
Integer factorization,

part 1: the Q sieve

Integer factorization,

part 2: detecting smoothness

Integer factorization,

part 3: the number-field sieve

D. J. Bernstein

Problem: Factor 611.

The Q sieve forms a square

as product of
�
(

�
+ 611)

for several pairs (
� �

):

14(625) � 64(675) � 75(686)
= 44100002.

gcd 611
�
14 � 64 � 75 � 4410000

= 47.

The Q(14) sieve forms a square

as product of (
�
+ 25)(

�
+ 14)

for several pairs (
� �

):

(� 11 + 3 � 25)(� 11 + 3 14)

� (3 + 25)(3 + 14)

= (112 � 16 14)2.

Compute
� = (� 11 + 3 � 25) � (3 + 25),

�
= 112 � 16 � 25,

gcd 611
� � �

�
= 13.

Why does this work?

Answer: Have ring morphism

Z[14] Z � , 14 � 25,

since 252 = 14 in Z � .

Apply ring morphism to square:

(� 11 + 3 � 25)(� 11 + 3 � 25)
� (3 + 25)(3 + 25)

= (112 � 16 � 25)2 in Z � .

i.e. � 2 =
� 2 in Z � .

Unsurprising to find factor.

Generalize from (� 2 � 14
�
25)

to (
�

) with irred Z[�],

Z, () � Z.

Write = deg ,

= � �
�
+ � � � + 1 � 1 + 0 � 0.

Can take � = 1 for simplicity,

but larger � allows

better parameter selection.

Pick � C, root of .

Then � � is a root of

monic =
� � 1

� (� �) Z[�].

Build square in Q(�) from

congruences (
�

�)(
�

� �)

with
�
Z + Z = Z and 0.

Could replace
�

� � by

higher-deg irred in Z[�];

quadratics seem fairly small

for some number fields.

But let’s not bother.

Say we have a square

(�����) � (
�

�)(
�

� �)

in Q(�); now what?

(
�

�)(
�

� �) 2
�

is a square in ,

ring of integers of Q(�).

Multiply by � (� �)2,

putting square root into Z[� �]:

compute � with � 2 = � (� �)2 �
(

�
�)(

�
� �) 2

� .

Then apply the ring morphism

: Z[� �] Z � taking

� � to � . Compute gcd �
�

(�) � � (�) (
�

�) � .

In Z � have (�)2 =

� (�)2 (
�

�)2 2
� .

How to find square product

of congruences (
�

�)(
�

� �)?

Start with congruences for,

e.g., 2 pairs (
� �

).

Look for -smooth congruences:

-smooth
�

� and

-smooth � norm(
�

� �) =

�
� �

+ � � � + 0
�

=
�

(
�

).

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.

Exponent vectors have

many “rational” components,

many “algebraic” components,

a few “character” components.

One rational component

for each prime .

Value ord � (
�

�).

One rational component for � 1.

Value 0 if
�

� 0,

value 1 if
�

� 0.

If (
�

�) is a square

then vectors add to 0

in rational components.

One algebraic component

for each pair (
�

�) such that

is a prime ;

� Z; disc Z;

� F � ; (�) = 0 in F � .

Value 0 if
�

� � Z;

otherwise ord � (
�

(
�

)).

This is the same as

the valuation of
�

� �

at the prime + (� � � � �) .

Recall that
�
Z + Z = Z,

so no higher-degree primes.

One character component

for each pair (
�

�) with

in a short range above .

Value 0 if
�

� � is a

square in F � , else 1.

If (
�

� �) is a square

then vectors add to 0

in algebraic components

and character components.

Conversely, consider vectors

adding to 0 in all components.

(
�

�) must be a square.

Is (
�

� �) a square?

Ideal (
�

� �) must be

square outside � disc .

What about primes in � disc ?

Even if ideal is square,

is square root principal?

Even if ideal is generated

by square of element,

does square equal (
�

� �)?

Obstruction group is small,

conjecturally very small.

“(� disc)-Selmer group.”

A few characters

suffice to generate dual,

forcing (
�

� �)

to be a square.

Can be quite sloppy here;

easy to redo linear algebra

with more characters if

non-square is encountered.

Sublattices

Consider a sublattice

of pairs (
� �

) where
� divides

�
(

�
).

Assume squarish lattice.

(
�

�)
�

(
�

)

expands by factor � (� +1) � 2

before division by � .

Number of sublattice elements

within any particular bound

on (
�

�)
�

(
�

)

is proportional to � � (� � 1) � (� +1).

Compared to just using � = 1,

conjecturally obtain 4 � (� +1)+ � (1)

times as many congruences

by using sublattices for

all -smooth integers � 2.

Separately consider
�

� and
�

(
�

) �

for more precise analysis.

Limit congruences accordingly,

increasing smoothness chances.

Multiple number fields

Assume that + � � Z[�]

is also irred.

Pick C, root of + � � .

Two congruences for (
� �

):

(
�

�)(
�

� �); (
�

�)(
�

�).

Expand exponent vectors to

handle both Q(�) and Q().

Merge smoothness tests

by testing
�

� first,

aborting if
�

� not smooth.

Can use many number fields:

+ 2(� �) etc.

Asymptotic cost exponents

Number of bit operations

in number-field sieve,

with theorists’ parameters,

is 1 � 90 ����� + � (1) where =

exp((log �)1 � 3(log log �)2 � 3).

What are theorists’ parameters?

Choose degree with

(log �)1 � 3(log log �)
� 1 � 3

1 � 40 � � � + � (1).

Choose integer � 1 � �
.

Write � as
�
+ � � 1

� � 1 + � � � + 1 + 0

with each � below � (1+ � (1)) � �
.

Choose with some randomness

in case there are bad ’s.

Test smoothness of
�

�
for all coprime pairs (

� �
)

with 1
� � 0 � 95 ����� + � (1),

using primes 0 � 95 � ��� + � (1).

1 � 90 ����� + � (1) pairs.

Conjecturally 1 � 65 � ��� + � (1)

smooth values of
�

� .

Use 0 � 12 ��� � + � (1) number fields.

For each (
� �

)

with smooth
�

� ,

test smoothness of
�

� �

and
�

� and so on,

using primes 0 � 82 � ��� + � (1).

1 � 77 ����� + � (1) tests.

Each
� �

(
�

)
� 2 � 86 ����� + � (1).

Conjecturally 0 � 95 � ��� + � (1)

smooth congruences.

0 � 95 ����� + � (1) components

in the exponent vectors.

Three sizes of numbers here:

(log �)1 � 3(log log �)2 � 3 bits:

,
�
, .

(log �)2 � 3(log log �)1 � 3 bits:

,
�

� ,
�

(
�

).

log � bits: � .

Unavoidably 1 3 in exponent:

usual smoothness optimization

forces (log)2 log ;

balancing norms with

forces log log ;

and log log � .

The number-field sieve

is asymptotically much faster

than the quadratic sieve

and the elliptic-curve method.

Also works well in practice.

Latest record: NFS found

two prime factors 2332

of “RSA-200” challenge, using

5 � 1018 Opteron cycles.

Batch NFS

The number-field sieve used
1 � 90 ����� + � (1) bit operations

finding smooth
�

� ; only
1 � 77 ����� + � (1) bit operations

finding smooth
�

(
�

).

Many � ’s can share one ;
1 � 90 ����� + � (1) bit operations

to find squares for all � ’s.

Oops, linear algebra hurts;

fix by reducing .

But still end up factoring

batch in much less time than

factoring each � separately.

