Z[�]=(�2
� 10� + 1).

If lcmf1; 2; 3; : : : ; zg 2 (p + 1)Z

and 102
� 4 non-square in F

p

then F
p

[�]=(�2
� 10� + 1)

is a field so S2 2 pZ.

e.g. z = 20, lcm = 232792560:

S2 = vlcm � 2 has prime divisors 3,

5, 7, 11, 13, 17, 19, 23, 29, 37, 41,

43, 53, 59, 67, 71, 73, 79, 83, 89,

97, 103, 109, 113, 131, 151, 179,

181, 191, 211, 227, 233, 239, 241,

251, 271, 307, 313, 331, 337, 373,

409, 419, 439, 457, 467, 547, 569,

571, 587, 593, 647, 659, 673, 677,

683, 727, 857, 859, 881, 911, 937,

967, 971, etc.

The elliptic-curve method

Fix a 2 f6; 10; 14; 18; : : :g.

Define x1 = 2, d1 = 1,

x2i = (x2
i

� d

2
i

)2,

d2i = 4x
i

d

i

(x2
i

+ ax

i

d

i

+ d

2
i

),

x2i+1 = 4(x
i

x

i+1 � d

i

d

i+1)
2,

d2i+1 = 8(x
i

d

i+1 � d

i

x

i+1)
2.

Define S

a

= dlcmf1;2;3;:::;zg.

Have now supplemented S1; S2

with S6, S10, S14, etc.

Variability of a is important.

Point of x
i

; d

i

formulas:

If d
i

(a2
� 4)(4a + 10) =2 pZ

then ith multiple of (2; 1)

on the elliptic curve

(4a + 10)y2 = x

3 + ax

2 + x

over F
p

is (x
i

=d

i

; : : :).

If (a2
� 4)(4a + 10) =2 pZ

and lcm 2 (order of (2; 1))Z

then S

a

2 pZ.

Order of elliptic-curve group

depends on a but is always

in [p + 1� 2
p

p; p + 1 + 2
p

p].

e.g. z = 20, a = 10, p = 105239:

p divides S10.

Have 232792560(2; 1) = 1

on the elliptic curve

50y2 = x

3 + 10x2 + x over F
p

.

In fact, (2; 1) has order

13167 = 32
� 7 � 11 � 19

on this curve.

Number of F
p

-points of curve

is 105336 = 23
� 32

� 7 � 11 � 19.

Consider smallest z

such that product of S
a

for first z choices of a

is divisible by every p � y.

Plausible conjecture: z 2

exp
q

�

1
2 + o(1)

�

log y log log y.

Computing this product

takes � 12z2 mults; i.e.

exp
p

(2 + o(1))log y log log y.

Early-abort ECM:

exp
p

(8=9 + o(1))log y log log y

after careful optimization.

Are all primes small?

Instead of using these methods

to find smooth congruences ,

can apply them directly to n.

Worst case: n is product

of two primes �
p

n.

Take y �

p

n.

Number of mults mod n

in elliptic-curve method:

exp
p

(2 + o(1))log y log log y =

exp
p

(1 + o(1))logn log logn.

Faster than Q sieve.

Comparable to quadratic sieve,

using much less memory.

Slower than number-field sieve

for sufficiently large n.

One elliptic-curve computation

found a prime � 2219

in � 3 � 1012 Opteron cycles.

Fairly lucky in retrospect.

