Differential addition chains
D. J. Bernstein

Thanks to:
University of Illinois at Chicago
Danmarks Tekniske Universitet Alfred P. Sloan Foundation

Motivating problem:
Given elliptic curve E, integer n, and point P on E, compute $n P$ on E as quickly as possible.

Many variations of problem.
Some applications reuse one n for many P's.
Some applications don't.
Some applications use secret n;
must not leak n through timing.
Some applications use public n.
Etc.
ion chains
ois at Chicago
ke Universitet
oundation

Motivating problem:
Given elliptic curve E,
integer n, and point P on E,
compute $n P$ on E
as quickly as possible.
Many variations of problem.
Some applications reuse one n
for many P's.
Some applications don't.
Some applications use secret n; must not leak n through timing. Some applications use public n. Etc.

1987 Montgomer
Focus on large-c curves $y^{2}=x^{3}+$ with small $a \in\{$ Use pair (x, z) tc $P=(x / z, \ldots)$.

Computing Q, R takes 6 mults.
Only 5 mults if denominator.
Only 4 mults if C numerator and si Only 4 mults if C

Motivating problem:
Given elliptic curve E, integer n, and point P on E, compute $n P$ on E as quickly as possible.

Many variations of problem.
Some applications reuse one n for many P's.
Some applications don't.
Some applications use secret n; must not leak n through timing. Some applications use public n. Etc.

1987 Montgomery:

Focus on large-characteristic curves $y^{2}=x^{3}+a x^{2}+x$ with small $a \in\{6,10,14, \ldots\}$.

Use pair (x, z) to represent point $P=(x / z, \ldots)$.

Computing $Q, R, Q-R \mapsto Q+R$ takes 6 mults.
Only 5 mults if $Q-R$ has small denominator.
Only 4 mults if $Q-R$ has small numerator and small denominator. Only 4 mults if $Q=R$.

em:

ve E,
bint P on E,
E
sible.
of problem.
s reuse one n
is don't.
s use secret n; through timing. s use public n.

1987 Montgomery:
Focus on large-characteristic curves $y^{2}=x^{3}+a x^{2}+x$ with small $a \in\{6,10,14, \ldots\}$.

Use pair (x, z) to represent point $P=(x / z, \ldots)$.

Computing $Q, R, Q-R \mapsto Q+R$ takes 6 mults.
Only 5 mults if $Q-R$ has small denominator.
Only 4 mults if $Q-R$ has small numerator and small denominator. Only 4 mults if $Q=R$.

Given n, write P as composition o
$Q, R, Q-R \mapsto$
e.g. $n=10$: cor $P, \quad P, 0 \mapsto 2 P$ $2 P, P, P \mapsto 3 P$ $3 P, 2 P, P \mapsto 5 P$ $5 P, 5 P, 0 \mapsto 10 \Leftrightarrow$ Overall 20 mults Only 18 mults if P has small de Only 16 mults if P has small nu small denominat

1987 Montgomery:

Focus on large-characteristic curves $y^{2}=x^{3}+a x^{2}+x$ with small $a \in\{6,10,14, \ldots\}$.

Use pair (x, z) to represent point $P=(x / z, \ldots)$.

Computing $Q, R, Q-R \mapsto Q+R$ takes 6 mults.
Only 5 mults if $Q-R$ has small denominator.
Only 4 mults if $Q-R$ has small numerator and small denominator. Only 4 mults if $Q=R$.

Given n, write $P \mapsto n P$ as composition of additions $Q, R, Q-R \mapsto Q+R$.
e.g. $n=10$: compute $P, P, 0 \mapsto 2 P$ with 4 mults; $2 P, P, P \mapsto 3 P$ with 6 mults; $3 P, 2 P, P \mapsto 5 P$ with 6 mults; $5 P, 5 P, 0 \mapsto 10 P$ with 4 mults. Overall 20 mults for $P \mapsto 10 P$. Only 18 mults if P has small denominator.
Only 16 mults
if P has small numerator and small denominator.
naracteristic
$-a x^{2}+x$
$5,10,14, \ldots\}$.
represent point
$Q-R \mapsto Q+R$
) R has small
$2-R$ has small
nall denominator.
$\rangle=R$.

Given n, write $P \mapsto n P$
as composition of additions
$Q, R, Q-R \mapsto Q+R$.
e.g. $n=10$: compute
$P, P, 0 \mapsto 2 P$ with 4 mults;
$2 P, P, P \mapsto 3 P$ with 6 mults; $3 P, 2 P, P \mapsto 5 P$ with 6 mults; $5 P, 5 P, 0 \mapsto 10 P$ with 4 mults. Overall 20 mults for $P \mapsto 10 P$.
Only 18 mults
if P has small denominator.
Only 16 mults
if P has small numerator and small denominator.
$0, P, 2 P, 3 P, 5 P, 1$ differential addi starting from 0, 1 each subsequent is $Q+R$ for som $Q, R, Q-R$ alre
$0,1,2,3,5,10$ is differential additi starting from 0,1

Question: Given short differential starting from 0,1 Variations: meas by mults, CPU c

Given n, write $P \mapsto n P$ as composition of additions
$Q, R, Q-R \mapsto Q+R$.
e.g. $n=10$: compute
$P, P, 0 \mapsto 2 P$ with 4 mults;
$2 P, P, P \mapsto 3 P$ with 6 mults; $3 P, 2 P, P \mapsto 5 P$ with 6 mults; $5 P, 5 P, 0 \mapsto 10 P$ with 4 mults. Overall 20 mults for $P \mapsto 10 P$.
Only 18 mults
if P has small denominator.
Only 16 mults
if P has small numerator and small denominator.
$0, P, 2 P, 3 P, 5 P, 10 P$ is a differential addition chain
starting from $0, P$: each subsequent term is $Q+R$ for some
$Q, R, Q-R$ already in chain.
$0,1,2,3,5,10$ is a differential addition chain starting from 0,1 .

Question: Given n, how to find short differential addition chain starting from 0,1 and ending n ? Variations: measure shortness by mults, CPU cycles, etc.

$$
\mapsto n P
$$

f additions
$2+R$.
npute
with 4 mults; with 6 mults; with 6 mults; with 4 mults. for $P \mapsto 10 P$.
nominator.
imerator and
$0, P, 2 P, 3 P, 5 P, 10 P$ is a

differential addition chain

starting from $0, P$:
each subsequent term
is $Q+R$ for some
$Q, R, Q-R$ already in chain.
$0,1,2,3,5,10$ is a differential addition chain starting from 0,1 .

Question: Given n, how to find short differential addition chain starting from 0,1 and ending n ?
Variations: measure shortness by mults, CPU cycles, etc.

The binary meth obtain $n, n+1$ $\lfloor n / 2\rfloor,\lfloor n / 2\rfloor+$ one addition wit one addition wit e.g.
$13 P, 13 P, 0 \mapsto 2$ $14 P, 13 P, P \mapsto 2$ if P has small de

Overall 9 mults for each bit of n if P has small de
$0, P, 2 P, 3 P, 5 P, 10 P$ is a

differential addition chain

starting from $0, P$:
each subsequent term
is $Q+R$ for some
$Q, R, Q-R$ already in chain.
$0,1,2,3,5,10$ is a differential addition chain starting from 0,1 .

Question: Given n, how to find short differential addition chain starting from 0,1 and ending n ? Variations: measure shortness by mults, CPU cycles, etc.

The binary method:
obtain $n, n+1$ from $\lfloor n / 2\rfloor,\lfloor n / 2\rfloor+1$ using one addition with difference 1 , one addition with difference 0 .
e.g.
$13 P, 13 P, 0 \mapsto 26 P$ with 4 mults;
$14 P, 13 P, P \mapsto 27 P$ with 5 mults,
if P has small denominator.
Overall 9 mults for each bit of n, if P has small denominator.
$0 P$ is a
tion chain
ady in chain.
on chain
n, how to find addition chain and ending n ?
ure shortness ycles, etc.

The binary method:
obtain $n, n+1$ from $\lfloor n / 2\rfloor,\lfloor n / 2\rfloor+1$ using one addition with difference 1 , one addition with difference 0 .
e.g.
$13 P, 13 P, 0 \mapsto 26 P$ with 4 mults;
$14 P, 13 P, P \mapsto 27 P$ with 5 mults, if P has small denominator.

Overall 9 mults for each bit of n, if P has small denominator.

1992 Montgomer 1996 Bleichenba،

2001 Tsuruoka:

Experiments for find length ≈ 1.5 instead of 2 per Lower bound \approx Count mults inst ≈ 8.885 per bit, instead of 9 per

Disadvantages: no uniform struc avoid leaking n t

The binary method: obtain $n, n+1$ from
$\lfloor n / 2\rfloor,\lfloor n / 2\rfloor+1$ using one addition with difference 1 , one addition with difference 0 .
e.g.
$13 P, 13 P, 0 \mapsto 26 P$ with 4 mults; $14 P, 13 P, P \mapsto 27 P$ with 5 mults, if P has small denominator.

Overall 9 mults for each bit of n, if P has small denominator.

1992 Montgomery, 1996 Bleichenbacher, 2001 Tsuruoka: Can do better!

Experiments for average 128 -bit n find length ≈ 1.533 per bit, instead of 2 per bit.
Lower bound ≈ 1.440 per bit.
Count mults instead of length:
≈ 8.885 per bit, instead of 9 per bit.

Disadvantages: harder to find; no uniform structure; harder to avoid leaking n through timing.
od:
rom
1 using difference 1 , difference 0 .
$6 P$ with 4 mults; $7 P$ with 5 mults, nominator.
nominator.

1992 Montgomery, 1996 Bleichenbacher, 2001 Tsuruoka: Can do better!

Experiments for average 128-bit n find length ≈ 1.533 per bit, instead of 2 per bit.
Lower bound ≈ 1.440 per bit.
Count mults instead of length:
≈ 8.885 per bit, instead of 9 per bit.

Disadvantages: harder to find; no uniform structure; harder to avoid leaking n through timing.

Two-dimensional Given m, n, how short differential starting from the $(0,0),(1,0),(0,1$ and ending $(m, r$ Motivating probl Given elliptic cur integers m, n, and points P, Q, compute $m P+1$ as quickly as pos

1992 Montgomery, 1996 Bleichenbacher, 2001 Tsuruoka: Can do better!

Experiments for average 128 -bit n find length ≈ 1.533 per bit, instead of 2 per bit.
Lower bound ≈ 1.440 per bit.
Count mults instead of length:
≈ 8.885 per bit, instead of 9 per bit.

Disadvantages: harder to find; no uniform structure; harder to avoid leaking n through timing.

Two-dimensional question:
Given m, n, how to find short differential addition chain starting from the vectors $(0,0),(1,0),(0,1),(1,-1)$ and ending (m, n) ?

Motivating problem: Given elliptic curve E, integers m, n, and points $P, Q, P-Q$, compute $m P+n Q$ on E as quickly as possible.
y, cher, Can do better!
average 128-bit n
33 per bit,
bit.
L. 440 per bit.
ead of length:
bit.
narder to find; ture; harder to hrough timing.

Two-dimensional question:
Given m, n, how to find short differential addition chain starting from the vectors $(0,0),(1,0),(0,1),(1,-1)$ and ending (m, n) ?

Motivating problem:
Given elliptic curve E,
integers m, n,
and points $P, Q, P-Q$, compute $m P+n Q$ on E as quickly as possible.

For average 128small $P, Q, P-C$

dim	method
2	easy binary
2	Schoenmak
2	Akishita
2	new binary
2	Montgomer
2	new ext gcc
1	easy binary
1	standard
	Fibonacci c

Two-dimensional question:
Given m, n, how to find short differential addition chain starting from the vectors $(0,0),(1,0),(0,1),(1,-1)$ and ending (m, n) ?

Motivating problem:
Given elliptic curve E, integers m, n, and points $P, Q, P-Q$, compute $m P+n Q$ on E as quickly as possible.

For average 128 -bit exponents, small $P, Q, P-Q$ denominators:

dim	method	mults per bit	unif
2	easy binary	19.000	yes
2	Schoenmakers	17.250	no
2	Akishita	14.250	no
2	new binary	14.000	yes
2	Montgomery	10.261	no
2	new ext gcd	9.918	no
1	easy binary	9.000	yes
1	standard	8.885	no
	Fibonacci case	8.643	

question:

to find addition chain vectors
), $(1,-1)$
2)?
em:
ve E,
$P-Q$,
$2 Q$ on E sible.

For average 128-bit exponents, small $P, Q, P-Q$ denominators:

dim	method	mults per bit	unif
2	easy binary	19.000	yes
2	Schoenmakers	17.250	no
2	Akishita	14.250	no
2	new binary	14.000	yes
2	Montgomery	10.261	no
2	new ext gcd	9.918	no
1	easy binary	9.000	yes
1	standard	8.885	no
	Fibonacci case	8.643	

Easy dim-2 binar

For average 128 -bit exponents, small $P, Q, P-Q$ denominators:

dim	method	mults per bit	unif
2	easy binary	19.000	yes
2	Schoenmakers	17.250	no
2	Akishita	14.250	no
2	new binary	14.000	yes
2	Montgomery	10.261	no
2	new ext gcd	9.918	no
1	easy binary	9.000	yes
1	standard	8.885	no
	Fibonacci case	8.643	

Easy dim-2 binary chain:

bit exponents,
2 denominators:

	mults per bit	unif
ers	19.000	yes
17.250	no	
	14.250	no
	14.000	yes
y	10.261	no
	9.918	no
	9.000	yes
	8.885	no
ase	8.643	

Easy dim-2 binary chain:

New dim-2 binar

Easy dim-2 binary chain:

New dim-2 binary chain:

chain:

New dim-2 binary chain:

Line in easy bina has $(a, b),(a, b$ $(a+1, b+1)$. by double-add-ac

New observation (even, odd) or (o chosen recursivel next line can be by double-add-ac 14 mults if P, Q, have small denor Intermediate rest Schoenmakers, 2

New dim-2 binary chain:

Line in easy binary chain has $(a, b),(a, b+1),(a+1, b)$, $(a+1, b+1)$. Obtain next line by double-add-add-add.

New observation: can omit (even, odd) or (odd, even), chosen recursively so that next line can be obtained by double-add-add.
14 mults if $P, Q, P-Q$ have small denominators.

Intermediate results: 2000 Schoenmakers, 2001 Akishita.
chain:

```
(0,1) (1,-1)
\((2,1)\)
\((3,2)\)
\((5,4)\)
\((9,8)\)
\(\downarrow\)
\((18,15)\)
```

Line in easy binary chain has $(a, b),(a, b+1),(a+1, b)$, $(a+1, b+1)$. Obtain next line by double-add-add-add.

New observation: can omit (even, odd) or (odd, even), chosen recursively so that next line can be obtained by double-add-add.
14 mults if $P, Q, P-Q$
have small denominators.
Intermediate results: 2000
Schoenmakers, 2001 Akishita.

How to do bette Don't worry abo

Critical idea for Build chain 0, 1, by choosing $r \approx$ and building cha $0,1, \ldots, r, n-r$ Try many r 's, ke Some further chc could build $\{r, n$ from $\{r, n-2 r$, from $\{n-r, 2 r$ from $\{r, n / 2-r$

Line in easy binary chain
has $(a, b),(a, b+1),(a+1, b)$, $(a+1, b+1)$. Obtain next line by double-add-add-add.

New observation: can omit (even, odd) or (odd, even), chosen recursively so that next line can be obtained by double-add-add.
14 mults if $P, Q, P-Q$
have small denominators.
Intermediate results: 2000
Schoenmakers, 2001 Akishita.

How to do better than binary?
Don't worry about uniformity.
Critical idea for $\operatorname{dim} 1$:
Build chain $0,1, \ldots, n$
by choosing $r \approx n(\sqrt{5}-1) / 2$
and building chain
$0,1, \ldots, r, n-r, n$.
Try many r 's, keep best.
Some further choices here:
could build $\{r, n-r, n\}$
from $\{r, n-2 r, n-r\}$ or
from $\{n-r, 2 r-n, r\}$ or
from $\{r, n / 2-r, n / 2\}$ or \ldots.

ry chain

$-1),(a+1, b)$, btain next line Id-add.
can omit
dd, even),
y so that
obtained
Id.
$P-Q$
ninators.
lts: 2000
001 Akishita.

How to do better than binary?
Don't worry about uniformity.
Critical idea for $\operatorname{dim} 1$:
Build chain $0,1, \ldots, n$
by choosing $r \approx n(\sqrt{5}-1) / 2$ and building chain
$0,1, \ldots, r, n-r, n$.
Try many r 's, keep best.
Some further choices here:
could build $\{r, n-r, n\}$
from $\{r, n-2 r, n-r\}$ or
from $\{n-r, 2 r-n, r\}$ or
from $\{r, n / 2-r, n / 2\}$ or \ldots.
e.g. $n=100, r=$ Build chain
$0,1,2,3,5,7,12$,
by building $\{39$,
from $\{22,39,61\}$
What about dim
Obvious adaptat
Build chain ...,
by choosing (q, r and building cha
$\ldots,(q, r),(m-$

How to do better than binary?
Don't worry about uniformity.
Critical idea for $\operatorname{dim} 1$:
Build chain $0,1, \ldots, n$
by choosing $r \approx n(\sqrt{5}-1) / 2$
and building chain
$0,1, \ldots, r, n-r, n$.
Try many r 's, keep best.
Some further choices here:
could build $\{r, n-r, n\}$
from $\{r, n-2 r, n-r\}$ or
from $\{n-r, 2 r-n, r\}$ or
from $\{r, n / 2-r, n / 2\}$ or \ldots.
e.g. $n=100, r=39$:

Build chain
$0,1,2,3,5,7,12,17,22,39,61,100$
by building $\{39,61,100\}$
from $\{22,39,61\}$ etc.
What about dim 2?
Obvious adaptation of idea:
Build chain ..., (m, n)
by choosing (q, r)
and building chain
$\ldots,(q, r),(m-q, n-r),(m, n)$.
than binary?
at uniformity.
$\operatorname{dim} 1$:
\cdots, n
$n(\sqrt{5}-1) / 2$
in
n
ep best.
ices here:
$-r, n\}$
$n-r\}$ or
$-n, r\}$ or
, $n / 2\}$ or
e.g. $n=100, r=39$:

Build chain
$0,1,2,3,5,7,12,17,22,39,61,100$
by building $\{39,61,100\}$
from $\{22,39,61\}$ etc.
What about dim 2?
Obvious adaptation of idea:
Build chain ..., (m, n)
by choosing (q, r)
and building chain
$\ldots,(q, r),(m-q, n-r),(m, n)$.
e.g. Work backw $(314,271)$ and $(120,104)$, then $(46,41)$, then $(2$ $(18,19)$, then (1 $(8,16)$.

Hmmm, what's t How to build sho $\{(8,16),(10,3)$,

Several plausible but all of them s Normally this co is abandoned.
e.g. $n=100, r=39$:

Build chain
$0,1,2,3,5,7,12,17,22,39,61,100$
by building $\{39,61,100\}$
from $\{22,39,61\}$ etc.
What about dim 2?
Obvious adaptation of idea:
Build chain ..., (m, n)
by choosing (q, r)
and building chain
$\ldots,(q, r),(m-q, n-r),(m, n)$.
e.g. Work backwards from $(314,271)$ and $(194,167)$ to $(120,104)$, then $(74,63)$, then $(46,41)$, then $(28,22)$, then $(18,19)$, then $(10,3)$, then $(8,16)$.

Hmmm, what's the endgame? How to build short chain with $\{(8,16),(10,3),(18,19)\}$?

Several plausible approaches, but all of them scale badly. Normally this construction is abandoned.
$=39$:
$17,22,39,61,100$
51, 100\}
etc.
2?
on of idea:
(m, n)
in
$q, n-r),(m, n)$
e.g. Work backwards from $(314,271)$ and $(194,167)$ to $(120,104)$, then $(74,63)$, then $(46,41)$, then $(28,22)$, then
$(18,19)$, then $(10,3)$, then $(8,16)$.

Hmmm, what's the endgame?
How to build short chain with $\{(8,16),(10,3),(18,19)\} ?$

Several plausible approaches, but all of them scale badly. Normally this construction is abandoned.

New observation
Simple endgames if $r m-q n=\Delta$ with, e.g., $\Delta==$ Often find very g

Easy to find (q, r given (m, n, Δ) : standard ext-gcd What if $(m, n) r$ Great! Exploit fa

Try many good for (Δ, q, r), kee
e.g. Work backwards from $(314,271)$ and $(194,167)$ to $(120,104)$, then $(74,63)$, then $(46,41)$, then $(28,22)$, then $(18,19)$, then $(10,3)$, then $(8,16)$.

Hmmm, what's the endgame? How to build short chain with $\{(8,16),(10,3),(18,19)\} ?$

Several plausible approaches, but all of them scale badly. Normally this construction is abandoned.

New observation:
Simple endgames work well
if $r m-q n=\Delta$
with, e.g., $\Delta= \pm 2^{a} 3^{b}$.
Often find very good chains.
Easy to find (q, r)
given (m, n, Δ) :
standard ext-gcd computation.
What if (m, n) not coprime?
Great! Exploit factor.
Try many good choices for (Δ, q, r), keep best.
rards from
$(94,167)$ to
$(74,63)$, then
$8,22)$, then
0,3), then
he endgame? rt chain with $(18,19)\} ?$
approaches, cale badly. nstruction

New observation:
Simple endgames work well
if $r m-q n=\Delta$
with, e.g., $\Delta= \pm 2^{a} 3^{b}$.
Often find very good chains.
Easy to find (q, r)
given (m, n, Δ) :
standard ext-gcd computation.
What if (m, n) not coprime?
Great! Exploit factor.
Try many good choices for (Δ, q, r), keep best.

Example of new $(0,0),(1,0),(0$, $(1,1),(1,2),(2$, $(4,7),(5,9),(9$, $(19,34),(33,59)$ $(66,118),(71,12$ $(132,236),(203$, $(325,581),(528$, (731, 1307), (125 (1787, 3195), (25 $(3249,5809),(50$ (6823, 12199), (1 $(16895,30207)$,

New observation:
Simple endgames work well
if $r m-q n=\Delta$
with, e.g., $\Delta= \pm 2^{a} 3^{b}$.
Often find very good chains.
Easy to find (q, r)
given (m, n, Δ):
standard ext-gcd computation.
What if (m, n) not coprime?
Great! Exploit factor.
Try many good choices
for (Δ, q, r), keep best.

Example of new chain:
$(0,0),(1,0),(0,1),(1,-1)$,
$(1,1),(1,2),(2,3),(3,5)$,
$(4,7),(5,9),(9,16),(14,25)$,
$(19,34),(33,59),(38,68)$,
$(66,118),(71,127),(61,109)$,
$(132,236),(203,363),(264,472)$,
$(325,581),(528,944)$,
(731, 1307), (1259, 2251),
$(1787,3195),(2518,4502)$,
$(3249,5809),(5036,9004)$, (6823, 12199), (10072,18008$)$,
(16895, 30207), (26967, 48215).

