Cache-timing attacks http://cr.yp.to/papers.html

D. J. Bernstein #cachetiming, 2005:

Thanks to- This paper reports successful

University of lllinois at Chicago
NSF CCR-9983950
Alfred P. Sloan Foundation

extraction of a complete AES key
from a network server

on another computer.

The targeted server used its key
solely to encrypt data using the
OpenSSL AES implementation
on a Pentium I11.”

All code included in paper.
Easily reproducible.

acks

ois at Chicago
50
-oundation

http://cr.yp.to/papers.html
#cachetiming, 2005:

“This paper reports successful
extraction of a complete AES key
from a network server

on another computer.

The targeted server used its key
solely to encrypt data using the
OpenSSL AES implementation
on a Pentium I11.”

All code included in paper.
Easily reproducible.

Outline of this ta
1. How to adver
an AES candi
2. How to leak k
timings: basic
3. How to break
by forcing cac
4. How to skew
5. How to leak k
timings: adva
6. How to break
without cache
/. How to misde
a cryptograph

http://cr.yp.to/papers.html Outline of this talk:
#cachetiming, 2005: 1. How to advertise

an AES candidate

“This paper reports successful
2. How to leak keys through

extraction of a complete AES key e _ _
timings: basic techniques

3. How to break AES remotely
by forcing cache misses

from a network server
on another computer.
The targeted server used its key
. 4. How to skew a benchmark
solely to encrypt data using the
OpenSSL AES implementation

on a Pentium IIl.”

5. How to leak keys through

timings: advanced techniques
6. How to break AES remotely
All code included in paper. without cache misses
Easily reproducible. /. How to misdesign

a cryptographic architecture

to/papers.html
2005:

rts successful
omplete AES key
erver

uter.

ver used its key
data using the

nplementation

| In paper.
le.

Outline of this talk:

1.

How to advertise
an AES candidate

. How to leak keys through

timings: basic techniques

. How to break AES remotely

by forcing cache misses
How to skew a benchmark

. How to leak keys through

timings: advanced techniques

. How to break AES remotely

without cache misses

. How to misdesign

a cryptographic architecture

1. Advertising ar

1997: US NIST .
cipher competitic
replacing DES as
approved block ¢

1999: NIST ann
RC6, Rijndael, S
as AES finalists.

2001: NIST publ
the development
Encryption Stanc
explaining selecti
AES.

Outline of this talk:
1. How to advertise
an AES candidate
2. How to leak keys through
timings: basic techniques
3. How to break AES remotely
by forcing cache misses
4. How to skew a benchmark
5. How to leak keys through
timings: advanced techniques
6. How to break AES remotely
without cache misses
/. How to misdesign
a cryptographic architecture

1. Advertising an AES candidate

1997: US NIST announces block-
cipher competition. Goal: AES,
replacing DES as US government-
approved block cipher.

1999: NIST announces MARS,
RC6, Rijndael, Serpent, Twofish
as AES finalists.

2001: NIST publishes “Report on
the development of the Advanced
Encryption Standard (AES),”

explaining selection of Rijndael as

AES.

[k

Lise

date

eys through

- techniques
AES remotely
he misses

a benchmark
eys through
nced techniques
AES remotely
. MISSes

sign

ic architecture

1. Advertising an AES candidate

1997: US NIST announces block-
cipher competition. Goal: AES,
replacing DES as US government-
approved block cipher.

1999: NIST announces MARS,
RC6, Rijndael, Serpent, Twofish
as AES finalists.

2001: NIST publishes “Report on
the development of the Advanced
Encryption Standard (AES),”

explaining selection of Rijndael as
AES.

1996: Kocher ex
from timings of :

Clear threat to b
too. As stated ir

“In some environ
timing attacks cs
against operatior
in different amol
depending on the

1. Advertising an AES candidate

1997: US NIST announces block-
cipher competition. Goal: AES,
replacing DES as US government-
approved block cipher.

1999: NIST announces MARS,
RC6, Rijndael, Serpent, Twofish
as AES finalists.

2001: NIST publishes “Report on
the development of the Advanced
Encryption Standard (AES),”

explaining selection of Rijndael as

AES.

1996: Kocher extracts RSA key
from timings of a server.

Clear threat to block-cipher keys
too. As stated in NIST’s report:

“In some environments,

timing attacks can be effected
against operations that execute
in different amounts of time,
depending on their arguments.

1 AES candidate

announces block-
on. Goal: AES,

, US government-
ipher.

bunces MARS,
erpent, Twofish

Ishes “Report on
of the Advanced
lard (AES),”

on of Rijndael as

1996: Kocher extracts RSA key
from timings of a server.

Clear threat to block-cipher keys
too. As stated in NIST’s report:

“In some environments,

timing attacks can be effected
against operations that execute
in different amounts of time,
depending on their arguments.

“A general defen
timing attacks is
each encryption .
operation runs In
amount of time.

“Table lookup: r
timing attacks ..

“Multiplication/«
or variable shift/
most difficult to

1996: Kocher extracts RSA key
from timings of a server.

Clear threat to block-cipher keys
too. As stated in NIST’s report:

“In some environments,

timing attacks can be effected
against operations that execute
in different amounts of time,
depending on their arguments.

“A general defense against
timing attacks iIs to ensure that
each encryption and decryption
operation runs in the same
amount of time. ...

“Table lookup: not vulnerable to
timing attacks . ..

“Multiplication /division /squaring
or variable shift/rotation:
most difficult to defend ...

tracts RSA key
) server.

lock-cipher keys
' NIST's report:

ments,

n be effected
1s that execute
nts of time,
Ir arguments.

“A general defense against
timing attacks iIs to ensure that
each encryption and decryption
operation runs in the same
amount of time. ...

“Table lookup: not vulnerable to
timing attacks . ..

“Multiplication /division /squaring
or variable shift/rotation:
most difficult to defend ...

“Rijndael and Se
only Boolean ops
table lookups, ar
shifts /rotations.
are the easiest tc
attacks. ...

“Finalist profiles.
operations used |
among the easies
against power an
attacks. ... Rijnd
gain a major spe
over Its competit
protections are c

“A general defense against
timing attacks iIs to ensure that
each encryption and decryption
operation runs in the same
amount of time. ...

“Table lookup: not vulnerable to
timing attacks . ..

“Multiplication /division /squaring
or variable shift/rotation:
most difficult to defend ...

“Rijndael and Serpent use

only Boolean operations,

table lookups, and fixed

shifts /rotations. These operations
are the easiest to defend against
attacks. ...

“Finalist profiles. ... The
operations used by Rijndael are
among the easiest to defend
against power and timing
attacks. ... Rijndael appears to
gain a major speed advantage
over Its competitors when such
protections are considered. ...

se against
to ensure that
and decryption
the same

1ot vulnerable to

livision /squaring
rotation:
defend . ..

“Rijndael and Serpent use

only Boolean operations,

table lookups, and fixed

shifts /rotations. These operations
are the easiest to defend against
attacks. ...

“Finalist profiles. ... The
operations used by Rijndael are
among the easiest to defend
against power and timing
attacks. ... Rijndael appears to
gain a major speed advantage
over Its competitors when such
protections are considered. ...

“NIST judged Ri
best overall algor
AES. Rijndael af
consistently gooc

Its key setup tim
and its key agilit
Rijndael’s operat
the easiest to de
power and timing
Finally, Rijndael’:
round structure
good potential tc

instruction-level
(Emphasis addec

“Rijndael and Serpent use “NIST judged Rijndael to be the
only Boolean operations, best overall algorithm for the
table lookups, and fixed AES. Rijndael appears to be a
shifts /rotations. These operations consistently good performer . ..
are the easiest to defend against Its key setup time iIs excellent,
attacks. ... and its key agility is good. ...
“Finalist profiles. ... The Rijndael’'s operations are among

operations used by Rijndael are the easiest to defend against

. ower and timing attacks. ...
among the easiest to defend P &

. o Finally, Rijndael’s internal
against power and timing

. round structure appears to have
attacks. ... Rijndael appears to PP

gain a major speed advantage good potential to benefit from

instruction-level parallelism.”

over Its competitors when such _
(Emphasis added.)

protections are considered. ...

rpent use
rations,

d fixed

These operations
 defend against

. The
oy Rijndael are
t to defend
d timing
lael appears to
ed advantage
ors when such
onsidered. . ..

“NIST judged Rijndael to be the
best overall algorithm for the

AES. Rijndael appears to be a
consistently good performer . ..
Its key setup time is excellent,
and its key agility is good. ...
Rijndael’s operations are among
the easiest to defend against
power and timing attacks. ...
Finally, Rijndael’s internal
round structure appears to have
good potential to benefit from
instruction-level parallelism.”

(Emphasis added.)

1999: AES desig
Rijmen) publish
against implemer
a comparative st
proposals’:

“Table lookups:

IS not susceptible
attack. ... Favol
that use only log
table-lookups an
and that are thet
easy to secure. |
of this group are
Magenta, Rijnda

“NIST judged Rijndael to be the
best overall algorithm for the

AES. Rijndael appears to be a
consistently good performer . ..
Its key setup time is excellent,
and its key agility is good. ...
Rijndael’s operations are among
the easiest to defend against
power and timing attacks. ...
Finally, Rijndael’s internal
round structure appears to have
good potential to benefit from

instruction-level parallelism.”
(Emphasis added.)

1999: AES designers (Daemen,
Rijmen) publish “Resistance
against implementation attacks:
a comparative study of the AES
proposals’:

“Table lookups: This instruction
IS not susceptible to a timing
attack. ... Favorable: Algorithms
that use only logical operations,
table-lookups and fixed shifts,
and that are therefore relatively
easy to secure. The algorithms
of this group are Crypton, DEAL,
Magenta, Rijndael and Serpent.”

jndael to be the
ithm for the
pears to be a

| performer . ..
e Is excellent,

y Is good. ...
lons are among
fend against

r attacks. ...

5 Internal
yppears to have
> benefit from

parallelism.”

)

1999: AES designers (Daemen,
Rijmen) publish “Resistance
against implementation attacks:
a comparative study of the AES
proposals’:

“Table lookups: This instruction
IS not susceptible to a timing

attack. ...
that use only logical operations,

Favorable: Algorithms

table-lookups and fixed shifts,
and that are therefore relatively
easy to secure. The algorithms
of this group are Crypton, DEAL,
Magenta, Rijndael and Serpent.”

AES designers w
reports “should t
the measures to
thwart these atte

2005, after AES
vulnerable, amaz
position: Timing
“Irrelevant for cr
design.” Schneie
“The problem is
attacks are pract
pretty much any1
really enter into .

1999: AES designers (Daemen,
Rijmen) publish “Resistance
against implementation attacks:
a comparative study of the AES
proposals’:

“Table lookups: This instruction
IS not susceptible to a timing

attack. ...
that use only logical operations,

Favorable: Algorithms

table-lookups and fixed shifts,
and that are therefore relatively
easy to secure. The algorithms
of this group are Crypton, DEAL,
Magenta, Rijndael and Serpent.”

AES designers write: Speed
reports “should take into account
the measures to be taken to
thwart these attacks.”

2005, after AES is shown to be
vulnerable, amazing change of
position: Timing attacks are
“Irrelevant for cryptographic
design.” Schneier, 2005:

“The problem is that side-channel
attacks are practical against
pretty much anything, so it didn't
really enter into consideration.”

ners (Daemen,
"Resistance

1tation attacks:
udy of the AES

This instruction
 to a timing
-able: Algorithms
ical operations,

d fixed shifts,
efore relatively
"he algorithms
Crypton, DEAL,

el and Serpent.”

AES designers write: Speed
reports “should take into account
the measures to be taken to
thwart these attacks.”

2005, after AES is shown to be
vulnerable, amazing change of
position: Timing attacks are
“Irrelevant for cryptographic
design.” Schneier, 2005:

“The problem is that side-channel
attacks are practical against
pretty much anything, so it didn't
really enter into consideration.”

2. Leaking keys -

Most obvious tin
skipping an oper:
than doing It.

1970s: TENEX ¢
compares user-su
against secret pa
character a a tinr
first difference. /
comparison time

of difference. A -
reveal secret pas:

AES designers write: Speed
reports “should take into account
the measures to be taken to
thwart these attacks.”

2005, after AES is shown to be
vulnerable, amazing change of
position: Timing attacks are
“Irrelevant for cryptographic
design.” Schneier, 2005:

“The problem is that side-channel
attacks are practical against
pretty much anything, so it didn't
really enter into consideration.”

2. Leaking keys through timings

Most obvious timing variability:
skipping an operation is faster
than doing It.

1970s: TENEX operating system
compares user-supplied string
against secret password one

character a a time, stopping at

first difference. Attackers monitor
comparison time, deduce position
of difference. A few hundred tries

reveal secret password.

rite: Speed

ake Into account
be taken to
1cks.”

Is shown to be
ing change of
attacks are
yptographic

r, 2005:

that side-channel
ical against
hing, so it didn't
consideration.”

2. Leaking keys through timings

Most obvious timing variability:
skipping an operation is faster
than doing It.

1970s: TENEX operating system
compares user-supplied string
against secret password one

character a a time, stopping at

first difference. Attackers monitor
comparison time, deduce position
of difference. A few hundred tries

reveal secret password.

Solution: Use co
password compar

Old:
for (i = 0O
if (x[i]
return

return 1;

New:
diff = O;
for (i = 0O
diff |= :

return !'di:

2. Leaking keys through timings Solution: Use constant-time

. o C assword comparison.
Most obvious timing variability: P P

skipping an operation is faster Old:
than doing Iit. for (i = 0;1i < n;++i)
if (x[i] '= yl[il)

1970s: TENEX operating system
return O;

compares user-supplied string

against secret password one return 1;

character a a time, stopping at New:

first difference. Attackers monitor diff = O;

comparison time, deduce position for (i = 0;1i < n;++i)
of difference. A few hundred tries diff |= x[i] =~ ylil;

reveal secret password. return !diff;

through timings

1ing variability:
ation is faster

yperating system
pplied string
ssword one

e, stopping at

\ttackers monitor
- deduce position
few hundred tries

sword.

Solution: Use constant-time
password comparison.

Old:
for (i = 0;1i < n;++i)
if (x[i] !'= y[il)
return O;

return 1;

New:
diff = O;
for (i O;i < n;++i)
diff |= x[i] =~ ylil;

return !'diff;

1996: Kocher pc
attacks on crypt
Example: key-de
iIn modular reduc
large-integer sub
iInputs and not o

My reaction at tl
Eliminate variabl

from cryptograpt
Beware microSP;
data-dependent |
use Fermat inste
inversion in ECC
avoid S-boxes in

Solution: Use constant-time
password comparison.

Old:
for (i = 0;1i < n;++i)
if (x[i] !'= y[il)
return O;

return 1;

New:
diff = O;
for (i O;i < n;++i)
diff |= x[i] =~ ylil;

return !'diff;

1996: Kocher points out timing
attacks on cryptographic key bits.
Example: key-dependent branch
in modular reduction, performing
large-integer subtraction for some
iInputs and not others, leaking key.

My reaction at the time: Yikes!
Eliminate variable-time operations

from cryptographic software!
Beware microSPARC-llep
data-dependent FPU timings;
use Fermat instead of Euclid for
inversion in ECC:

avoid S-boxes in ciphers; etc.

nstant-time
1son.

] < nj;++i)
= y[i])
0;

] < n;++i)
x[1] = y[i];
f £ ;

1996: Kocher points out timing
attacks on cryptographic key bits.
Example: key-dependent branch
in modular reduction, performing

large-integer subtraction for some

iInputs and not others, leaking key.

My reaction at the time: Yikes!
Eliminate variable-time operations

from cryptographic software!
Beware microSPARC-llep
data-dependent FPU timings;
use Fermat instead of Euclid for
inversion in ECC:

avoid S-boxes in ciphers; etc.

1999: Koeune Q
fast timing attac
implementation”
used input-deper

AES has functior
bytes to bytes. A
S’ computed as -
byte Sprim
byte c =
if (c<12¢
return (.
+
Timing leaks bit
c < 128.

1996: Kocher points out timing
attacks on cryptographic key bits.
Example: key-dependent branch
in modular reduction, performing
large-integer subtraction for some

iInputs and not others, leaking key.

My reaction at the time: Yikes!
Eliminate variable-time operations

from cryptographic software!
Beware microSPARC-llep
data-dependent FPU timings;
use Fermat instead of Euclid for
inversion in ECC:

avoid S-boxes in ciphers; etc.

1999: Koeune Quisquater publish
fast timing attack on a “careless
implementation” of AES that
used Input-dependent branches.

AES has functions S, S’ mapping
bytes to bytes. Attack is against
S’ computed as follows:
byte Sprime(byte b) {
byte ¢ = S(b);
if (c<128) return c+c;
return (c+c) ~283;
}
Timing leaks bit of c: faster if
c < 128.

Ints out timing
bgraphic key bits.
pendent branch
tion, performing
traction for some

thers, leaking key.

ne time: Yikes!
e-time operations
1ic software!
ARC-llep

-PU timings;

ad of Euclid for

ciphers; etc.

1999: Koeune Quisquater publish
fast timing attack on a “careless
implementation” of AES that
used Input-dependent branches.

AES has functions S, S’ mapping
bytes to bytes. Attack is against
S’ computed as follows:
byte Sprime(byte b) {
byte ¢ = S(b);
if (c<128) return c+c;
return (c+c) ~283;

+
Timing leaks bit of c: faster if

c < 128.

Standard solutiol
replace branch b

X = c>>7;
X |= (X<<1.
X |= (X3

return (c<:
CPUs handle thi:
In constant time.

Koeune Quisquat
“The result prese
not an attack ag
but against

bad implementat

1999: Koeune Quisquater publish
fast timing attack on a “careless
implementation” of AES that
used Input-dependent branches.

AES has functions S, S’ mapping
bytes to bytes. Attack is against
S’ computed as follows:
byte Sprime(byte b) {
byte ¢ = S(b);
if (c<128) return c+c;
return (c+c) ~283;

+
Timing leaks bit of c: faster if

c < 128.

Standard solution:
replace branch by arithmetic.

X = c>>7;
X |= (X<<1);
X |= (X<<3);

return (c<<1) ~X;
CPUs handle this arithmetic
In constant time.

Koeune Quisquater:

“The result presented here is
not an attack against Rijndael,
but against

bad implementations of it."

uisquater publish
k on a “careless
of AES that

dent branches.

s S, S’ mapping
\ttack Is against
follows:

> (byte b) A
S(b) ;

3) return c+c;
-+c) ~283;

of ¢: faster iIf

Standard solution:
replace branch by arithmetic.

X = c>>7;
X |= (X<<1);
X |= (X<<3);

return (c<<1) ~X;
CPUs handle this arithmetic
In constant time.

Koeune Quisquater:

“The result presented here is
not an attack against Rijndael,
but against

bad implementations of it."

Second most ob\
variability: L2 ca
than DRAM. Sin
is faster than L2

Reading from cat
takes less time ti
reading from unc

Variability menti
Kocher, 2000 Ke
Wagner Hall (“V
based on cache t
S-box ciphers lik
and Khufu are p«
Ferguson Schneie

Standard solution:
replace branch by arithmetic.

X = c>>7;
X |= (X<<1);
X |= (X<<3);

return (c<<1) ~X;
CPUs handle this arithmetic
In constant time.

Koeune Quisquater:

“The result presented here is
not an attack against Rijndael,
but against

bad implementations of it."

Second most obvious timing
variability: L2 cache is faster

than DRAM. Similarly, L1 cache
Is faster than L2 cache.

Reading from cached line
takes less time than
reading from uncached line.

Variability mentioned by 1996
Kocher, 2000 Kelsey Schneier
Wagner Hall (“We believe attacks
based on cache hit ratio in large
S-box ciphers like Blowfish, CAST

and Khufu are possible”), 2003
Ferguson Schneier.

1.

y arithmetic.

)
) ;

<1) °X;

5 arithmetic

Cer:
nted here is

ainst Rijndael,

ions of it."”

Second most obvious timing
variability: L2 cache is faster

than DRAM. Similarly, L1 cache
Is faster than L2 cache.

Reading from cached line
takes less time than
reading from uncached line.

Variability mentioned by 1996
Kocher, 2000 Kelsey Schneier
Wagner Hall (“We believe attacks
based on cache hit ratio in large
S-box ciphers like Blowfish, CAST
and Khufu are possible”), 2003
Ferguson Schneier.

2002: Page publ
algorithm to find
from high-bandw
information. DP;
plaintexts, each
empty cache. Al
for each plaintex
lookups that mis

Avolid empty cac
some S-box entri
guarantee this as
countermeasure \
the cache with tl
the S-boxes.”

Second most obvious timing
variability: L2 cache is faster

than DRAM. Similarly, L1 cache
Is faster than L2 cache.

Reading from cached line
takes less time than
reading from uncached line.

Variability mentioned by 1996
Kocher, 2000 Kelsey Schneier
Wagner Hall (“We believe attacks
based on cache hit ratio in large
S-box ciphers like Blowfish, CAST
and Khufu are possible”), 2003

Ferguson Schneier.

2002: Page publishes fast
algorithm to find DES key
from high-bandwidth timing
information. DPA-style. Many
plaintexts, each starting with
empty cache. Algorithm input:
for each plaintext, list of S-box
lookups that missed the cache.

Avoid empty cache by preloading
some S-box entries? “To
guarantee this as an effective
countermeasure we need to warm
the cache with the entirety of all
the S-boxes.”

lous timing
che is faster
wilarly, L1 cache

cache.
~hed line
1an

ached line.

oned by 1996
Isey Schneier

/e believe attacks
it ratio in large

> Blowfish, CAST
bssible™), 2003

2r.

2002: Page publishes fast
algorithm to find DES key
from high-bandwidth timing
information. DPA-style. Many
plaintexts, each starting with
empty cache. Algorithm input:
for each plaintext, list of S-box
lookups that missed the cache.

Avoid empty cache by preloading
some S-box entries? “To
guarantee this as an effective
countermeasure we need to warm
the cache with the entirety of all
the S-boxes.”

2003: Tsunoo, S
Shigeri, Miyauch
algorithm to find
low-bandwidth ti
Many plaintexts,
with empty cach
input: for each
encryption time.

“If a total-data |
before processing
between the freq
misses will not b
making 1t Imposs
the relationships
S-boxes.”

2002: Page publishes fast
algorithm to find DES key
from high-bandwidth timing
information. DPA-style. Many
plaintexts, each starting with
empty cache. Algorithm input:
for each plaintext, list of S-box
lookups that missed the cache.

Avoid empty cache by preloading
some S-box entries? “To
guarantee this as an effective
countermeasure we need to warm
the cache with the entirety of all
the S-boxes.”

2003: Tsunoo, Saito, Suzaki,
Shigeri, Miyauchi publish fast
algorithm to find DES key from
low-bandwidth timing information.
Many plaintexts, each starting
with empty cache. Algorithm
input: for each plaintext,
encryption time.

“If a total-data load is executed
before processing, differences
between the frequencies of cache
misses will not be observed,
making it impossible to determine
the relationships between sets of
S-boxes.”

ishes fast

DES key
1dth timing
A-style. Many
starting with
corithm input:
t, list of S-box
sed the cache.

he by preloading
es? “To

- an effective

ve need to warm
1e entirety of all

2003: Tsunoo, Saito, Suzaki,
Shigeri, Miyauchi publish fast
algorithm to find DES key from

low-bandwidth timing information.

Many plaintexts, each starting
with empty cache. Algorithm
input: for each plaintext,
encryption time.

“If a total-data load is executed
before processing, differences
between the frequencies of cache
misses will not be observed,
making it impossible to determine
the relationships between sets of
S-boxes.”

3. Breaking AES

Given 16-byte se
and 16-byte seqL
AES produces

16-byte sequence

Uses table looku
e0 = tab[k[13]
el =
tab[k[0]®n[O]
etc.

AES,(n) = (e78

2003: Tsunoo, Saito, Suzaki,
Shigeri, Miyauchi publish fast
algorithm to find DES key from

low-bandwidth timing information.

Many plaintexts, each starting
with empty cache. Algorithm
input: for each plaintext,
encryption time.

“If a total-data load is executed
before processing, differences
between the frequencies of cache
misses will not be observed,
making it impossible to determine
the relationships between sets of
S-boxes.”

3. Breaking AES

Given 16-byte sequence n
and 16-byte sequence k,
AES produces

16-byte sequence AES,(n).

Uses table lookup and & (xor):
e0 = tabl[k[13]]&®1

el =

tab [k [0]®n[0]]1®k[0]®eO
etc.

AES.(n) = (e784,...,e799).

aito, Suzaki,
| publish fast
DES key from

ming information.

each starting
o, Algorithm
laintext,

oad Is executed

', differences
uencies of cache
e observed,

ible to determine
between sets of

3. Breaking AES

Given 16-byte sequence n
and 16-byte sequence k,
AES produces

16-byte sequence AES,(n).

Uses table lookup and & (xor):

e0 = tab[k[13]]&1

el =

tab[k[0]®n[0] 1k [0] HeO
etc.

AES.(n) = (e784,...,e799).

High-speed AES
registers, several
Operations: byte
bytes to 1 byte),
byte to 4 byte),

Attacker can forc
table entries out
observe encryptic
Each cache miss
signal, clearly vis
from other AES
other software, e
Repeat for many
easily deduce key

3. Breaking AES

Given 16-byte sequence n
and 16-byte sequence k,
AES produces

16-byte sequence AES,(n).

Uses table lookup and & (xor):

e0 = tab[k[13]]&1

el =

tab[k[0]®n[0] 1k [0]®eO
etc.

AES.(n) = (e784,...,e799).

High-speed AES uses 4-byte
registers, several 1024-byte tables.
Operations: byte extraction (4
bytes to 1 byte), table lookup (1
byte to 4 byte), .

Attacker can force selected

table entries out of L2 cache,
observe encryption time.

Each cache miss creates timing
signal, clearly visible despite noise
from other AES cache misses,
other software, etc.

Repeat for many plaintexts,
easily deduce key.

quence n
ence k,

 AES,(n).

0 and @ (xor):

11
1@k [0] PeO

4,...,e799).

High-speed AES uses 4-byte

registers, several 1024-byte tables.

Operations: byte extraction (4
bytes to 1 byte), table lookup (1
byte to 4 byte), .

Attacker can force selected

table entries out of L2 cache,
observe encryption time.

Each cache miss creates timing
signal, clearly visible despite noise
from other AES cache misses,
other software, etc.

Repeat for many plaintexts,
easily deduce key.

Example: tablk|
hundreds of extr:
tab entry Is not

Knock tabl13] o
signal when £][O]
Deduce k[0] as 7
(Complication: ¢
need more work
bottom bits of £

More efficient: K
tab entries out
Then first n]0] i
to half of its pos

High-speed AES uses 4-byte

registers, several 1024-byte tables.

Operations: byte extraction (4
bytes to 1 byte), table lookup (1
byte to 4 byte), .

Attacker can force selected

table entries out of L2 cache,
observe encryption time.

Each cache miss creates timing
signal, clearly visible despite noise
from other AES cache misses,
other software, etc.

Repeat for many plaintexts,
easily deduce key.

Example: tab|k[0] & n[0]] costs
hundreds of extra cycles if this
tab entry iIs not in L2 cache.

Knock tab[13] out of cache. See
signal when £[0] & n[0] = 13.
Deduce £[0] as n[0] & 13.
(Complication: cache lines;

need more work to find
bottom bits of £[0].)

More efficient: Knock half of the

tab entries out of cache.
Then first n[0] limits £[0]
to half of its possibilities.

uses 4-byte

1024-byte tables.

- extraction (4
table lookup (1

D.

e selected

of L2 cache,

n time.

creates timing
ible despite noise
cache misses,

tC.

plaintexts,

,l

Example: tab|k[0] & n[0]] costs
hundreds of extra cycles if this
tab entry iIs not in L2 cache.

Knock tab[13] out of cache. See
signal when £[0] & n[0] = 13.
Deduce £[0] as n[0] & 13.
(Complication: cache lines;

need more work to find
bottom bits of £[0].)

More efficient: Knock half of the

tab entries out of cache.
Then first n[0] limits £[0]
to half of its possibilities.

On (e.g.) Athlon
L1 cache is 2-wa
three 64-byte line
address modulo !

the first line is fc
L1 cache.

Athlon’s 524238-

Is 16-way associzs
with the same ac

8192 are read, th
forced out of the

Force tab[13] ou
by accessing sele
locations.

Example: tab|k[0] & n[0]] costs
hundreds of extra cycles if this
tab entry iIs not in L2 cache.

Knock tab[13] out of cache. See
signal when £[0] & n[0] = 13.
Deduce £[0] as n[0] & 13.
(Complication: cache lines;

need more work to find
bottom bits of £[0].)

More efficient: Knock half of the

tab entries out of cache.
Then first n[0] limits £[0]
to half of its possibilities.

On (e.g.) Athlon: 65536-byte

L1 cache is 2-way associative. If
three 64-byte lines with the same
address modulo 32768 are read,

the first line is forced out of the
L1 cache.

Athlon’s 524288-byte L2 cache
iIs 16-way associative. If 17 lines
with the same address modulo
8192 are read, the first line is
forced out of the L2 cache.

Force tab[13] out of cache
by accessing selected memory
locations.

O] & n|0]] costs
) cycles if this
in L2 cache.

ut of cache. See
® n|[0] = 13.
(0] & 13.

ache lines;

to find

0].)

‘nock half of the

f cache.
mits k[0]
sibilities.

On (e.g.) Athlon: 65536-byte

L1 cache is 2-way associative. If
three 64-byte lines with the same
address modulo 32768 are read,
the first line is forced out of the

L1 cache.

Athlon’'s 524288-byte L2 cache
iIs 16-way associative. If 17 lines
with the same address modulo
8192 are read, the first line is
forced out of the L2 cache.

Force tab[13] out of cache
by accessing selected memory
locations.

How does attack
necessary accesse
multiuser compu
account. Almost
an account: e.g.
Java applet to us

What if compute
no buffer overflo
still possible to ¢
attack from anot
by figuring out p
sent to (e.g.) Lin
accesses of apprc
locations. Noboc
Would make a ni

On (e.g.) Athlon: 65536-byte

L1 cache is 2-way associative. If
three 64-byte lines with the same
address modulo 32768 are read,
the first line is forced out of the
L1 cache.

Athlon’s 524288-byte L2 cache
iIs 16-way associative. If 17 lines
with the same address modulo
8192 are read, the first line is
forced out of the L2 cache.

Force tab[13] out of cache
by accessing selected memory

locations.

How does attacker do the
necessary accesses? Trivial on
multiuser computer if attacker has
account. Almost as easy without
an account: e.g., attacker sends
Java applet to user's browser.

What if computer has no browser,
no buffer overflows, etc.? Clearly
still possible to carry out the
attack from another computer

by figuring out packets that, when
sent to (e.g.) Linux kernel, cause
accesses of appropriate memory
locations. Nobody has done this!
Would make a nice paper!

. 65536-byte

y associative. If
2s with the same
32768 are read,
rced out of the

byte L2 cache
tive. If 17 lines
ldress modulo
e first line is

L2 cache.

t of cache
cted memory

How does attacker do the
necessary accesses? Trivial on
multiuser computer if attacker has
account. Almost as easy without
an account: e.g., attacker sends
Java applet to user's browser.

What if computer has no browser,
no buffer overflows, etc.? Clearly
still possible to carry out the
attack from another computer

by figuring out packets that, when
sent to (e.g.) Linux kernel, cause
accesses of appropriate memory
locations. Nobody has done this!
Would make a nice paper!

What about the
“guaranteed” col

reading all AES
starting AES con

Even if this were
eliminate cache r
entries can drop
during the comp

Typical AES soft
different arrays:

output, stack, S-
sometimes kicks
lines out of L1 c:
(e.g.) the key an

How does attacker do the
necessary accesses? Trivial on
multiuser computer if attacker has
account. Almost as easy without
an account: e.g., attacker sends
Java applet to user's browser.

What if computer has no browser,
no buffer overflows, etc.? Clearly
still possible to carry out the
attack from another computer

by figuring out packets that, when
sent to (e.g.) Linux kernel, cause
accesses of appropriate memory
locations. Nobody has done this!
Would make a nice paper!

What about the

“guaranteed” countermeasure,
reading all AES tables before
starting AES computation?

Even if this were free, it wouldn't
eliminate cache misses. Table
entries can drop out of cache
during the computation.

Typical AES software uses several
different arrays: input, key,
output, stack, S-boxes. Software
sometimes kicks its own S-box
lines out of L1 cache by accessing
(e.g.) the key and the stack.

er do the

s? Trivial on

ter if attacker has
as easy without

- attacker sends
ser's browser.

r has no browser,
ns, etc.? Clearly
arry out the

her computer
ackets that, when
ux kernel, cause
priate memory
ly has done this!
ce paper!

What about the

“guaranteed” countermeasure,
reading all AES tables before
starting AES computation?

Even if this were free, it wouldn't
eliminate cache misses. Table
entries can drop out of cache
during the computation.

Typical AES software uses several
different arrays: input, key,
output, stack, S-boxes. Software
sometimes kicks its own S-box
lines out of L1 cache by accessing
(e.g.) the key and the stack.

Fixed in my 200¢
iImplementation,
implementation,
variables into a |
of arrays. But th
eliminate cache 1

Computers run n
simultaneous pro
AES software cat
by another proce
lines out of L1 c:
even L2 cache. E
partial-AES cach
the timing of the

What about the

“guaranteed” countermeasure,
reading all AES tables before
starting AES computation?

Even if this were free, it wouldn't
eliminate cache misses. Table
entries can drop out of cache
during the computation.

Typical AES software uses several
different arrays: input, key,
output, stack, S-boxes. Software
sometimes kicks its own S-box
lines out of L1 cache by accessing
(e.g.) the key and the stack.

Fixed in my 2005 AES
implementation, Gladman’'s latest
implementation, etc.: squeeze
variables into a limited number
of arrays. But this still doesn't
eliminate cache misses!

Computers run many
simultaneous processes. The
AES software can be interrupted
by another process that kicks
lines out of L1 cache and maybe
even L2 cache. Even worse, the
partial-AES cache state affects
the timing of the other process.

Jntermeasure,
ables before
nputation?

free, it wouldn't
nisses. lable
out of cache
utation.

ware uses several
input, key,
boxes. Software
Iits own S-box
ache by accessing
d the stack.

Fixed in my 2005 AES
implementation, Gladman’'s latest
implementation, etc.: squeeze
variables into a limited number
of arrays. But this still doesn't
eliminate cache misses!

Computers run many
simultaneous processes. The
AES software can be interrupted
by another process that kicks
lines out of L1 cache and maybe
even L2 cache. Even worse, the
partial-AES cache state affects
the timing of the other process.

Occasional AES
accident.

Can force much
frequent interrup
“hyperthreading”
Shamir Tromer, |
2005 Percival—g
bandwidth timing

Not clear whethe
approach can be
remotely via (e.g

Fixed in my 2005 AES
implementation, Gladman’'s latest
implementation, etc.: squeeze
variables into a limited number
of arrays. But this still doesn't
eliminate cache misses!

Computers run many
simultaneous processes. The
AES software can be interrupted
by another process that kicks
lines out of L1 cache and maybe
even L2 cache. Even worse, the
partial-AES cache state affects
the timing of the other process.

Occasional AES interrupts by
accident.

Can force much more

frequent interrupts with
“hyperthreading”—2005 Osvik
Shamir Tromer, independently
2005 Percival—giving high-
bandwidth timing information.

Not clear whether hyperthreading
approach can be carried out
remotely via (e.g.) Linux kernel.

y AES
Gladman’s latest
etc.: squeeze
mited number
1s still doesn't
nisses!

any
cesses. [he

1 be Interrupted
ss that kicks
ache and maybe
-ven worse, the
e state affects

- other process.

Occasional AES interrupts by
accident.

Can force much more

frequent interrupts with
“hyperthreading” —2005 Osvik
Shamir Tromer, independently
2005 Percival—giving high-
bandwidth timing information.

Not clear whether hyperthreading
approach can be carried out
remotely via (e.g.) Linux kernel.

It /s possible to
all AES cache m

Put AES softwar
operating-system
Disable interrupt
Disable hyperthr:

Read all S-boxes
Wait for reads tc
Encrypt some bl

The bad news, a:

Stopping cache r
enough. There a
In cache hits.

Occasional AES interrupts by
accident.

Can force much more

frequent interrupts with
“hyperthreading”—2005 Osvik
Shamir Tromer, independently
2005 Percival—giving high-
bandwidth timing information.

Not clear whether hyperthreading
approach can be carried out
remotely via (e.g.) Linux kernel.

It /s

possible to stop

all AES cache misses.

Put AES software into
operating-system kernel.

Disa
Disa

ole Interrupts.
ole hyperthreading etc.

Read all S-boxes into cache.

Wait for reads to complete.

Encrypt some blocks of data.

The
Stop
enou

bad news, as we'll see later:

ning cache misses isn't
gh. There are timing leaks

In cache hits.

interrupts by

more

ts with
—2005 Osvik
ndependently
ving high-

> information.

>

r hyperthreading
carried out
.) Linux kernel.

It /s possible to stop
all AES cache misses.

Put AES software into
operating-system kernel.
Disable interrupts.

Disable hyperthreading etc.

Read all S-boxes into cache.
Wait for reads to complete.
Encrypt some blocks of data.

The bad news, as we'll see later:

Stopping cache misses isn't
enough. There are timing leaks
In cache hits.

4. Skewing benc

Many deceptive !

the cry

btographi

Bait-and-switcl
Guesses report
My-favorite-CF
Long-message
Timings after |
High-variance 1

Consequence: In

these functions a

much slower thai

It /s possible to stop
all AES cache misses.

Put AES software into
operating-system kernel.
Disable interrupts.

Disable hyperthreading etc.

Read all S-boxes into cache.
Wait for reads to complete.
Encrypt some blocks of data.

The bad news, as we'll see later:

Stopping cache misses isn't
enough. There are timing leaks
In cache hits.

4. Skewing benchmarks

Many deceptive timings iIn

the cryptographic literature:

Bait-and-switch timings.
Guesses reported as timings.
My-favorite-CPU timings.
Long-message timings.
Timings after precomputation.

High-variance timings.

Consequence: In the real world,
these functions are often
much slower than advertised.

top
SSes.

e Into
kernel.

S.

cading etc.
Into cache.

 complete.

bcks of data.

s we' |l see later:

nisses isn't
re timing leaks

4. Skewing benchmarks

Many deceptive timings in

the cryptographic literature:

e Bait-and-switch timings.

e Guesses reported as timings.
e My-favorite-CPU timings.

e Long-message timings.

e [imings after precomputation.

e High-variance timings.

Consequence: In the real world,
these functions are often
much slower than advertised.

Bait-and-switch -
Create two versic
function, a smal
and a big Fun-S
timings for Fun-i

Example in litera
proposes 16-byte
Says “More than
on a 200 MHz P
... but that's ac
breakable 4-byte

The honest alter
Focus on one fur

4. Skewing benchmarks

Many deceptive timings in

the cryptographic literature:

e Bait-and-switch timings.

e Guesses reported as timings.
e My-favorite-CPU timings.

e Long-message timings.

e [imings after precomputation.

e High-variance timings.

Consequence: In the real world,
these functions are often
much slower than advertised.

Bait-and-switch timings:

Create two versions of your
function, a small Fun-Breakable
and a big Fun-Slow. Report

timings for Fun-Breakable.

Example in literature: Paper

proposes 16-byte authenticator.

Says “More than 1 Gbit/sec

on a 200 MHz Pentium Pro”
but that's actually for a

breakable 4-byte authenticator.

The honest alternative:
Focus on one function.

hmarks

Limings In

C literature:

n timings.

ed as timings.
U timings.
timings.

recomputation.

Imings.

the real world,
re often
1 advertised.

Bait-and-switch

timings:

Create two versions of your

function, a smal
and a big Fun-S
timings for Fun-

Fun-Breakable
ow. Report

Breakable.

Example in literature: Paper

proposes 16-byte authenticator.

Says “More than 1 Gbit/sec
on a 200 MHz Pentium Pro”
but that's actually for a

breakable 4-byte authenticator.

The honest alternative:

Focus on one function.

Guesses reported
Measure only pai
computation.

Estimate the oth

Example in litera
2.2 clock cycles |
the unimplement

fast as various es

The honest alter
exactly the funct
that applications

Bait-and-switch timings:

Create two versions of your
function, a small Fun-Breakable
and a big Fun-Slow. Report
timings for Fun-Breakable.

Example in literature: Paper
proposes 16-byte authenticator.
Says “More than 1 Gbit/sec
on a 200 MHz Pentium Pro”
but that's actually for a
breakable 4-byte authenticator.

The honest alternative:
Focus on one function.

Guesses reported as timings:
Measure only part of the
computation.

Estimate the other parts.

Example in literature: “achieves
2.2 clock cycles per byte” ... if
the unimplemented parts are as
fast as various estimates.

The honest alternative: Measure
exactly the function call
that applications will use.

L imings:
ns of your
Fun-Breakable

ow. Report
Sreakable.

ture: Paper
authenticator.
1 Gbit/sec
entium Pro”
tually for a
authenticator.

native:
1ction.

Guesses reported as timings:
Measure only part of the
computation.

Estimate the other parts.

Example in literature: “achieves
2.2 clock cycles per byte” ... if
the unimplemented parts are as
fast as various estimates.

The honest alternative: Measure
exactly the function call
that applications will use.

My-favorite-CPU
CPU where func
lgnore all other (

Example in litera
were measured o

because othe
many more cycle
for this particula

The honest alter
Measure every C
If reader doesn’t
a particular chip,

Guesses reported as timings:
Measure only part of the
computation.

Estimate the other parts.

Example in literature: “achieves
2.2 clock cycles per byte” ... if
the unimplemented parts are as
fast as various estimates.

The honest alternative: Measure
exactly the function call
that applications will use.

My-favorite-CPU timings: Choose
CPU where function is very fast.
lgnore all other CPUs.

Example in literature: “All speeds

were measured on a Pentium 4"
because other chips take

many more cycles per byte

for this particular computation.

The honest alternative:

Measure every CPU you can find.
If reader doesn’t care about

a particular chip, he can ignore It.

as timings:
t of the

er parts.

ture: “achieves
der byte” ... if
ed parts are as
timates.

native: Measure
ion call

will use.

My-favorite-CPU timings: Choose
CPU where function is very fast.
lgnore all other CPUs.

Example in literature: “All speeds

were measured on a Pentium 4"
because other chips take

many more cycles per byte

for this particular computation.

The honest alternative:

Measure every CPU you can find.
If reader doesn’t care about

a particular chip, he can ignore It.

Long-message tir
time only for lon
lgnore per-messa
lgnore applicatio
handle short pac

Example in litera
"2 cycles per byt
plus 2000 cy

The honest alter
Report times for
for each n € {0,

My-favorite-CPU timings: Choose
CPU where function is very fast.
lgnore all other CPUs.

Example in literature: “All speeds
were measured on a Pentium 4

. because other chips take
many more cycles per byte
for this particular computation.

The honest alternative:

Measure every CPU you can find.
If reader doesn’t care about

a particular chip, he can ignore It.

Long-message timings: Report
time only for long messages.
lgnore per-message overhead.
lgnore applications that
handle short packets.

Example in literature:
“2 cycles per byte”
. plus 2000 cycles per packet.

The honest alternative:
Report times for n-byte packets
for each n € {0,1,2,...,8192}.

timings: Choose Long-message timings: Report Timings after pre

ion is very fast. time only for long messages. Report time afte
_PUs. lgnore per-message overhead. a big key-depend
ture: “All speeds lgnore applications that has been pr.ecom
. . handle short packets. and loaded into |

n a Pentium 4 | e
r chips take Example in literature: shore app |cat.|0|
y " handle many sim

s per byte 2 cycles per byte

- computation. ... plus 2000 cycles per packet. The honest alter
native: The honest alternative: Measure p.recom|
PU you can find. Report times for n-byte packets n;easure tlr’ne TO
that t ‘
care about for each n € {0,1,2,...,8192}. at weren't alre

he can ignore It.

Long-message timings: Report
time only for long messages.
lgnore per-message overhead.
lgnore applications that
handle short packets.

Example in literature:
“2 cycles per byte”
. plus 2000 cycles per packet.

The honest alternative:
Report times for n-byte packets

for each n € {0,1,2,...,8192}.

Timings after precomputation:
Report time after

a big key-dependent table

has been precomputed

and loaded into L1 cache.

lgnore applications that
handle many simultaneous keys.

The honest alternative:
Measure precomputation time;
measure time to load inputs
that weren't already In cache.

nings: Report
o messages.
ge overhead.
ns that

kets.

ture:

e
cles per packet.

native:
n-byte packets

1,2,...,8192}.

Timings after precomputation:
Report time after

a big key-dependent table

has been precomputed

and loaded into L1 cache.

lgnore applications that

handle many simultaneous keys.

The honest alternative:
Measure precomputation time;
measure time to load inputs
that weren't already In cache.

High-variance tin
Measure each ful
time, on a single
lgnore possibility

In timing.

Compare functio
single timings, pr
high-variance fur

The honest alter
Report several m
making variance

Timings after precomputation:
Report time after

a big key-dependent table

has been precomputed

and loaded into L1 cache.

lgnore applications that

handle many simultaneous keys.

The honest alternative:
Measure precomputation time;
measure time to load inputs
that weren't already In cache.

High-variance timings:

Measure each function a single
time, on a single input.

lgnore possibility of high variance

In timing.

Compare functions by comparing
single timings, promoting a few
high-variance functions.

The honest alternative:
Report several measurements,
making variance clear.

computation:
r

ent table
puted

_1 cache.

ns that

ultaneous keys.

native:
outation time:
load inputs
ady In cache.

High-variance timings:

Measure each function a single
time, on a single input.

lgnore possibility of high variance
In timing.

Compare functions by comparing
single timings, promoting a few
high-variance functions.

The honest alternative:
Report several measurements,
making variance clear.

5. Advanced tim

2004: | write sof
Poly1305-AES, a
message authent
Wegman-Carter
combining a pro\
“universal” hash
a hopefully-secur
(AES in counter

Poly1305 has no
Existing AES sof
slow precomputa

Poly1305-AES lo
write new AES s

High-variance timings:

Measure each function a single
time, on a single input.

lgnore possibility of high variance
In timing.

Compare functions by comparing
single timings, promoting a few
high-variance functions.

The honest alternative:
Report several measurements,
making variance clear.

5. Advanced timing leaks

2004: | write software for
Poly1305-AES, a state-of-the-art
message authenticator. Standard
Wegman-Carter structure,
combining a provably secure
“universal” hash (Poly1305) with
a hopefully-secure stream cipher
(AES in counter mode).

Poly1305 has no precomputation.
Existing AES software does
slow precomputation, making

Poly1305-AES look slow. So |
write new AES software.

NINgs:

1ction a single
Input.

of high variance

ns by comparing
omoting a few
ctions.

native:
easurements,
clear.

5. Advanced timing leaks

2004: | write software for
Poly1305-AES, a state-of-the-art
message authenticator. Standard
Wegman-Carter structure,
combining a provably secure
“universal” hash (Poly1305) with
a hopefully-secure stream cipher
(AES in counter mode).

Poly1305 has no precomputation.

Existing AES software does
slow precomputation, making

Poly1305-AES look slow. So |
write new AES software.

| look at successi
for authenticatin
messages: 3668
567 577 568 570

2-byte messages:
575 570 563 565

3-byte messages:
576 571 564 566

Interesting. Whe
numbers come fr

Another comput:
(71 768 751 752
751 752 751 752

5. Advanced timing leaks

2004: | write software for
Poly1305-AES, a state-of-the-art
message authenticator. Standard
Wegman-Carter structure,
combining a provably secure
“universal” hash (Poly1305) with
a hopefully-secure stream cipher
(AES in counter mode).

Poly1305 has no precomputation.

Existing AES software does
slow precomputation, making

Poly1305-AES look slow. So |
write new AES software.

| look at successive cycle counts
for authenticating ten 1-byte
messages: 3663 833 5385 574 603
567 577 568 570 5385.

2-byte messages: 568 572 574
575 570 563 565 569 571 574.

3-byte messages: 569 573 575
576 571 564 566 570 572 575.

Interesting. Where do these
numbers come from?

Another computation, same CPU:
771 768 751 752 751 752 751 752
751 752 751 752 751 752.

ing leaks

tware for
state-of-the-art
icator. Standard
Sstructure,

rably secure
(Poly1305) with
e stream cipher
mode).

precomputation.

tware does
tion, making
ok slow. So |
oftware.

| look at successive cycle counts
for authenticating ten 1-byte

messages: 3663 833 5385 574 603
567 577 568 570 535.

2-byte messages: 568 572 574
575 570 563 565 569 571 574.

3-byte messages: 569 573 575
576 571 564 566 570 572 575.

Interesting. Where do these
numbers come from?

Another computation, same CPU:
771 768 751 752 751 752 751 752
751 752 751 752 751 752.

| oad-after-store

On (e.g.) Pentiul
load from L1 cac
slightly slower if
same cache line |
as a recent store

This timing varia
even If all loads :
cachel

| look at successive cycle counts
for authenticating ten 1-byte

messages: 3663 833 5385 574 603
567 577 568 570 5385.

2-byte messages: 568 572 574
575 570 563 565 569 571 574.

3-byte messages: 569 573 575
576 571 564 566 570 572 575.

Interesting. Where do these

numbers come from?

Another computation, same CPU:
771 768 751 752 751 752 751 752
751 752 751 752 751 752.

| oad-after-store conflicts:

On (e.g.) Pentium IlI,

load from L1 cache is
slightly slower if it involves
same cache line modulo 4096
as a recent store.

This timing variation happens
even Iif all loads are from L1
cachel

ve cycle counts
o ten 1-byte

333 535 574 603
585.

568 572 574
569 571 574.

569 573 575
570 572 575.

re do these

om?’

ition, same CPU:
751 752 751 752
751 752.

| oad-after-store conflicts:

On (e.g.) Pentium IlI,

load from L1 cache is
slightly slower if it involves
same cache line modulo 4096
as a recent store.

This timing variation happens
even Iif all loads are from L1
cachel

Cache-bank thro

On (e.g.) Athlon
can perform two

from L1 cache e\

Exception: Secot
waits for a cycle
are from same c:

Time for cache f
again depends or

No guarantee th:
only effects.

| oad-after-store conflicts:

On (e.g.) Pentium IlI,

load from L1 cache is
slightly slower if it involves
same cache line modulo 4096
as a recent store.

This timing variation happens
even if all loads are from L1

cachel

Cache-bank throughput limits:

On (e.g.) Athlon,
can perform two loads
from L1 cache every cycle.

Exception: Second load
waits for a cycle if loads
are from same cache “bank.”

Time for cache hit
again depends on array index.

No guarantee that these are the
only effects.

conflicts:

m |1,

he Is

It Involves
modulo 4096

tion happens
are from L1

Cache-bank throughput limits:

On (e.g.) Athlon,
can perform two loads
from L1 cache every cycle.

Exception: Second load
waits for a cycle if loads
are from same cache “bank.”

Time for cache hit
again depends on array index.

No guarantee that these are the
only effects.

6. Breaking AES

2004: | point ou
cache-hit time vc

in OpenSSL anc
popular AES img

2005: | extract ¢
from OpenSSL ti
making no effort
knock table entri
Many random kr

Cache-bank throughput limits:

On (e.g.) Athlon,
can perform two loads
from L1 cache every cycle.

Exception: Second load
waits for a cycle if loads
are from same cache “bank.”

Time for cache hit
again depends on array index.

No guarantee that these are the
only effects.

6. Breaking AES in cache

2004: | point out

cache-hit time variations

iIn OpenSSL and other
popular AES implementations.

2005: | extract complete key
from OpenSSL timings,
making no effort to

knock table entries out of cache.
Many random known plaintexts.

ughput limits:

loads
/ery cycle.

1d load
If loads
iche “bank.”

It
1 array index.

1t these are the

6. Breaking AES in cache

2004: | point out
cache-hit time variations

iIn OpenSSL and

other

popular AES im

blementations.

2005: | extract complete key

from OpenSSL timings,

making no effort to

knock table entries out of cache.

Many random known plaintexts.

6. Breaking AES in cache

2004: | point out

cache-hit time variations

iIn OpenSSL and other
popular AES implementations.

2005: | extract complete key
from OpenSSL timings,
making no effort to

knock table entries out of cache.

Many random known plaintexts.

In_cache

C

riations

other
lementations.

omplete key
mings,

to

es out of cache.

own plaintexts.

Graph has z-coo
O through 255.

y-coordinate: av
to encrypt rando
with k[13] & n[1
minus average C)

unrestricted rand

Encryption time
code, this CPU,
Is maximized whi
k[13] & n[13] =
3-cycle signal.

Graph has z-coordinates
O through 255.

y-coordinate: average cycles

to encrypt random plaintext
with £[13] & n[13] = =,

minus average cycles to encrypt

unrestricted random plaintext.

Encryption time (for this test
code, this CPU, etc.)

Is maximized when

k[13] & n[13] = 8.

3-cycle signal.

S P & T e e

Graph has z-coordinates
O through 255.

y-coordinate: average cycles

to encrypt random plaintext
with £[13] & n[13] = =,

minus average cycles to encrypt

unrestricted random plaintext.

Encryption time (for this test
code, this CPU, etc.)

Is maximized when

k[13] & n[13] = 8.

3-cycle signal.

2.0

2.0
1.5
1.0
0.5
0.0 .

0.5 .

—1.0

Graph for k[5] &

Graph has z-coordinates
O through 255.

y-coordinate: average cycles

to encrypt random plaintext
with £[13] & n[13] = =,

minus average cycles to encrypt

unrestricted random plaintext.

Encryption time (for this test
code, this CPU, etc.)

Is maximized when

k[13] & n[13] = 8.

3-cycle signal.

2.0

2.0}
1.5}
1.0}
0.5
0.0

0.5 .

—1.0

Graph for k[5] & n|5].

rdinates

erage cycles

m plaintext

3] = «,

cles to encrypt
om plaintext.

(for this test
etc.)
e

3.

2.0

2.0}
1.5}
1.0}
0.5
0.0

0.5 .

—1.0

Graph for k[5] & n[5].

10

—2

—4

This graph has n
presumably L1 c:

2.5 - 10
2.0 - 8+ ;
1.0 . - 4+ -

0.5 . oL |

O . O L R EEERERRRIEERRES — O _"-..-"""--,-_

055 . o e T —2t -

—1.0 —4

Graph for k[5] & n|5].

This graph has much larger max,
presumably L1 cache miss.

n|5].

10

al]
6l]
Al]
-)
U
. _]
—4

This graph has much larger max,
presumably L1 cache miss.

2006: Mironov r
only attack dedu
few thousand cip
Focus on last rot
of AES computa

Obvious next res
Understand netw
Can we see =~ 1-«
from (e.g.) medi
10° packet timin

Would be anothe
I'm not doing thi

feel free to jump

10

—2 L ,...."“ _

—4

This graph has much larger max,
presumably L1 cache miss.

2006: Mironov reports ciphertext-
only attack deducing key after a
few thousand ciphertexts.

Focus on last round

of AES computation.

Obvious next research step:
Understand network noise!
Can we see =~ l-cycle signals
from (e.g.) median of

10° packet timings?

Would be another nice paper.
I'm not doing this;

feel free to jump in.

wuch larger max,
ache miss.

2006: Mironov reports ciphertext-
only attack deducing key after a
few thousand ciphertexts.

Focus on last round

of AES computation.

Obvious next research step:
Understand network noise!
Can we see =~ l-cycle signals
from (e.g.) median of

10° packet timings?

Would be another nice paper.
I'm not doing this;

feel free to jump in.

/. Misdesigning

Primary goal of «
Continued emplo

cryptographers.
How to achieve t

Example: Use 51
Oops, broken? U
Oops, broken? U

2006: Mironov reports ciphertext-
only attack deducing key after a
few thousand ciphertexts.

Focus on last round

of AES computation.

Obvious next research step:
Understand network noise!
Can we see =~ l-cycle signals
from (e.g.) median of

10° packet timings?

Would be another nice paper.
I'm not doing this;

feel free to jump in.

/. Misdesigning cryptography

Primary goal of cryptography:
Continued employment for

cryptographers.
How to achieve this?

Example: Use 512-bit RSA.
Oops, broken? Use 768-bit RSA.
Oops, broken? Use 1024-bit RSA.

eports ciphertext-
cing key after a
hertexts.

ind

tion.

earch step:
ork noisel
ycle signals
an of

gs’?

r nice paper.
S;

IN.

/. Misdesigning cryptography

Primary goal of cryptography:
Continued employment for

cryptographers.

How to achieve this?

Example: Use 512-bit RSA.
Oops, broken? Use 768-bit RSA.

Oops, broken? Use 1024-bit RSA.

Don't believe the
until they've bee
In the New York

For timing attacl
hasn't been dem:
assume it doesn”

Don’t use obviou
software such as

/. Misdesigning cryptography

Primary goal of cryptography:
Continued employment for

cryptographers.

How to achieve this?

Example: Use 512-bit RSA.
Oops, broken? Use 768-bit RSA.

Oops, broken? Use 1024-bit RSA.

Don't believe that attacks work
until they ve been announced
In the New York Times.

For timing attacks: If attack
hasn't been demonstrated,
assume It doesn’'t work.

Don’t use obviously-constant-time
software such as Phelix.

cryptography

“ryptography:
yment for

his?

2-bit RSA.
Ise 768-bit RSA.

Ise 1024-bit RSA.

Don't believe that attacks work
until they ve been announced
In the New York Times.

For timing attacks: If attack
hasn't been demonstrated,
assume It doesn’'t work.

Don’t use obviously-constant-time
software such as Phelix.

Don't use crypto

Build complex m
cryptographic sy:
Don't communic
between people
different layers.

e.g. Most CPU ¢
thoroughly docur

Challenge: Mark
with a variable-ti

Don't believe that attacks work
until they ve been announced
In the New York Times.

For timing attacks: If attack
hasn't been demonstrated,
assume It doesn’'t work.

Don’t use obviously-constant-time
software such as Phelix.

Don't use cryptographic hardware.

Build complex multi-layer
cryptographic systems.

Don't communicate adequately
between people designing
different layers.

e.g. Most CPU designers fail to
thoroughly document CPU speed.

Challenge: Market a CPU
with a variable-time adder.

