Integer factorization, part 1: the **Q** sieve

Integer factorization,

part 2: detecting smoothness

Integer factorization,

part 3: the number-field sieve

D. J. Bernstein

Problem: Factor 611.

The **Q** sieve forms a square as product of i(i + 611j)for several pairs (i, j): $14(625) \cdot 64(675) \cdot 75(686)$ $= 4410000^{2}$.

 $gcd{611, 14 \cdot 64 \cdot 75 - 4410000}$ = 47. The $Q(\sqrt{14})$ sieve forms a square as product of $(i + 25j)(i + \sqrt{14}j)$ for several pairs (i, j): $(-11 + 3 \cdot 25)(-11 + 3\sqrt{14})$ $\cdot (3 + 25)(3 + \sqrt{14})$ $= (112 - 16\sqrt{14})^2$.

Compute $s = (-11 + 3 \cdot 25) \cdot (3 + 25),$ $t = 112 - 16 \cdot 25,$ $gcd\{611, s - t\} = 13.$ Why does this work?

Answer: Have ring morphism $Z[\sqrt{14}] \rightarrow Z/n, \sqrt{14} \mapsto 25$, since $25^2 = 14$ in Z/n.

Apply ring morphism to square: $(-11 + 3 \cdot 25)(-11 + 3 \cdot 25)$ $\cdot (3 + 25)(3 + 25)$ $= (112 - 16 \cdot 25)^2$ in \mathbb{Z}/n . i.e. $s^2 = t^2$ in \mathbb{Z}/n .

Unsurprising to find factor.

Generalize from $(x^2 - 14, 25)$ to (f, m) with irred $f \in \mathbf{Z}[x]$, $m \in \mathbf{Z}, f(m) \in n\mathbf{Z}.$

Write $d = \deg f$, $f = f_d x^d + \cdots + f_1 x^1 + f_0 x^0$.

Can take $f_d = 1$ for simplicity, but larger f_d allows better parameter selection.

Pick $\alpha \in \mathbf{C}$, root of f. Then $f_d \alpha$ is a root of monic $g = f_d^{d-1} f(x/f_d) \in \mathbf{Z}[x]$. Build square in $\mathbf{Q}(\alpha)$ from congruences $(i - jm)(i - j\alpha)$ with $i\mathbf{Z} + j\mathbf{Z} = \mathbf{Z}$ and j > 0.

Could replace i - jx by higher-deg irred in Z[x]; quadratics seem fairly small for some number fields. But let's not bother.

Say we have a square $\prod_{(i,j)\in S}(i-jm)(i-j\alpha)$ in $\mathbf{Q}(\alpha)$; now what?
$$\begin{split} & \prod (i - jm)(i - j\alpha)f_d^2 \\ \text{is a square in } \mathcal{O}, \\ \text{ring of integers of } \mathbf{Q}(\alpha). \\ & \text{Multiply by } g'(f_d\alpha)^2, \\ & \text{putting square root into } \mathbf{Z}[f_d\alpha]: \\ & \text{compute } r \text{ with } r^2 = g'(f_d\alpha)^2. \\ & \prod (i - jm)(i - j\alpha)f_d^2. \end{split}$$

Then apply the ring morphism $\varphi: \mathbf{Z}[f_d \alpha] \to \mathbf{Z}/n$ taking $f_d \alpha$ to $f_d m$. Compute $\gcd\{n, \phi(r) - g'(f_d m) \prod (i - jm)f_d\}$. In \mathbf{Z}/n have $\varphi(r)^2 = g'(f_d m)^2 \prod (i - jm)^2 f_d^2$. How to find square product of congruences $(i - jm)(i - j\alpha)$?

Start with congruences for, e.g., y^2 pairs (i, j).

Look for *y*-smooth congruences: *y*-smooth i - jm and *y*-smooth $f_d \operatorname{norm}(i - j\alpha) = f_d i^d + \cdots + f_0 j^d = j^d f(i/j).$

Find enough smooth congruences. Perform linear algebra on exponent vectors mod 2.

Exponent vectors have many "rational" components, many "algebraic" components, a few "character" components.

One rational component for each prime $p \leq y$. Value ord_p(i - jm).

One rational component for -1. Value 0 if i - jm > 0, value 1 if i - jm < 0.

If $\prod (i - jm)$ is a square then vectors add to 0 in rational components. One algebraic component for each pair (p, r) such that p is a prime $\leq y$; $f_d \notin p\mathbf{Z}$; disc $f \notin p\mathbf{Z}$; $r \in \mathbf{F}_p$; f(r) = 0 in \mathbf{F}_p .

Value 0 if $i - jr \notin pZ$; otherwise ord_p $(j^d f(i/j))$.

This is the same as the valuation of $i - j\alpha$ at the prime $p\mathcal{O} + (f_d\alpha - f_dr)\mathcal{O}$. Recall that $i\mathbf{Z} + j\mathbf{Z} = \mathbf{Z}$, so no higher-degree primes.

One character component for each pair (p, r) with p in a short range above y. Value 0 if i - jr is a square in \mathbf{F}_p , else 1. If $\left[(i - j\alpha) \right]$ is a square then vectors add to 0 in algebraic components and character components.

Conversely, consider vectors adding to 0 in all components. $\prod(i - jm)$ must be a square. Is $\prod(i - j\alpha)$ a square? Ideal $\prod(i - j\alpha)\mathcal{O}$ must be square outside f_d disc f.

What about primes in f_d disc f? Even if ideal is square,

is square root principal?

Even if ideal is generated

by square of element,

does square equal $\prod (i - j\alpha)$?

Obstruction group is small, conjecturally very small. " $(f_d \operatorname{disc} f)$ -Selmer group."

A few characters suffice to generate dual, forcing $\prod (i - j\alpha)$ to be a square.

Can be quite sloppy here; easy to redo linear algebra with more characters if non-square is encountered.

Sublattices

Consider a sublattice of pairs (i, j) where q divides $j^d f(i/j)$.

Assume squarish lattice. $(i - jm)j^d f(i/j)$ expands by factor $q^{(d+1)/2}$ before division by q.

Number of sublattice elements within any particular bound on $(i - jm)j^d f(i/j)$ is proportional to $q^{-(d-1)/(d+1)}$. Compared to just using q = 1, conjecturally obtain $y^{4/(d+1)+o(1)}$ times as many congruences by using sublattices for all y-smooth integers $q \le y^2$.

Separately consider

i-jm and $j^df(i/j)/q$

for more precise analysis.

Limit congruences accordingly, increasing smoothness chances.

Multiple number fields

Assume that $f + x - m \in \mathsf{Z}[x]$ is also irred.

Pick $\beta \in \mathbf{C}$, root of f + x - m. Two congruences for (i, j): $(i - jm)(i - j\alpha)$; $(i - jm)(i - j\beta)$. Expand exponent vectors to handle both $\mathbf{Q}(\alpha)$ and $\mathbf{Q}(\beta)$.

Merge smoothness tests by testing i - jm first, aborting if i - jm not smooth.

Can use many number fields: f + 2(x - m) etc.

Asymptotic cost exponents

Number of bit operations in number-field sieve. with theorists' parameters, is $L^{1.90...+o(1)}$ where L = $\exp((\log n)^{1/3}(\log \log n)^{2/3}).$ What are theorists' parameters? Choose degree d with $d/(\log n)^{1/3}(\log \log n)^{-1/3}$

 \in 1.40 . . . + o(1).

Choose integer $m \approx n^{1/d}$. Write n as $m^d + f_{d-1}m^{d-1} + \cdots + f_1m + f_0$ with each f_k below $n^{(1+o(1))/d}$. Choose f with some randomness in case there are bad f's.

Test smoothness of i - jmfor all coprime pairs (i, j)with $1 \le i, j \le L^{0.95...+o(1)}$, using primes $\le L^{0.95...+o(1)}$.

 $L^{1.90...+o(1)}$ pairs. Conjecturally $L^{1.65...+o(1)}$ smooth values of i - jm. Use $L^{0.12...+o(1)}$ number fields.

For each (i, j)with smooth i - jm, test smoothness of $i - j\alpha$ and $i - j\beta$ and so on, using primes $< L^{0.82...+o(1)}$. $I^{1.77...+o(1)}$ tests. Each $|j^d f(i/j)| \le m^{2.86...+o(1)}$. Conjecturally $L^{0.95...+o(1)}$ smooth congruences. $L^{0.95...+o(1)}$ components

in the exponent vectors.

Three sizes of numbers here: $(\log n)^{1/3} (\log \log n)^{2/3}$ bits: y, i, j.

 $(\log n)^{2/3} (\log \log n)^{1/3}$ bits: m, i - jm, $j^d f(i/j)$.

 $\log n$ bits: n.

Unavoidably 1/3 in exponent: usual smoothness optimization forces $(\log y)^2 \approx \log m$; balancing norms with mforces $d \log y \approx \log m$; and $d \log m \approx \log n$. The number-field sieve is asymptotically much faster than the quadratic sieve and the elliptic-curve method.

Also works well in practice.

Latest record: NFS found two prime factors $\approx 2^{332}$ of "RSA-200" challenge, using $\approx 5 \cdot 10^{18}$ Opteron cycles.

Batch NFS

The number-field sieve used $L^{1.90...+o(1)}$ bit operations finding smooth i - jm; only $L^{1.77...+o(1)}$ bit operations finding smooth $j^d f(i/j)$.

Many *n*'s can share one *m*; $L^{1.90...+o(1)}$ bit operations to find squares for *all n*'s.

Oops, linear algebra hurts; fix by reducing y.

But still end up factoring batch in much less time than factoring each *n* separately.