The number-field sieve
D. J. Bernstein

University of Illinois at Chicago

Sieving small integers $i>0$ using primes $2,3,5,7$:

1	1	
2	2	
3		3
4	22	
5		5
6	2	
7		7
8	222	
9		33
10	2	5
11		
12	22	
13		
14	2	
15		35
16	2222	
17		
18	2	33
19		
20	22	5

etc.

Sieving i and $611+i$ for small i using primes $2,3,5,7$:

612	22	33		
613				
614	2			
615		3	5	
616	222			7
617				
618	2	3		
619				
620	22		5	
621		333		
622	2			
623				7
624	2222	3		
625				
626	2			
627		3		
628	22			
629	2	33	5	7
631	2	33	5	7

etc.

Have complete factorization of the "congruences" $i(611+i)$ for some i 's.
$14 \cdot 625=2^{1} 3^{0} 5^{4} 7^{1}$.
$64 \cdot 675=2^{6} 3^{3} 5^{2} 7^{0}$.
$75 \cdot 686=2^{1} 3^{1} 5^{2} 7^{3}$.
$14 \cdot 64 \cdot 75 \cdot 625 \cdot 675 \cdot 686$
$=2^{8} 3^{4} 5^{8} 7^{4}=\left(2^{4} 3^{2} 5^{4} 7^{2}\right)^{2}$.
$\operatorname{gcd}\left\{611,14 \cdot 64 \cdot 75-2^{4} 3^{2} 5^{4} 7^{2}\right\}$ $=47$.
$611=47 \cdot 13$.

Why did this find a factor of 611 ? Was it just blind luck:
$\operatorname{gcd}\{611$, random $\}=47$?
No.
By construction 611 divides $s^{2}-t^{2}$ where $s=14 \cdot 64 \cdot 75$
and $t=2^{4} 3^{2} 5^{4} 7^{2}$.
So each prime >7 dividing 611 divides either $s-t$ or $s+t$.

Not terribly surprising
(but not guaranteed in advance!)
that one prime divided $s-t$ and the other divided $s+t$.

Why did the first three completely factored congruences have square product?
Was it just blind luck?
Yes. The exponent vectors
$(1,0,4,1),(6,3,2,0),(1,1,2,3)$ happened to have sum $0 \bmod 2$.

But we didn't need this luck!
Given long sequence of vectors, quickly find nonempty subsequence with sum $0 \bmod 2$.

This is linear algebra over \mathbf{F}_{2}.
Guaranteed to find subsequence if number of vectors exceeds length of each vector.
e.g. for $n=671$:
$1(n+1)=2^{5} 3^{1} 5^{0} 7^{1}$;
$4(n+4)=2^{2} 3^{3} 5^{2} 7^{0}$;
$15(n+15)=2^{1} 3^{1} 5^{1} 7^{3}$;
$49(n+49)=2^{4} 3^{2} 5^{1} 7^{2}$;
$64(n+64)=2^{6} 3^{1} 5^{1} 7^{2}$.
F_{2}-kernel of exponent matrix is gen by (01011) and (10110); e.g., $1(n+1) 15(n+15) 49(n+49)$ is a square.

Plausible conjecture: \mathbf{Q} sieve can separate the odd prime divisors of any n, not just 611 .

Given n and parameter y :

1. Try to completely factor $i(n+i)$
for $i \in\left\{1,2,3, \ldots, y^{2}\right\}$
into products of primes $\leq y$.
2. Look for nonempty set of i 's with $i(n+i)$ completely factored and with $\prod i(n+i)$ square.
3. Compute $\operatorname{gcd}\{n, s-t\}$ where $s=\prod_{i} i$ and $t=\sqrt{\prod_{i} i(n+i)}$.

How large does y have to be for this to find a square?

Let's aim for number of
completely factored congruences to exceed length of each vector, guaranteeing a square.
(This is somewhat pessimistic; smaller numbers usually work.)

Vector length $\approx y / \log y$.
Will there be $>y / \log y$
completely factored congruences out of y^{2} congruences?

What's chance of random $i(n+i)$ being y-smooth, i.e., completely factored into primes $\leq y$?

Consider, e.g., $y=\left\lfloor n^{1 / 10}\right\rfloor$. Uniform random integer in $\left[1, y^{2}\right]$ has y-smoothness chance ≈ 0.306; uniform random integer in $[1, n]$ has chance $\approx 2.77 \cdot 10^{-11}$. Plausible conjecture: y-smoothness chance of $i(n+i)$ is $\approx 8.5 \cdot 10^{-12}$.
Find $\approx 8.5 \cdot 10^{-12} y^{2}$
fully factored congruences.

If $n \geq 2^{340}$ and $y=\left\lfloor n^{1 / 10}\right\rfloor$ then
$8.5 \cdot 10^{-12} y^{2}>3 y / \log y$, and approximations seem fairly close, so conjecturally the \mathbf{Q} sieve will find a square.

Find many independent squares with negligible extra effort. If gcd turns out to be 1 , try the next square.

Conjecturally always works:
splits odd n into
prime-power factors.

How about $y \approx n^{1 / u}$
for larger u ?
Uniform random integer in $[1, n]$ has $n^{1 / u_{-s}}$-smoothness chance roughly u^{-u}.

Plausible conjecture:
\mathbf{Q} sieve succeeds
with $y=\left\lfloor n^{1 / u}\right\rfloor$
for all $n \geq u^{(1+o(1)) u^{2}}$;
here $o(1)$ is as $u \rightarrow \infty$.

How about letting u grow with n ?
Given n, try sequence of y 's in geometric progression until Q sieve works; e.g., increasing powers of 2.

Plausible conjecture: final $y \in$ $\exp \sqrt{\left(\frac{1}{2}+o(1)\right) \log n \log \log n}$, $u \in \sqrt{(2+o(1)) \log n / \log \log n}$.

Cost of \mathbf{Q} sieve is a power of y, hence subexponential in n.

More generally, if $y \in$
$\exp \sqrt{\left(\frac{1}{2 c}+o(1)\right) \log n \log \log n}$,
conjectured y-smoothness chance is $1 / y^{c+o(1)}$.

Find enough smooth congruences by changing the range of i 's:
replace y^{2} with $y^{c+1+o(1)}=$
$\exp \sqrt{\left(\frac{(c+1)^{2}+o(1)}{2 c}\right) \log n \log \log n}$.
Increasing c past 1
increases number of i 's but reduces linear-algebra cost.
So linear algebra never dominates when y is chosen properly.

Improving smoothness chances

Smoothness chance of $i(n+i)$ degrades as i grows.
Smaller for $i \approx y^{2}$ than for $i \approx y$.
Crude analysis: $i(n+i)$ grows.
$\approx y n$ if $i \approx y$;
$\approx y^{2} n$ if $i \approx y^{2}$.
More careful analysis:
$n+i$ doesn't degrade, but i is always smooth for $i \leq y$, only 30% chance for $i \approx y^{2}$.

Can we select congruences to avoid this degradation?

Choose q, square of large prime. Choose a " q-sublattice" of i 's: arithmetic progression of i 's where q divides each $i(n+i)$. e.g. progression $q-(n \bmod q)$, $2 q-(n \bmod q), 3 q-(n \bmod q)$, etc.

Check smoothness of generalized congruence $i(n+i) / q$ for i 's in this sublattice.
e.g. check whether $i,(n+i) / q$ are smooth for $i=q-(n \bmod q)$ etc.

Try many large q's.
Rare for i 's to overlap.
e.g. $n=314159265358979323$:

Original \mathbf{Q} sieve:

$$
\begin{array}{ll}
i & n+i \\
1 & 314159265358979324 \\
2 & 314159265358979325 \\
3 & 314159265358979326
\end{array}
$$

Use 997^{2}-sublattice,
$i \in 802458+994009 Z$:

$$
\begin{array}{rl}
i & (n+i) / 997^{2} \\
802458 & 316052737309 \\
1796467 & 316052737310 \\
2790476 & 316052737311
\end{array}
$$

Crude analysis: Sublattices eliminate the growth problem. Have practically unlimited supply of generalized congruences
$(q-(n \bmod q)) \frac{n+q-(n \bmod q)}{q}$
q
between 0 and n.
More careful analysis: Sublattices are even better than that!
For $q \approx n^{1 / 2}$ have
$i \approx(n+i) / q \approx n^{1 / 2} \approx y^{u / 2}$ so smoothness chance is roughly $(u / 2)^{-u / 2}(u / 2)^{-u / 2}=2^{u} / u^{u}$, 2^{u} times larger than before.

Even larger improvements
from changing polynomial $i(n+i)$.
"Quadratic sieve" (QS) uses
$i^{2}-n$ with $i \approx \sqrt{n}$;
have $i^{2}-n \approx n^{1 / 2+o(1)}$,
much smaller than n.
"MPQS" improves o(1)
using sublattices: $\left(i^{2}-n\right) / q$.
But still $\approx n^{1 / 2}$.
"Number-field sieve" (NFS) achieves $n^{o(1)}$.

Generalizing beyond \mathbf{Q}

The \mathbf{Q} sieve is a special case of the number-field sieve.

Recall how the \mathbf{Q} sieve factors 611:

Form a square as product of $i(i+611 j)$
for several pairs (i, j) :
14(625) $\cdot 64(675) \cdot 75(686)$
$=4410000^{2}$.
$\operatorname{gcd}\{611,14 \cdot 64 \cdot 75-4410000\}$
$=47$.

The $\mathbf{Q}(\sqrt{14})$ sieve
factors 611 as follows:

Form a square

as product of $(i+25 j)(i+\sqrt{14} j)$
for several pairs (i, j) :
$(-11+3 \cdot 25)(-11+3 \sqrt{14})$
$\cdot(3+25)(3+\sqrt{14})$
$=(112-16 \sqrt{14})^{2}$.
Compute
$s=(-11+3 \cdot 25) \cdot(3+25)$,
$t=112-16 \cdot 25$,
$\operatorname{gcd}\{611, s-t\}=13$.

Why does this work?
Answer: Have ring morphism $\mathbf{Z}[\sqrt{14}] \rightarrow \mathbf{Z} / 611, \sqrt{14} \mapsto 25$, since $25^{2}=14$ in $\mathbf{Z} / 611$.

Apply ring morphism to square:
$(-11+3 \cdot 25)(-11+3 \cdot 25)$
$\cdot(3+25)(3+25)$
$=(112-16 \cdot 25)^{2}$ in $\mathbf{Z} / 611$.
i.e. $s^{2}=t^{2}$ in $\mathbf{Z} / 611$.

Unsurprising to find factor.

Diagram of ring morphisms:

$$
\begin{aligned}
& \mathbf{Q}[x] \xrightarrow{x \mapsto \sqrt{14}} \mathbf{Q}[\sqrt{14}]=\mathbf{Q}(\sqrt{14}) \\
& \mathbf{Z}[x] \xrightarrow{x \mapsto \sqrt{14}} \mathbf{Z}[\sqrt{14}] \\
& \downarrow \sqrt{14} \mapsto 25 \\
& \text { Z/611 }
\end{aligned}
$$

$\mathbf{Z}[x]$ uses polynomial arithmetic on $\left\{i_{0} x^{0}+i_{1} x^{1}+\cdots:\right.$ all $\left.i_{m} \in \mathbf{Z}\right\}$; $\mathbf{Z}[\sqrt{14}]$ uses \mathbf{R} arithmetic on $\left\{i_{0}+i_{1} \sqrt{14}: i_{0}, i_{1} \in \mathbf{Z}\right\}$;
$\mathbf{Z} / 611$ uses arithmetic mod 611 on $\{0,1, \ldots, 610\}$.

Generalize from $\left(x^{2}-14,25\right)$ to (f, m) with irreg $f \in \mathbf{Z}[x]$, $m \in \mathbf{Z}, f(m) \in n \mathbf{Z}$.

Write $d=\operatorname{deg} f$,
$f=f_{d} x^{d}+\cdots+f_{1} x^{1}+f_{0} x^{0}$.
Can take $f_{d}=1$ for simplicity, but larger f_{d} allows better parameter selection.

Pick $\alpha \in \mathbf{C}$, root of f.
Then $f_{d} \alpha$ is a root of
monic $g=f_{d}^{d-1} f\left(x / f_{d}\right) \in \mathbf{Z}[x]$.

$$
\begin{aligned}
& \mathbf{Q}(\alpha)=\left\{\begin{array}{l}
r_{0}+r_{1} \alpha+r_{2} \alpha^{2}+ \\
\cdots+r_{d-1} \alpha^{d-1} \\
r_{0}, \ldots, r_{d-1} \in \mathbf{Q}
\end{array}\right\} \\
& \uparrow \\
& \mathcal{O}=\left\{\begin{array}{c}
\text { algebraic integers } \\
\text { in } \mathbf{Q}(\alpha)
\end{array}\right\} \\
& \uparrow \\
& \mathbf{Z}\left[f_{d} \alpha\right]=\left\{\begin{array}{l}
i_{0}+i_{1} f_{d} \alpha+ \\
\cdots+i_{d-1} f_{d}^{d-1} \alpha^{d-1}: \\
i_{0}, \ldots, i_{d-1} \in \mathbf{Z}
\end{array}\right\} \\
& f_{d} \alpha \mapsto f_{d} m \\
& \mathbf{Z} / n=\{0,1, \ldots, n-1\}
\end{aligned}
$$

Build square in $\mathbf{Q}(\alpha)$ from congruences $(i-j m)(i-j \alpha)$ with $i \mathbf{Z}+j \mathbf{Z}=\mathbf{Z}$ and $j>0$.

Could replace $i-j x$ by higher-deg irred in $\mathbf{Z}[x]$; quadratics seem fairly small for some number fields. But let's not bother.

Say we have a square
$\prod_{(i, j) \in S}(i-j m)(i-j \alpha)$ in $\mathbf{Q}(\alpha)$; now what?
$\prod(i-j m)(i-j \alpha) f_{d}^{2}$
is a square in \mathcal{O},
ring of integers of $\mathbf{Q}(\alpha)$.
Multiply by $g^{\prime}\left(f_{d} \alpha\right)^{2}$,
putting square root into $\mathbf{Z}\left[f_{d} \alpha\right]$: compute r with $r^{2}=g^{\prime}\left(f_{d} \alpha\right)^{2}$. $\prod(i-j m)(i-j \alpha) f_{d}^{2}$.

Then apply the ring morphism $\varphi: \mathbf{Z}\left[f_{d} \alpha\right] \rightarrow \mathbf{Z} / n$ taking $f_{d} \alpha$ to $f_{d} m$. Compute $\operatorname{gcd}\{n$, $\left.\left.\varphi(r)-g^{\prime}\left(f_{d} m\right)\right\rceil(i-j m) f_{d}\right\}$. $\ln \mathbf{Z} / n$ have $\varphi(r)^{2}=$
$\left.g^{\prime}\left(f_{d} m\right)^{2}\right\rceil(i-j m)^{2} f_{d}^{2}$.

How to find square product

 of congruences $(i-j m)(i-j \alpha)$?Start with congruences for, e.g., y^{2} pairs (i, j).

Look for y-smooth congruences: y-smooth $i-j m$ and y-smooth $f_{d} \operatorname{norm}(i-j \alpha)=$ $f_{d} i^{d}+\cdots+f_{0} j^{d}=j^{d} f(i / j)$.

Find enough smooth congruences. Perform linear algebra on exponent vectors mod 2 .

Exponent vectors have many "rational" components, many "algebraic" components, a few "character" components.

One rational component for each prime $p \leq y$.
Value $\operatorname{ord}_{p}(i-j m)$.
One rational component for -1 .
Value 0 if $i-j m>0$,
value 1 if $i-j m<0$.
If $\Pi(i-j m)$ is a square then vectors add to 0 in rational components.

One algebraic component
for each pair (p, r) such that
p is a prime $\leq y$;
$f_{d} \notin p \mathbf{Z} ; \operatorname{disc} f \notin p \mathbf{Z}$;
$r \in \mathbf{F}_{p} ; f(r)=0$ in \mathbf{F}_{p}.
Value 0 if $i-j r \notin p \mathbf{Z}$;
otherwise $\operatorname{ord}_{p}\left(j^{d} f(i / j)\right)$.
This is the same as
the valuation of $i-j \alpha$ at the prime $p \mathcal{O}+\left(f_{d} \alpha-f_{d} r\right) \mathcal{O}$. Recall that $i \mathbf{Z}+j \mathbf{Z}=\mathbf{Z}$, so no higher-degree primes.

One character component for each pair (p, r) with p in a short range above y.

Value 0 if $i-j r$ is a square in \mathbf{F}_{p}, else 1.

If $\rceil(i-j \alpha)$ is a square then vectors add to 0 in algebraic components and character components.

Conversely, consider vectors adding to 0 in all components.
$\Pi(i-j m)$ must be a square.
Is $\prod(i-j \alpha)$ a square?
Ideal $\prod(i-j \alpha) \mathcal{O}$ must be square outside f_{d} disc f.
What about primes in f_{d} disc f ?
Even if ideal is square,
is square root principal?
Even if ideal is generated by square of element, does square equal $\Pi(i-j \alpha)$?

Obstruction group is small, conjecturally very small. " $\left(f_{d}\right.$ disc $\left.f\right)$-Selmer group."

A few characters
suffice to generate dual,
forcing $\rceil(i-j \alpha)$
to be a square.
Can be quite sloppy here; easy to redo linear algebra with more characters if non-square is encountered.

Sublattices

Consider a sublattice of pairs (i, j) where q divides $j^{d} f(i / j)$.

Assume squarish lattice.
$(i-j m) j^{d} f(i / j)$
expands by factor $q^{(d+1) / 2}$ before division by q.

Number of sublattice elements within any particular bound
on $(i-j m) j^{d} f(i / j)$
is proportional to $q^{-(d-1) /(d+1)}$.

Compared to just using $q=1$, conjecturally obtain $y^{4 /(d+1)+o(1)}$ times as many congruences by using sublattices for all y-smooth integers $q \leq y^{2}$.

Separately consider
$i-j m$ and $j^{d} f(i / j) / q$
for more precise analysis.
Limit congruences accordingly, increasing smoothness chances.

Multiple number fields

Assume that $f+x-m \in \mathbf{Z}[x]$ is also irred.

Pick $\beta \in \mathbf{C}$, root of $f+x-m$.
Two congruences for (i, j) :
$(i-j m)(i-j \alpha) ;(i-j m)(i-j \beta)$.
Expand exponent vectors to
handle both $\mathbf{Q}(\alpha)$ and $\mathbf{Q}(\beta)$.
Merge smoothness tests
by testing $i-j m$ first,
aborting if $i-j m$ not smooth.
Can use many number fields:
$f+2(x-m)$ etc.

