
Differential addition chains

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

Danmarks Tekniske Universitet

Alfred P. Sloan Foundation

Motivating problem:

Given elliptic curve ,

integer � , and point on ,

compute � on

as quickly as possible.

Many variations of problem.

Some applications reuse one �

for many ’s.

Some applications don’t.

Some applications use secret � ;

must not leak � through timing.

Some applications use public � .

Etc.



Differential addition chains

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

Danmarks Tekniske Universitet

Alfred P. Sloan Foundation

Motivating problem:

Given elliptic curve ,

integer � , and point on ,

compute � on

as quickly as possible.

Many variations of problem.

Some applications reuse one �

for many ’s.

Some applications don’t.

Some applications use secret � ;

must not leak � through timing.

Some applications use public � .

Etc.

1987 Montgomery:

Focus on large-characteristic

curves 2 = � 3 + � � 2 + �

with small � 6 � 10 � 14 � � � � .

Use pair ( � ��� ) to represent point

= ( � � � � � � ).

Computing � � � � +

takes 6 mults.

Only 5 mults if � has small

denominator.

Only 4 mults if � has small

numerator and small denominator.

Only 4 mults if = .



Motivating problem:

Given elliptic curve ,

integer � , and point on ,

compute � on

as quickly as possible.

Many variations of problem.

Some applications reuse one �

for many ’s.

Some applications don’t.

Some applications use secret � ;

must not leak � through timing.

Some applications use public � .

Etc.

1987 Montgomery:

Focus on large-characteristic

curves 2 = � 3 + � � 2 + �

with small � 6 � 10 � 14 � � � � .

Use pair ( � ��� ) to represent point

= ( � � � � � � ).

Computing � � � � +

takes 6 mults.

Only 5 mults if � has small

denominator.

Only 4 mults if � has small

numerator and small denominator.

Only 4 mults if = .



Motivating problem:

Given elliptic curve ,

integer � , and point on ,

compute � on

as quickly as possible.

Many variations of problem.

Some applications reuse one �

for many ’s.

Some applications don’t.

Some applications use secret � ;

must not leak � through timing.

Some applications use public � .

Etc.

1987 Montgomery:

Focus on large-characteristic

curves 2 = � 3 + � � 2 + �

with small � 6 � 10 � 14 � � � � .

Use pair ( � ��� ) to represent point

= ( � � � � � � ).

Computing � � � � +

takes 6 mults.

Only 5 mults if � has small

denominator.

Only 4 mults if � has small

numerator and small denominator.

Only 4 mults if = .

Given � , write � �

as composition of additions

� � � � + .

e.g. � = 10: compute

� � 0 � 2 with 4 mults;

2 � � � 3 with 6 mults;

3 � 2 � � 5 with 6 mults;

5 � 5 � 0 � 10 with 4 mults.

Overall 20 mults for � 10 .

Only 18 mults

if has small denominator.

Only 16 mults

if has small numerator and

small denominator.



1987 Montgomery:

Focus on large-characteristic

curves 2 = � 3 + � � 2 + �

with small � 6 � 10 � 14 � � � � .

Use pair ( � ��� ) to represent point

= ( � � � � � � ).

Computing � � � � +

takes 6 mults.

Only 5 mults if � has small

denominator.

Only 4 mults if � has small

numerator and small denominator.

Only 4 mults if = .

Given � , write � �

as composition of additions

� � � � + .

e.g. � = 10: compute

� � 0 � 2 with 4 mults;

2 � � � 3 with 6 mults;

3 � 2 � � 5 with 6 mults;

5 � 5 � 0 � 10 with 4 mults.

Overall 20 mults for � 10 .

Only 18 mults

if has small denominator.

Only 16 mults

if has small numerator and

small denominator.



1987 Montgomery:

Focus on large-characteristic

curves 2 = � 3 + � � 2 + �

with small � 6 � 10 � 14 � � � � .

Use pair ( � ��� ) to represent point

= ( � � � � � � ).

Computing � � � � +

takes 6 mults.

Only 5 mults if � has small

denominator.

Only 4 mults if � has small

numerator and small denominator.

Only 4 mults if = .

Given � , write � �

as composition of additions

� � � � + .

e.g. � = 10: compute

� � 0 � 2 with 4 mults;

2 � � � 3 with 6 mults;

3 � 2 � � 5 with 6 mults;

5 � 5 � 0 � 10 with 4 mults.

Overall 20 mults for � 10 .

Only 18 mults

if has small denominator.

Only 16 mults

if has small numerator and

small denominator.

0 � � 2 � 3 � 5 � 10 is a

differential addition chain

starting from 0 � :

each subsequent term

is + for some

� � � already in chain.

0 � 1 � 2 � 3 � 5 � 10 is a

differential addition chain

starting from 0 � 1.

Question: Given � , how to find

short differential addition chain

starting from 0 � 1 and ending � ?

Variations: measure shortness

by mults, CPU cycles, etc.



Given � , write � �

as composition of additions

� � � � + .

e.g. � = 10: compute

� � 0 � 2 with 4 mults;

2 � � � 3 with 6 mults;

3 � 2 � � 5 with 6 mults;

5 � 5 � 0 � 10 with 4 mults.

Overall 20 mults for � 10 .

Only 18 mults

if has small denominator.

Only 16 mults

if has small numerator and

small denominator.

0 � � 2 � 3 � 5 � 10 is a

differential addition chain

starting from 0 � :

each subsequent term

is + for some

� � � already in chain.

0 � 1 � 2 � 3 � 5 � 10 is a

differential addition chain

starting from 0 � 1.

Question: Given � , how to find

short differential addition chain

starting from 0 � 1 and ending � ?

Variations: measure shortness

by mults, CPU cycles, etc.



Given � , write � �

as composition of additions

� � � � + .

e.g. � = 10: compute

� � 0 � 2 with 4 mults;

2 � � � 3 with 6 mults;

3 � 2 � � 5 with 6 mults;

5 � 5 � 0 � 10 with 4 mults.

Overall 20 mults for � 10 .

Only 18 mults

if has small denominator.

Only 16 mults

if has small numerator and

small denominator.

0 � � 2 � 3 � 5 � 10 is a

differential addition chain

starting from 0 � :

each subsequent term

is + for some

� � � already in chain.

0 � 1 � 2 � 3 � 5 � 10 is a

differential addition chain

starting from 0 � 1.

Question: Given � , how to find

short differential addition chain

starting from 0 � 1 and ending � ?

Variations: measure shortness

by mults, CPU cycles, etc.

The binary method:

obtain � � � + 1 from�
� 2 � �

�
� 2 � + 1 using

one addition with difference 1,

one addition with difference 0.

e.g.

13 � 13 � 0 � 26 with 4 mults;

14 � 13 � � 27 with 5 mults,

if has small denominator.

Overall 9 mults

for each bit of � ,

if has small denominator.



0 � � 2 � 3 � 5 � 10 is a

differential addition chain

starting from 0 � :

each subsequent term

is + for some

� � � already in chain.

0 � 1 � 2 � 3 � 5 � 10 is a

differential addition chain

starting from 0 � 1.

Question: Given � , how to find

short differential addition chain

starting from 0 � 1 and ending � ?

Variations: measure shortness

by mults, CPU cycles, etc.

The binary method:

obtain � � � + 1 from�
� 2 � �

�
� 2 � + 1 using

one addition with difference 1,

one addition with difference 0.

e.g.

13 � 13 � 0 � 26 with 4 mults;

14 � 13 � � 27 with 5 mults,

if has small denominator.

Overall 9 mults

for each bit of � ,

if has small denominator.



0 � � 2 � 3 � 5 � 10 is a

differential addition chain

starting from 0 � :

each subsequent term

is + for some

� � � already in chain.

0 � 1 � 2 � 3 � 5 � 10 is a

differential addition chain

starting from 0 � 1.

Question: Given � , how to find

short differential addition chain

starting from 0 � 1 and ending � ?

Variations: measure shortness

by mults, CPU cycles, etc.

The binary method:

obtain � � � + 1 from�
� 2 � �

�
� 2 � + 1 using

one addition with difference 1,

one addition with difference 0.

e.g.

13 � 13 � 0 � 26 with 4 mults;

14 � 13 � � 27 with 5 mults,

if has small denominator.

Overall 9 mults

for each bit of � ,

if has small denominator.

1992 Montgomery,

1996 Bleichenbacher,

2001 Tsuruoka: Can do better!

Experiments for average 128-bit �

find length 1 � 533 per bit,

instead of 2 per bit.

Lower bound 1 � 440 per bit.

Count mults instead of length:

8 � 885 per bit,

instead of 9 per bit.

Disadvantages: harder to find;

no uniform structure; harder to

avoid leaking � through timing.



The binary method:

obtain � � � + 1 from�
� 2 � �

�
� 2 � + 1 using

one addition with difference 1,

one addition with difference 0.

e.g.

13 � 13 � 0 � 26 with 4 mults;

14 � 13 � � 27 with 5 mults,

if has small denominator.

Overall 9 mults

for each bit of � ,

if has small denominator.

1992 Montgomery,

1996 Bleichenbacher,

2001 Tsuruoka: Can do better!

Experiments for average 128-bit �

find length 1 � 533 per bit,

instead of 2 per bit.

Lower bound 1 � 440 per bit.

Count mults instead of length:

8 � 885 per bit,

instead of 9 per bit.

Disadvantages: harder to find;

no uniform structure; harder to

avoid leaking � through timing.



The binary method:

obtain � � � + 1 from�
� 2 � �

�
� 2 � + 1 using

one addition with difference 1,

one addition with difference 0.

e.g.

13 � 13 � 0 � 26 with 4 mults;

14 � 13 � � 27 with 5 mults,

if has small denominator.

Overall 9 mults

for each bit of � ,

if has small denominator.

1992 Montgomery,

1996 Bleichenbacher,

2001 Tsuruoka: Can do better!

Experiments for average 128-bit �

find length 1 � 533 per bit,

instead of 2 per bit.

Lower bound 1 � 440 per bit.

Count mults instead of length:

8 � 885 per bit,

instead of 9 per bit.

Disadvantages: harder to find;

no uniform structure; harder to

avoid leaking � through timing.

Two-dimensional question:

Given � � , how to find

short differential addition chain

starting from the vectors

(0 � 0) � (1 � 0) � (0 � 1) � (1 � � 1)

and ending ( � � )?

Motivating problem:

Given elliptic curve ,

integers � � ,

and points � � � ,

compute + � on

as quickly as possible.



1992 Montgomery,

1996 Bleichenbacher,

2001 Tsuruoka: Can do better!

Experiments for average 128-bit �

find length 1 � 533 per bit,

instead of 2 per bit.

Lower bound 1 � 440 per bit.

Count mults instead of length:

8 � 885 per bit,

instead of 9 per bit.

Disadvantages: harder to find;

no uniform structure; harder to

avoid leaking � through timing.

Two-dimensional question:

Given � � , how to find

short differential addition chain

starting from the vectors

(0 � 0) � (1 � 0) � (0 � 1) � (1 � � 1)

and ending ( � � )?

Motivating problem:

Given elliptic curve ,

integers � � ,

and points � � � ,

compute + � on

as quickly as possible.



1992 Montgomery,

1996 Bleichenbacher,

2001 Tsuruoka: Can do better!

Experiments for average 128-bit �

find length 1 � 533 per bit,

instead of 2 per bit.

Lower bound 1 � 440 per bit.

Count mults instead of length:

8 � 885 per bit,

instead of 9 per bit.

Disadvantages: harder to find;

no uniform structure; harder to

avoid leaking � through timing.

Two-dimensional question:

Given � � , how to find

short differential addition chain

starting from the vectors

(0 � 0) � (1 � 0) � (0 � 1) � (1 � � 1)

and ending ( � � )?

Motivating problem:

Given elliptic curve ,

integers � � ,

and points � � � ,

compute + � on

as quickly as possible.

For average 128-bit exponents,

small � � � denominators:

dim method mults unif
per bit

2 easy binary 19.000 yes
2 Schoenmakers 17.250 no
2 Akishita 14.250 no
2 new binary 14.000 yes
2 Montgomery 10.261 no
2 new ext gcd 9.918 no
1 easy binary 9.000 yes
1 standard 8.885 no

Fibonacci case 8.643



Two-dimensional question:

Given � � , how to find

short differential addition chain

starting from the vectors

(0 � 0) � (1 � 0) � (0 � 1) � (1 � � 1)

and ending ( � � )?

Motivating problem:

Given elliptic curve ,

integers � � ,

and points � � � ,

compute + � on

as quickly as possible.

For average 128-bit exponents,

small � � � denominators:

dim method mults unif
per bit

2 easy binary 19.000 yes
2 Schoenmakers 17.250 no
2 Akishita 14.250 no
2 new binary 14.000 yes
2 Montgomery 10.261 no
2 new ext gcd 9.918 no
1 easy binary 9.000 yes
1 standard 8.885 no

Fibonacci case 8.643



Two-dimensional question:

Given � � , how to find

short differential addition chain

starting from the vectors

(0 � 0) � (1 � 0) � (0 � 1) � (1 � � 1)

and ending ( � � )?

Motivating problem:

Given elliptic curve ,

integers � � ,

and points � � � ,

compute + � on

as quickly as possible.

For average 128-bit exponents,

small � � � denominators:

dim method mults unif
per bit

2 easy binary 19.000 yes
2 Schoenmakers 17.250 no
2 Akishita 14.250 no
2 new binary 14.000 yes
2 Montgomery 10.261 no
2 new ext gcd 9.918 no
1 easy binary 9.000 yes
1 standard 8.885 no

Fibonacci case 8.643

Easy dim-2 binary chain:

(0 � 0)

��
�

�
(0 � 1)

��

(1 � 0)

vvl
l

l
l

l

""
DD

DD
D

||zz
zz

z

��

(1 � � 1)

(1 � 0)

��
�

�
(1 � 1)

��

||z
z

z

""
DD

DD
D

((RRRRRRRRRR

��

(2 � 0)

��

(2 � 1)

��

(2 � 1)

��

(2 � 2)

||zz
zz

z

""
DD

DD
D

((RRRRRRRRRR

��

(3 � 1)

��

(3 � 2)

��

(4 � 3)

��

(4 � 4)

��

(5 � 3)

��

(5 � 4)

||zz
zz

z

sshhhhhhhhhhhhhhhhh

vvllllllllll

��

(9 � 7)

""
DD

DD
D

++VVVVVVVVVVVVVVVV

((RRRRRRRRR

��

(9 � 8)

��

(10 � 7)

��

(10 � 8)

��

(18 � 14) (18 � 15) (19 � 14) (19 � 15)



For average 128-bit exponents,

small � � � denominators:

dim method mults unif
per bit

2 easy binary 19.000 yes
2 Schoenmakers 17.250 no
2 Akishita 14.250 no
2 new binary 14.000 yes
2 Montgomery 10.261 no
2 new ext gcd 9.918 no
1 easy binary 9.000 yes
1 standard 8.885 no

Fibonacci case 8.643

Easy dim-2 binary chain:

(0 � 0)

��
�

�
(0 � 1)

��

(1 � 0)

vvl
l

l
l

l

""
DD

DD
D

||zz
zz

z

��

(1 � � 1)

(1 � 0)

��
�

�
(1 � 1)

��

||z
z

z

""
DD

DD
D

((RRRRRRRRRR

��

(2 � 0)

��

(2 � 1)

��

(2 � 1)

��

(2 � 2)

||zz
zz

z

""
DD

DD
D

((RRRRRRRRRR

��

(3 � 1)

��

(3 � 2)

��

(4 � 3)

��

(4 � 4)

��

(5 � 3)

��

(5 � 4)

||zz
zz

z

sshhhhhhhhhhhhhhhhh

vvllllllllll

��

(9 � 7)

""
DD

DD
D

++VVVVVVVVVVVVVVVV

((RRRRRRRRR

��

(9 � 8)

��

(10 � 7)

��

(10 � 8)

��

(18 � 14) (18 � 15) (19 � 14) (19 � 15)



For average 128-bit exponents,

small � � � denominators:

dim method mults unif
per bit

2 easy binary 19.000 yes
2 Schoenmakers 17.250 no
2 Akishita 14.250 no
2 new binary 14.000 yes
2 Montgomery 10.261 no
2 new ext gcd 9.918 no
1 easy binary 9.000 yes
1 standard 8.885 no

Fibonacci case 8.643

Easy dim-2 binary chain:

(0 � 0)

��
�

�
(0 � 1)

��

(1 � 0)

vvl
l

l
l

l

""
DD

DD
D

||zz
zz

z

��

(1 � � 1)

(1 � 0)

��
�

�
(1 � 1)

��

||z
z

z

""
DD

DD
D

((RRRRRRRRRR

��

(2 � 0)

��

(2 � 1)

��

(2 � 1)

��

(2 � 2)

||zz
zz

z

""
DD

DD
D

((RRRRRRRRRR

��

(3 � 1)

��

(3 � 2)

��

(4 � 3)

��

(4 � 4)

��

(5 � 3)

��

(5 � 4)

||zz
zz

z

sshhhhhhhhhhhhhhhhh

vvllllllllll

��

(9 � 7)

""
DD

DD
D

++VVVVVVVVVVVVVVVV

((RRRRRRRRR

��

(9 � 8)

��

(10 � 7)

��

(10 � 8)

��

(18 � 14) (18 � 15) (19 � 14) (19 � 15)

New dim-2 binary chain:

(0 � 0) (1 � 0)

""
DD

DD
D

��||zz
zz

z

(0 � 1)

vvllllllllll
(1 � � 1)

(1 � 1)
��

�&
DDDD

DDDD

�� ((RRRRRRRRRR (2 � 0)

||zz
zz

z

(2 � 1)

��

(3 � 1)

��

(2 � 2)

��||zz
zz

z

""
DD

DD
D

(3 � 2)

��

(5 � 3)

��

(4 � 4)

||zz
zz

z

""
DD

DD
D

(5 � 4)

x� z
zzz

zzzz

��

(9 � 7)

�&
DDDD

DDDD

�� ((RRRRRRRRR (10 � 8)

||zz
zz

z

(9 � 8)

��

(19 � 15) (18 � 14) (18 � 15)



Easy dim-2 binary chain:

(0 � 0)

��
�

�
(0 � 1)

��

(1 � 0)

vvl
l

l
l

l

""
DD

DD
D

||zz
zz

z

��

(1 � � 1)

(1 � 0)

��
�

�
(1 � 1)

��

||z
z

z

""
DD

DD
D

((RRRRRRRRRR

��

(2 � 0)

��

(2 � 1)

��

(2 � 1)

��

(2 � 2)

||zz
zz

z

""
DD

DD
D

((RRRRRRRRRR

��

(3 � 1)

��

(3 � 2)

��

(4 � 3)

��

(4 � 4)

��

(5 � 3)

��

(5 � 4)

||zz
zz

z

sshhhhhhhhhhhhhhhhh

vvllllllllll

��

(9 � 7)

""
DD

DD
D

++VVVVVVVVVVVVVVVV

((RRRRRRRRR

��

(9 � 8)

��

(10 � 7)

��

(10 � 8)

��

(18 � 14) (18 � 15) (19 � 14) (19 � 15)

New dim-2 binary chain:

(0 � 0) (1 � 0)

""
DD

DD
D

��||zz
zz

z

(0 � 1)

vvllllllllll
(1 � � 1)

(1 � 1)
��

�&
DDDD

DDDD

�� ((RRRRRRRRRR (2 � 0)

||zz
zz

z

(2 � 1)

��

(3 � 1)

��

(2 � 2)

��||zz
zz

z

""
DD

DD
D

(3 � 2)

��

(5 � 3)

��

(4 � 4)

||zz
zz

z

""
DD

DD
D

(5 � 4)

x� z
zzz

zzzz

��

(9 � 7)

�&
DDDD

DDDD

�� ((RRRRRRRRR (10 � 8)

||zz
zz

z

(9 � 8)

��

(19 � 15) (18 � 14) (18 � 15)



Easy dim-2 binary chain:

(0 � 0)

��
�

�
(0 � 1)

��

(1 � 0)

vvl
l

l
l

l

""
DD

DD
D

||zz
zz

z

��

(1 � � 1)

(1 � 0)

��
�

�
(1 � 1)

��

||z
z

z

""
DD

DD
D

((RRRRRRRRRR

��

(2 � 0)

��

(2 � 1)

��

(2 � 1)

��

(2 � 2)

||zz
zz

z

""
DD

DD
D

((RRRRRRRRRR

��

(3 � 1)

��

(3 � 2)

��

(4 � 3)

��

(4 � 4)

��

(5 � 3)

��

(5 � 4)

||zz
zz

z

sshhhhhhhhhhhhhhhhh

vvllllllllll

��

(9 � 7)

""
DD

DD
D

++VVVVVVVVVVVVVVVV

((RRRRRRRRR

��

(9 � 8)

��

(10 � 7)

��

(10 � 8)

��

(18 � 14) (18 � 15) (19 � 14) (19 � 15)

New dim-2 binary chain:

(0 � 0) (1 � 0)

""
DD

DD
D

��||zz
zz

z

(0 � 1)

vvllllllllll
(1 � � 1)

(1 � 1)
��

�&
DDDD

DDDD

�� ((RRRRRRRRRR (2 � 0)

||zz
zz

z

(2 � 1)

��

(3 � 1)

��

(2 � 2)

��||zz
zz

z

""
DD

DD
D

(3 � 2)

��

(5 � 3)

��

(4 � 4)

||zz
zz

z

""
DD

DD
D

(5 � 4)

x� z
zzz

zzzz

��

(9 � 7)

�&
DDDD

DDDD

�� ((RRRRRRRRR (10 � 8)

||zz
zz

z

(9 � 8)

��

(19 � 15) (18 � 14) (18 � 15)

Line in easy binary chain

has ( � � ), ( � � + 1), ( � + 1 � ),

( � + 1 � + 1). Obtain next line

by double-add-add-add.

New observation: can omit

(even � odd) or (odd � even),

chosen recursively so that

next line can be obtained

by double-add-add.

14 mults if � � �

have small denominators.

Intermediate results: 2000

Schoenmakers, 2001 Akishita.
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How to do better than binary?

Don’t worry about uniformity.

Critical idea for dim 1:

Build chain 0 � 1 � � � � � �

by choosing � � ( 5 � 1) 2

and building chain

0 � 1 � � � � ��� � � � � � � .

Try many � ’s, keep best.

Some further choices here:

could build � � � � � � �

from � � � � 2 � � � � � or

from � � � � 2 � � � ��� or

from � � � 2 � � � � 2 or � � � .
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from � � � � 2 � � � ��� or

from � � � 2 � � � � 2 or � � � .

e.g. � = 100, � = 39:

Build chain

0 � 1 � 2 � 3 � 5 � 7 � 12 � 17 � 22 � 39 � 61 � 100

by building 39 � 61 � 100

from 22 � 39 � 61 etc.

What about dim 2?

Obvious adaptation of idea:

Build chain � � � � ( � � )

by choosing ( � ��� )

and building chain

� � � � ( � ��� ) � ( � � � � � � ) � ( � � ).
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by choosing ( � ��� )

and building chain

� � � � ( � ��� ) � ( � � � � � � ) � ( � � ).

e.g. Work backwards from

(314 � 271) and (194 � 167) to

(120 � 104), then (74 � 63), then

(46 � 41), then (28 � 22), then

(18 � 19), then (10 � 3), then

(8 � 16).

Hmmm, what’s the endgame?

How to build short chain with

(8 � 16) � (10 � 3) � (18 � 19) ?

Several plausible approaches,

but all of them scale badly.

Normally this construction

is abandoned.
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Several plausible approaches,

but all of them scale badly.

Normally this construction

is abandoned.

New observation:

Simple endgames work well

if � � � � = ∆

with, e.g., ∆ = 2 � 3
�
.

Often find very good chains.

Easy to find ( � ��� )

given ( � � � ∆):

standard ext-gcd computation.

What if ( � � ) not coprime?

Great! Exploit factor.

Try many good choices

for (∆ � � � � ), keep best.
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Example of new chain:

(0 � 0), (1 � 0), (0 � 1), (1 � � 1),

(1 � 1), (1 � 2), (2 � 3), (3 � 5),

(4 � 7), (5 � 9), (9 � 16), (14 � 25),

(19 � 34), (33 � 59), (38 � 68),

(66 � 118), (71 � 127), (61 � 109),

(132 � 236), (203 � 363), (264 � 472),

(325 � 581), (528 � 944),

(731 � 1307), (1259 � 2251),

(1787 � 3195), (2518 � 4502),

(3249 � 5809), (5036 � 9004),

(6823 � 12199), (10072 � 18008),

(16895 � 30207), (26967 � 48215).
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