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on another computer.

The targeted server used its key
solely to encrypt data using the
OpenSSL AES implementation
on a Pentium I11.”

All code included in paper.
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All code included in paper. without cache misses
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Outline of this talk:
1. How to advertise
an AES candidate
2. How to leak keys through
timings: basic techniques
3. How to break AES remotely
by forcing cache misses
4. How to skew a benchmark
5. How to leak keys through
timings: advanced techniques
6. How to break AES remotely
without cache misses
/. How to misdesign
a cryptographic architecture

1. Advertising an AES candidate

1997: US NIST announces block-
cipher competition. Goal: AES,
replacing DES as US government-
approved block cipher.

1999: NIST announces MARS,
RC6, Rijndael, Serpent, Twofish
as AES finalists.

2001: NIST publishes “Report on
the development of the Advanced
Encryption Standard (AES),”

explaining selection of Rijndael as

AES.
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1. Advertising an AES candidate

1997: US NIST announces block-
cipher competition. Goal: AES,
replacing DES as US government-
approved block cipher.

1999: NIST announces MARS,
RC6, Rijndael, Serpent, Twofish
as AES finalists.

2001: NIST publishes “Report on
the development of the Advanced
Encryption Standard (AES),”

explaining selection of Rijndael as

AES.

1996: Kocher extracts RSA key
from timings of a server.

Clear threat to block-cipher keys
too. As stated in NIST’s report:

“In some environments,

timing attacks can be effected
against operations that execute
in different amounts of time,
depending on their arguments.
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1996: Kocher extracts RSA key
from timings of a server.

Clear threat to block-cipher keys
too. As stated in NIST’s report:

“In some environments,

timing attacks can be effected
against operations that execute
in different amounts of time,
depending on their arguments.

“A general defense against
timing attacks iIs to ensure that
each encryption and decryption
operation runs in the same
amount of time. ...

“Table lookup: not vulnerable to
timing attacks . ..

“Multiplication /division /squaring
or variable shift/rotation:
most difficult to defend ...
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“A general defense against
timing attacks iIs to ensure that
each encryption and decryption
operation runs in the same
amount of time. ...

“Table lookup: not vulnerable to
timing attacks . ..

“Multiplication /division /squaring
or variable shift/rotation:
most difficult to defend ...

“Rijndael and Serpent use

only Boolean operations,

table lookups, and fixed

shifts /rotations. These operations
are the easiest to defend against
attacks. ...

“Finalist profiles. ... The
operations used by Rijndael are
among the easiest to defend
against power and timing
attacks. ... Rijndael appears to
gain a major speed advantage
over Its competitors when such
protections are considered. ...
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“Rijndael and Serpent use “NIST judged Rijndael to be the
only Boolean operations, best overall algorithm for the
table lookups, and fixed AES. Rijndael appears to be a
shifts /rotations. These operations consistently good performer . ..
are the easiest to defend against Its key setup time iIs excellent,
attacks. ... and its key agility is good. ...
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best overall algorithm for the

AES. Rijndael appears to be a
consistently good performer . ..
Its key setup time is excellent,
and its key agility is good. ...
Rijndael’s operations are among
the easiest to defend against
power and timing attacks. ...
Finally, Rijndael’s internal
round structure appears to have
good potential to benefit from
instruction-level parallelism.”

(Emphasis added.)
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“NIST judged Rijndael to be the
best overall algorithm for the

AES. Rijndael appears to be a
consistently good performer . ..
Its key setup time is excellent,
and its key agility is good. ...
Rijndael’s operations are among
the easiest to defend against
power and timing attacks. ...
Finally, Rijndael’s internal
round structure appears to have
good potential to benefit from

instruction-level parallelism.”
(Emphasis added.)

1999: AES designers (Daemen,
Rijmen) publish “Resistance
against implementation attacks:
a comparative study of the AES
proposals’:

“Table lookups: This instruction
IS not susceptible to a timing
attack. ... Favorable: Algorithms
that use only logical operations,
table-lookups and fixed shifts,
and that are therefore relatively
easy to secure. The algorithms
of this group are Crypton, DEAL,
Magenta, Rijndael and Serpent.”
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1999: AES designers (Daemen,
Rijmen) publish “Resistance
against implementation attacks:
a comparative study of the AES
proposals’:

“Table lookups: This instruction
IS not susceptible to a timing

attack. ...
that use only logical operations,

Favorable: Algorithms

table-lookups and fixed shifts,
and that are therefore relatively
easy to secure. The algorithms
of this group are Crypton, DEAL,
Magenta, Rijndael and Serpent.”

AES designers write: Speed
reports “should take into account
the measures to be taken to
thwart these attacks.”

2005, after AES is shown to be
vulnerable, amazing change of
position: Timing attacks are
“Irrelevant for cryptographic
design.” Schneier, 2005:

“The problem is that side-channel
attacks are practical against
pretty much anything, so it didn't
really enter into consideration.”
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AES designers write: Speed
reports “should take into account
the measures to be taken to
thwart these attacks.”

2005, after AES is shown to be
vulnerable, amazing change of
position: Timing attacks are
“Irrelevant for cryptographic
design.” Schneier, 2005:

“The problem is that side-channel
attacks are practical against
pretty much anything, so it didn't
really enter into consideration.”

2. Leaking keys through timings

Most obvious timing variability:
skipping an operation is faster
than doing It.

1970s: TENEX operating system
compares user-supplied string
against secret password one

character a a time, stopping at

first difference. Attackers monitor
comparison time, deduce position
of difference. A few hundred tries

reveal secret password.
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2. Leaking keys through timings

Most obvious timing variability:
skipping an operation is faster
than doing It.

1970s: TENEX operating system
compares user-supplied string
against secret password one

character a a time, stopping at

first difference. Attackers monitor
comparison time, deduce position
of difference. A few hundred tries

reveal secret password.

Solution: Use co
password compar

Old:
for (i = 0O
if (x[i]
return

return 1;

New:
diff = O;
for (i = 0O
diff |= :

return !'di:



2. Leaking keys through timings Solution: Use constant-time

. o C assword comparison.
Most obvious timing variability: P P

skipping an operation is faster Old:
than doing Iit. for (i = 0;1i < n;++i)
if (x[i] '= yl[il)

1970s: TENEX operating system
return O;

compares user-supplied string

against secret password one return 1;

character a a time, stopping at New:

first difference. Attackers monitor diff = O;

comparison time, deduce position for (i = 0;1i < n;++i)
of difference. A few hundred tries diff |= x[i] =~ ylil;

reveal secret password. return !diff;
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Solution: Use constant-time
password comparison.

Old:
for (i = 0;1i < n;++i)
if (x[i] !'= y[il)
return O;

return 1;

New:
diff = O;
for (i O;i < n;++i)
diff |= x[i] =~ ylil;

return !'diff;
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Solution: Use constant-time
password comparison.

Old:
for (i = 0;1i < n;++i)
if (x[i] !'= y[il)
return O;

return 1;

New:
diff = O;
for (i O;i < n;++i)
diff |= x[i] =~ ylil;

return !'diff;

1996: Kocher points out timing
attacks on cryptographic key bits.
Example: key-dependent branch
in modular reduction, performing
large-integer subtraction for some
iInputs and not others, leaking key.

My reaction at the time: Yikes!
Eliminate variable-time operations

from cryptographic software!
Beware microSPARC-llep
data-dependent FPU timings;
use Fermat instead of Euclid for
inversion in ECC:

avoid S-boxes in ciphers; etc.
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1996: Kocher points out timing
attacks on cryptographic key bits.
Example: key-dependent branch
in modular reduction, performing

large-integer subtraction for some

iInputs and not others, leaking key.

My reaction at the time: Yikes!
Eliminate variable-time operations

from cryptographic software!
Beware microSPARC-llep
data-dependent FPU timings;
use Fermat instead of Euclid for
inversion in ECC:

avoid S-boxes in ciphers; etc.
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1996: Kocher points out timing
attacks on cryptographic key bits.
Example: key-dependent branch
in modular reduction, performing
large-integer subtraction for some

iInputs and not others, leaking key.

My reaction at the time: Yikes!
Eliminate variable-time operations

from cryptographic software!
Beware microSPARC-llep
data-dependent FPU timings;
use Fermat instead of Euclid for
inversion in ECC:

avoid S-boxes in ciphers; etc.

1999: Koeune Quisquater publish
fast timing attack on a “careless
implementation” of AES that
used Input-dependent branches.

AES has functions S, S’ mapping
bytes to bytes. Attack is against
S’ computed as follows:
byte Sprime(byte b) {
byte ¢ = S(b);
if (c<128) return c+c;
return (c+c) ~283;
}
Timing leaks bit of c: faster if
c < 128.
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implementation” of AES that
used Input-dependent branches.

AES has functions S, S’ mapping
bytes to bytes. Attack is against
S’ computed as follows:
byte Sprime(byte b) {
byte ¢ = S(b);
if (c<128) return c+c;
return (c+c) ~283;

+
Timing leaks bit of c: faster if

c < 128.
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1999: Koeune Quisquater publish
fast timing attack on a “careless
implementation” of AES that
used Input-dependent branches.

AES has functions S, S’ mapping
bytes to bytes. Attack is against
S’ computed as follows:
byte Sprime(byte b) {
byte ¢ = S(b);
if (c<128) return c+c;
return (c+c) ~283;

+
Timing leaks bit of c: faster if

c < 128.

Standard solution:
replace branch by arithmetic.

X = c>>7;
X |= (X<<1);
X |= (X<<3);

return (c<<1) ~X;
CPUs handle this arithmetic
In constant time.

Koeune Quisquater:

“The result presented here is
not an attack against Rijndael,
but against

bad implementations of it."
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Standard solution:
replace branch by arithmetic.

X = c>>7;
X |= (X<<1);
X |= (X<<3);

return (c<<1) ~X;
CPUs handle this arithmetic
In constant time.

Koeune Quisquater:

“The result presented here is
not an attack against Rijndael,
but against

bad implementations of it."

Second most obvious timing
variability: L2 cache is faster

than DRAM. Similarly, L1 cache
Is faster than L2 cache.

Reading from cached line
takes less time than
reading from uncached line.

Variability mentioned by 1996
Kocher, 2000 Kelsey Schneier
Wagner Hall ( “We believe attacks
based on cache hit ratio in large
S-box ciphers like Blowfish, CAST

and Khufu are possible” ), 2003
Ferguson Schneier.



1.

y arithmetic.

)
) ;

<1) °X;

5 arithmetic

Cer:
nted here is

ainst Rijndael,

ions of it."”

Second most obvious timing
variability: L2 cache is faster

than DRAM. Similarly, L1 cache
Is faster than L2 cache.

Reading from cached line
takes less time than
reading from uncached line.

Variability mentioned by 1996
Kocher, 2000 Kelsey Schneier
Wagner Hall ( “We believe attacks
based on cache hit ratio in large
S-box ciphers like Blowfish, CAST
and Khufu are possible” ), 2003
Ferguson Schneier.
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Second most obvious timing
variability: L2 cache is faster

than DRAM. Similarly, L1 cache
Is faster than L2 cache.

Reading from cached line
takes less time than
reading from uncached line.

Variability mentioned by 1996
Kocher, 2000 Kelsey Schneier
Wagner Hall ( “We believe attacks
based on cache hit ratio in large
S-box ciphers like Blowfish, CAST
and Khufu are possible” ), 2003

Ferguson Schneier.

2002: Page publishes fast
algorithm to find DES key
from high-bandwidth timing
information. DPA-style. Many
plaintexts, each starting with
empty cache. Algorithm input:
for each plaintext, list of S-box
lookups that missed the cache.

Avoid empty cache by preloading
some S-box entries? “To
guarantee this as an effective
countermeasure we need to warm
the cache with the entirety of all
the S-boxes.”
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information. DPA-style. Many
plaintexts, each starting with
empty cache. Algorithm input:
for each plaintext, list of S-box
lookups that missed the cache.

Avoid empty cache by preloading
some S-box entries? “To
guarantee this as an effective
countermeasure we need to warm
the cache with the entirety of all
the S-boxes.”
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2002: Page publishes fast
algorithm to find DES key
from high-bandwidth timing
information. DPA-style. Many
plaintexts, each starting with
empty cache. Algorithm input:
for each plaintext, list of S-box
lookups that missed the cache.

Avoid empty cache by preloading
some S-box entries? “To
guarantee this as an effective
countermeasure we need to warm
the cache with the entirety of all
the S-boxes.”

2003: Tsunoo, Saito, Suzaki,
Shigeri, Miyauchi publish fast
algorithm to find DES key from
low-bandwidth timing information.
Many plaintexts, each starting
with empty cache. Algorithm
input: for each plaintext,
encryption time.

“If a total-data load is executed
before processing, differences
between the frequencies of cache
misses will not be observed,
making it impossible to determine
the relationships between sets of
S-boxes.”
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2003: Tsunoo, Saito, Suzaki,
Shigeri, Miyauchi publish fast
algorithm to find DES key from

low-bandwidth timing information.

Many plaintexts, each starting
with empty cache. Algorithm
input: for each plaintext,
encryption time.

“If a total-data load is executed
before processing, differences
between the frequencies of cache
misses will not be observed,
making it impossible to determine
the relationships between sets of
S-boxes.”

3. Breaking AES

Given 16-byte se
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AES produces
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Uses table looku
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etc.

AES,(n) = (e78



2003: Tsunoo, Saito, Suzaki,
Shigeri, Miyauchi publish fast
algorithm to find DES key from

low-bandwidth timing information.

Many plaintexts, each starting
with empty cache. Algorithm
input: for each plaintext,
encryption time.

“If a total-data load is executed
before processing, differences
between the frequencies of cache
misses will not be observed,
making it impossible to determine
the relationships between sets of
S-boxes.”

3. Breaking AES

Given 16-byte sequence n
and 16-byte sequence k,
AES produces

16-byte sequence AES,(n).

Uses table lookup and & (xor):
e0 = tabl[k[13]]&®1

el =

tab [k [0]®n[0]]1®k[0]®eO
etc.

AES.(n) = (e784,...,e799).
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Given 16-byte sequence n
and 16-byte sequence k,
AES produces

16-byte sequence AES,(n).

Uses table lookup and & (xor):

e0 = tab[k[13]]&1
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3. Breaking AES

Given 16-byte sequence n
and 16-byte sequence k,
AES produces

16-byte sequence AES,(n).

Uses table lookup and & (xor):

e0 = tab[k[13]]&1

el =

tab[k[0]®n[0] 1k [0]®eO
etc.

AES.(n) = (e784,...,e799).

High-speed AES uses 4-byte
registers, several 1024-byte tables.
Operations: byte extraction (4
bytes to 1 byte), table lookup (1
byte to 4 byte), .

Attacker can force selected

table entries out of L2 cache,
observe encryption time.

Each cache miss creates timing
signal, clearly visible despite noise
from other AES cache misses,
other software, etc.

Repeat for many plaintexts,
easily deduce key.



quence n
ence k,

 AES,(n).

0 and @ (xor):

11
1@k [0] PeO

4,...,e799).

High-speed AES uses 4-byte

registers, several 1024-byte tables.

Operations: byte extraction (4
bytes to 1 byte), table lookup (1
byte to 4 byte), .

Attacker can force selected

table entries out of L2 cache,
observe encryption time.

Each cache miss creates timing
signal, clearly visible despite noise
from other AES cache misses,
other software, etc.

Repeat for many plaintexts,
easily deduce key.

Example: tablk|
hundreds of extr:
tab entry Is not

Knock tabl13] o
signal when £][O]
Deduce k[0] as 7
(Complication: ¢
need more work
bottom bits of £

More efficient: K
tab entries out
Then first n]0] i
to half of its pos



High-speed AES uses 4-byte

registers, several 1024-byte tables.

Operations: byte extraction (4
bytes to 1 byte), table lookup (1
byte to 4 byte), .

Attacker can force selected

table entries out of L2 cache,
observe encryption time.

Each cache miss creates timing
signal, clearly visible despite noise
from other AES cache misses,
other software, etc.

Repeat for many plaintexts,
easily deduce key.

Example: tab|k[0] & n[0]] costs
hundreds of extra cycles if this
tab entry iIs not in L2 cache.

Knock tab[13] out of cache. See
signal when £[0] & n[0] = 13.
Deduce £[0] as n[0] & 13.
(Complication: cache lines;

need more work to find
bottom bits of £[0].)

More efficient: Knock half of the

tab entries out of cache.
Then first n[0] limits £[0]
to half of its possibilities.
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Example: tab|k[0] & n[0]] costs
hundreds of extra cycles if this
tab entry iIs not in L2 cache.

Knock tab[13] out of cache. See
signal when £[0] & n[0] = 13.
Deduce £[0] as n[0] & 13.
(Complication: cache lines;

need more work to find
bottom bits of £[0].)

More efficient: Knock half of the

tab entries out of cache.
Then first n[0] limits £[0]
to half of its possibilities.
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Example: tab|k[0] & n[0]] costs
hundreds of extra cycles if this
tab entry iIs not in L2 cache.

Knock tab[13] out of cache. See
signal when £[0] & n[0] = 13.
Deduce £[0] as n[0] & 13.
(Complication: cache lines;

need more work to find
bottom bits of £[0].)

More efficient: Knock half of the

tab entries out of cache.
Then first n[0] limits £[0]
to half of its possibilities.

On (e.g.) Athlon: 65536-byte

L1 cache is 2-way associative. If
three 64-byte lines with the same
address modulo 32768 are read,

the first line is forced out of the
L1 cache.

Athlon’s 524288-byte L2 cache
iIs 16-way associative. If 17 lines
with the same address modulo
8192 are read, the first line is
forced out of the L2 cache.

Force tab[13] out of cache
by accessing selected memory
locations.
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On (e.g.) Athlon: 65536-byte

L1 cache is 2-way associative. If
three 64-byte lines with the same
address modulo 32768 are read,
the first line is forced out of the

L1 cache.

Athlon’'s 524288-byte L2 cache
iIs 16-way associative. If 17 lines
with the same address modulo
8192 are read, the first line is
forced out of the L2 cache.

Force tab[13] out of cache
by accessing selected memory
locations.
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On (e.g.) Athlon: 65536-byte

L1 cache is 2-way associative. If
three 64-byte lines with the same
address modulo 32768 are read,
the first line is forced out of the
L1 cache.

Athlon’s 524288-byte L2 cache
iIs 16-way associative. If 17 lines
with the same address modulo
8192 are read, the first line is
forced out of the L2 cache.

Force tab[13] out of cache
by accessing selected memory

locations.

How does attacker do the
necessary accesses? Trivial on
multiuser computer if attacker has
account. Almost as easy without
an account: e.g., attacker sends
Java applet to user's browser.

What if computer has no browser,
no buffer overflows, etc.? Clearly
still possible to carry out the
attack from another computer

by figuring out packets that, when
sent to (e.g.) Linux kernel, cause
accesses of appropriate memory
locations. Nobody has done this!
Would make a nice paper!
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multiuser computer if attacker has
account. Almost as easy without
an account: e.g., attacker sends
Java applet to user's browser.

What if computer has no browser,
no buffer overflows, etc.? Clearly
still possible to carry out the
attack from another computer

by figuring out packets that, when
sent to (e.g.) Linux kernel, cause
accesses of appropriate memory
locations. Nobody has done this!
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How does attacker do the
necessary accesses? Trivial on
multiuser computer if attacker has
account. Almost as easy without
an account: e.g., attacker sends
Java applet to user's browser.

What if computer has no browser,
no buffer overflows, etc.? Clearly
still possible to carry out the
attack from another computer

by figuring out packets that, when
sent to (e.g.) Linux kernel, cause
accesses of appropriate memory
locations. Nobody has done this!
Would make a nice paper!

What about the

“guaranteed” countermeasure,
reading all AES tables before
starting AES computation?

Even if this were free, it wouldn't
eliminate cache misses. Table
entries can drop out of cache
during the computation.

Typical AES software uses several
different arrays: input, key,
output, stack, S-boxes. Software
sometimes kicks its own S-box
lines out of L1 cache by accessing
(e.g.) the key and the stack.
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What about the

“guaranteed” countermeasure,
reading all AES tables before
starting AES computation?

Even if this were free, it wouldn't
eliminate cache misses. Table
entries can drop out of cache
during the computation.

Typical AES software uses several
different arrays: input, key,
output, stack, S-boxes. Software
sometimes kicks its own S-box
lines out of L1 cache by accessing
(e.g.) the key and the stack.
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What about the

“guaranteed” countermeasure,
reading all AES tables before
starting AES computation?

Even if this were free, it wouldn't
eliminate cache misses. Table
entries can drop out of cache
during the computation.

Typical AES software uses several
different arrays: input, key,
output, stack, S-boxes. Software
sometimes kicks its own S-box
lines out of L1 cache by accessing
(e.g.) the key and the stack.

Fixed in my 2005 AES
implementation, Gladman’'s latest
implementation, etc.: squeeze
variables into a limited number
of arrays. But this still doesn't
eliminate cache misses!

Computers run many
simultaneous processes. The
AES software can be interrupted
by another process that kicks
lines out of L1 cache and maybe
even L2 cache. Even worse, the
partial-AES cache state affects
the timing of the other process.
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Fixed in my 2005 AES
implementation, Gladman’'s latest
implementation, etc.: squeeze
variables into a limited number
of arrays. But this still doesn't
eliminate cache misses!

Computers run many
simultaneous processes. The
AES software can be interrupted
by another process that kicks
lines out of L1 cache and maybe
even L2 cache. Even worse, the
partial-AES cache state affects
the timing of the other process.

Occasional AES interrupts by
accident.

Can force much more

frequent interrupts with
“hyperthreading”—2005 Osvik
Shamir Tromer, independently
2005 Percival—giving high-
bandwidth timing information.

Not clear whether hyperthreading
approach can be carried out
remotely via (e.g.) Linux kernel.
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Occasional AES interrupts by
accident.

Can force much more

frequent interrupts with
“hyperthreading”—2005 Osvik
Shamir Tromer, independently
2005 Percival—giving high-
bandwidth timing information.

Not clear whether hyperthreading
approach can be carried out
remotely via (e.g.) Linux kernel.

It /s

possible to stop

all AES cache misses.

Put AES software into
operating-system kernel.

Disa
Disa

ole Interrupts.
ole hyperthreading etc.

Read all S-boxes into cache.

Wait for reads to complete.

Encrypt some blocks of data.

The
Stop
enou

bad news, as we'll see later:

ning cache misses isn't
gh. There are timing leaks

In cache hits.
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It /s possible to stop
all AES cache misses.

Put AES software into
operating-system kernel.
Disable interrupts.

Disable hyperthreading etc.

Read all S-boxes into cache.
Wait for reads to complete.
Encrypt some blocks of data.

The bad news, as we'll see later:

Stopping cache misses isn't
enough. There are timing leaks
In cache hits.
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It /s possible to stop
all AES cache misses.

Put AES software into
operating-system kernel.
Disable interrupts.

Disable hyperthreading etc.

Read all S-boxes into cache.
Wait for reads to complete.
Encrypt some blocks of data.

The bad news, as we'll see later:

Stopping cache misses isn't
enough. There are timing leaks
In cache hits.

4. Skewing benchmarks

Many deceptive timings iIn

the cryptographic literature:

Bait-and-switch timings.
Guesses reported as timings.
My-favorite-CPU timings.
Long-message timings.
Timings after precomputation.

High-variance timings.

Consequence: In the real world,
these functions are often
much slower than advertised.
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4. Skewing benchmarks

Many deceptive timings in

the cryptographic literature:

e Bait-and-switch timings.

e Guesses reported as timings.
e My-favorite-CPU timings.

e Long-message timings.

e [imings after precomputation.

e High-variance timings.

Consequence: In the real world,
these functions are often
much slower than advertised.
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4. Skewing benchmarks

Many deceptive timings in

the cryptographic literature:

e Bait-and-switch timings.

e Guesses reported as timings.
e My-favorite-CPU timings.

e Long-message timings.

e [imings after precomputation.

e High-variance timings.

Consequence: In the real world,
these functions are often
much slower than advertised.

Bait-and-switch timings:

Create two versions of your
function, a small Fun-Breakable
and a big Fun-Slow. Report

timings for Fun-Breakable.

Example in literature: Paper

proposes 16-byte authenticator.

Says “More than 1 Gbit/sec

on a 200 MHz Pentium Pro”
but that's actually for a

breakable 4-byte authenticator.

The honest alternative:
Focus on one function.
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Bait-and-switch timings:

Create two versions of your
function, a small Fun-Breakable
and a big Fun-Slow. Report
timings for Fun-Breakable.

Example in literature: Paper
proposes 16-byte authenticator.
Says “More than 1 Gbit/sec
on a 200 MHz Pentium Pro”
but that's actually for a
breakable 4-byte authenticator.

The honest alternative:
Focus on one function.

Guesses reported as timings:
Measure only part of the
computation.

Estimate the other parts.

Example in literature: “achieves
2.2 clock cycles per byte” ... if
the unimplemented parts are as
fast as various estimates.

The honest alternative: Measure
exactly the function call
that applications will use.
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Guesses reported as timings:
Measure only part of the
computation.

Estimate the other parts.

Example in literature: “achieves
2.2 clock cycles per byte” ... if
the unimplemented parts are as
fast as various estimates.

The honest alternative: Measure
exactly the function call
that applications will use.

My-favorite-CPU timings: Choose
CPU where function is very fast.
lgnore all other CPUs.

Example in literature: “All speeds

were measured on a Pentium 4"
because other chips take

many more cycles per byte

for this particular computation.

The honest alternative:

Measure every CPU you can find.
If reader doesn’t care about

a particular chip, he can ignore It.
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My-favorite-CPU timings: Choose
CPU where function is very fast.
lgnore all other CPUs.

Example in literature: “All speeds
were measured on a Pentium 4

. because other chips take
many more cycles per byte
for this particular computation.

The honest alternative:

Measure every CPU you can find.
If reader doesn’t care about

a particular chip, he can ignore It.

Long-message timings: Report
time only for long messages.
lgnore per-message overhead.
lgnore applications that
handle short packets.

Example in literature:
“2 cycles per byte”
. plus 2000 cycles per packet.

The honest alternative:
Report times for n-byte packets
for each n € {0,1,2,...,8192}.
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Long-message timings: Report
time only for long messages.
lgnore per-message overhead.
lgnore applications that
handle short packets.

Example in literature:
“2 cycles per byte”
. plus 2000 cycles per packet.

The honest alternative:
Report times for n-byte packets

for each n € {0,1,2,...,8192}.

Timings after precomputation:
Report time after

a big key-dependent table

has been precomputed

and loaded into L1 cache.

lgnore applications that
handle many simultaneous keys.

The honest alternative:
Measure precomputation time;
measure time to load inputs
that weren't already In cache.
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Timings after precomputation:
Report time after

a big key-dependent table

has been precomputed

and loaded into L1 cache.

lgnore applications that

handle many simultaneous keys.

The honest alternative:
Measure precomputation time;
measure time to load inputs
that weren't already In cache.

High-variance timings:

Measure each function a single
time, on a single input.

lgnore possibility of high variance

In timing.

Compare functions by comparing
single timings, promoting a few
high-variance functions.

The honest alternative:
Report several measurements,
making variance clear.
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High-variance timings:

Measure each function a single
time, on a single input.

lgnore possibility of high variance
In timing.

Compare functions by comparing
single timings, promoting a few
high-variance functions.

The honest alternative:
Report several measurements,
making variance clear.
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High-variance timings:

Measure each function a single
time, on a single input.

lgnore possibility of high variance
In timing.

Compare functions by comparing
single timings, promoting a few
high-variance functions.

The honest alternative:
Report several measurements,
making variance clear.

5. Advanced timing leaks

2004: | write software for
Poly1305-AES, a state-of-the-art
message authenticator. Standard
Wegman-Carter structure,
combining a provably secure
“universal” hash (Poly1305) with
a hopefully-secure stream cipher
(AES in counter mode).

Poly1305 has no precomputation.
Existing AES software does
slow precomputation, making

Poly1305-AES look slow. So |
write new AES software.
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5. Advanced timing leaks

2004: | write software for
Poly1305-AES, a state-of-the-art
message authenticator. Standard
Wegman-Carter structure,
combining a provably secure
“universal” hash (Poly1305) with
a hopefully-secure stream cipher
(AES in counter mode).

Poly1305 has no precomputation.

Existing AES software does
slow precomputation, making

Poly1305-AES look slow. So |
write new AES software.
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5. Advanced timing leaks

2004: | write software for
Poly1305-AES, a state-of-the-art
message authenticator. Standard
Wegman-Carter structure,
combining a provably secure
“universal” hash (Poly1305) with
a hopefully-secure stream cipher
(AES in counter mode).

Poly1305 has no precomputation.

Existing AES software does
slow precomputation, making

Poly1305-AES look slow. So |
write new AES software.

| look at successive cycle counts
for authenticating ten 1-byte
messages: 3663 833 5385 574 603
567 577 568 570 5385.

2-byte messages: 568 572 574
575 570 563 565 569 571 574.

3-byte messages: 569 573 575
576 571 564 566 570 572 575.

Interesting. Where do these
numbers come from?

Another computation, same CPU:
771 768 751 752 751 752 751 752
751 752 751 752 751 752.
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| look at successive cycle counts
for authenticating ten 1-byte

messages: 3663 833 5385 574 603
567 577 568 570 535.

2-byte messages: 568 572 574
575 570 563 565 569 571 574.

3-byte messages: 569 573 575
576 571 564 566 570 572 575.

Interesting. Where do these
numbers come from?

Another computation, same CPU:
771 768 751 752 751 752 751 752
751 752 751 752 751 752.
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| look at successive cycle counts
for authenticating ten 1-byte

messages: 3663 833 5385 574 603
567 577 568 570 5385.

2-byte messages: 568 572 574
575 570 563 565 569 571 574.

3-byte messages: 569 573 575
576 571 564 566 570 572 575.

Interesting. Where do these

numbers come from?

Another computation, same CPU:
771 768 751 752 751 752 751 752
751 752 751 752 751 752.

| oad-after-store conflicts:

On (e.g.) Pentium IlI,

load from L1 cache is
slightly slower if it involves
same cache line modulo 4096
as a recent store.

This timing variation happens
even Iif all loads are from L1
cachel
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| oad-after-store conflicts:

On (e.g.) Pentium IlI,

load from L1 cache is
slightly slower if it involves
same cache line modulo 4096
as a recent store.

This timing variation happens
even if all loads are from L1

cachel

Cache-bank throughput limits:

On (e.g.) Athlon,
can perform two loads
from L1 cache every cycle.

Exception: Second load
waits for a cycle if loads
are from same cache “bank.”

Time for cache hit
again depends on array index.

No guarantee that these are the
only effects.
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On (e.g.) Athlon,
can perform two loads
from L1 cache every cycle.

Exception: Second load
waits for a cycle if loads
are from same cache “bank.”

Time for cache hit
again depends on array index.

No guarantee that these are the
only effects.

6. Breaking AES in cache
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popular AES implementations.

2005: | extract complete key
from OpenSSL timings,
making no effort to

knock table entries out of cache.
Many random known plaintexts.
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of AES computation.
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10° packet timings?

Would be another nice paper.
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Example: Use 512-bit RSA.
Oops, broken? Use 768-bit RSA.
Oops, broken? Use 1024-bit RSA.
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/. Misdesigning cryptography

Primary goal of cryptography:
Continued employment for

cryptographers.

How to achieve this?

Example: Use 512-bit RSA.
Oops, broken? Use 768-bit RSA.

Oops, broken? Use 1024-bit RSA.

Don't believe that attacks work
until they ve been announced
In the New York Times.

For timing attacks: If attack
hasn't been demonstrated,
assume It doesn’'t work.

Don’t use obviously-constant-time
software such as Phelix.
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Don't believe that attacks work
until they ve been announced
In the New York Times.

For timing attacks: If attack
hasn't been demonstrated,
assume It doesn’'t work.

Don’t use obviously-constant-time
software such as Phelix.

Don't use cryptographic hardware.

Build complex multi-layer
cryptographic systems.

Don't communicate adequately
between people designing
different layers.

e.g. Most CPU designers fail to
thoroughly document CPU speed.

Challenge: Market a CPU
with a variable-time adder.



