Integer factorization,
part 1: the \mathbf{Q} sieve
Integer factorization,
part 2: detecting smoothness
Integer factorization, part 3: the number-field sieve
D. J. Bernstein

Problem: Factor 611.

The \mathbf{Q} sieve forms a square as product of $i(i+611 j)$
for several pairs (i, j) :
14(625) • 64(675) • 75(686)
$=4410000^{2}$.
$\operatorname{gcd}\{611,14 \cdot 64 \cdot 75-4410000\}$
$=47$.

The $\mathbf{Q}(\sqrt{14})$ sieve forms a square as product of $(i+25 j)(i+\sqrt{14} j)$ for several pairs (i, j) :
$(-11+3 \cdot 25)(-11+3 \sqrt{14})$
$\cdot(3+25)(3+\sqrt{14})$
$=(112-16 \sqrt{14})^{2}$.
Compute
$s=(-11+3 \cdot 25) \cdot(3+25)$,
$t=112-16 \cdot 25$,
$\operatorname{gcd}\{611, s-t\}=13$.

Why does this work?

Answer: Have ring morphism
$\mathbf{Z}[\sqrt{14}] \rightarrow \mathbf{Z} / n, \sqrt{14} \mapsto 25$,
since $25^{2}=14$ in \mathbf{Z} / n.
Apply ring morphism to square:
$(-11+3 \cdot 25)(-11+3 \cdot 25)$
$\cdot(3+25)(3+25)$
$=(112-16 \cdot 25)^{2}$ in \mathbf{Z} / n.
ie. $s^{2}=t^{2}$ in \mathbf{Z} / n.
Unsurprising to find factor.

Generalize from $\left(x^{2}-14,25\right)$
to (f, m) with irred $f \in \mathbf{Z}[x]$,
$m \in \mathbf{Z}, f(m) \in n \mathbf{Z}$.
Write $d=\operatorname{deg} f$,
$f=f_{d} x^{d}+\cdots+f_{1} x^{1}+f_{0} x^{0}$.
Can take $f_{d}=1$ for simplicity, but larger f_{d} allows
better parameter selection.
Pick $\alpha \in \mathbf{C}$, root of f.
Then $f_{d} \alpha$ is a root of
monic $g=f_{d}^{d-1} f\left(x / f_{d}\right) \in \mathbf{Z}[x]$.

Build square in $\mathbf{Q}(\alpha)$ from congruences $(i-j m)(i-j \alpha)$
with $i \mathbf{Z}+j \mathbf{Z}=\mathbf{Z}$ and $j>0$.
Could replace $i-j x$ by
higher-deg irred in $\mathbf{Z}[x]$;
quadratics seem fairly small
for some number fields.
But let's not bother.
Say we have a square
$\prod_{(i, j) \in S}(i-j m)(i-j \alpha)$
in $\mathbf{Q}(\alpha)$; now what?
$\rceil(i-j m)(i-j \alpha) f_{d}^{2}$
is a square in \mathcal{O},
ring of integers of $\mathbf{Q}(\alpha)$.
Multiply by $g^{\prime}\left(f_{d} \alpha\right)^{2}$,
putting square root into $\mathbf{Z}\left[f_{d} \alpha\right]$: compute r with $r^{2}=g^{\prime}\left(f_{d} \alpha\right)^{2}$. $\prod(i-j m)(i-j \alpha) f_{d}^{2}$.

Then apply the ring orphism $\varphi: \mathbf{Z}\left[f_{d} \alpha\right] \rightarrow \mathbf{Z} / n$ taking $f_{d} \alpha$ to $f_{d} m$. Compute $\operatorname{gcd}\{n$, $\left.\varphi(r)-g^{\prime}\left(f_{d} m\right) \prod(i-j m) f_{d}\right\}$.
$\ln \mathbf{Z} / n$ have $\varphi(r)^{2}=$
$\left.g^{\prime}\left(f_{d} m\right)^{2}\right\rceil(i-j m)^{2} f_{d}^{2}$.

How to find square product of congruences $(i-j m)(i-j \alpha)$?

Start with congruences for,
e.g., y^{2} pairs (i, j).

Look for y-smooth congruences:
y-smooth $i-j m$ and
y-smooth $f_{d} \operatorname{norm}(i-j \alpha)=$
$f_{d} i^{d}+\cdots+f_{0} j^{d}=j^{d} f(i / j)$.
Find enough smooth congruences.
Perform linear algebra on exponent vectors mod 2.

Exponent vectors have many "rational" components, many "algebraic" components, a few "character" components.

One rational component
for each prime $p \leq y$.
Value $\operatorname{ord}_{p}(i-j m)$.
One rational component for -1 .
Value 0 if $i-j m>0$,
value 1 if $i-j m<0$.
If $\prod(i-j m)$ is a square
then vectors add to 0
in rational components.

One algebraic component
for each pair (p, r) such that p is a prime $\leq y$;
$f_{d} \notin p \mathbf{Z} ; \operatorname{disc} f \notin p \mathbf{Z}$;
$r \in \mathbf{F}_{p} ; f(r)=0$ in \mathbf{F}_{p}.
Value 0 if $i-j r \notin p \mathbf{Z}$;
otherwise $\operatorname{ord}_{p}\left(j^{d} f(i / j)\right)$.
This is the same as
the valuation of $i-j \alpha$
at the prime $p \mathcal{O}+\left(f_{d} \alpha-f_{d} r\right) \mathcal{O}$.
Recall that $i \mathbf{Z}+j \mathbf{Z}=\mathbf{Z}$,
so no higher-degree primes.

One character component for each pair (p, r) with p in a short range above y.

Value 0 if $i-j r$ is a
square in F_{p}, else 1.
If $\rceil(i-j \alpha)$ is a square
then vectors add to 0
in algebraic components
and character components.

Conversely, consider vectors
adding to 0 in all components.
$\prod(i-j m)$ must be a square.
Is $\rceil(i-j \alpha)$ a square?
Ideal $\rceil(i-j \alpha) \mathcal{O}$ must be
square outside f_{d} disc f.
What about primes in f_{d} disc f ?
Even if ideal is square,
is square root principal?
Even if ideal is generated by square of element,
does square equal $\Pi(i-j \alpha)$?

Obstruction group is small, conjecturally very small. " $\left(f_{d}\right.$ disc $\left.f\right)$-Selmer group."

A few characters
suffice to generate dual,
forcing $\prod(i-j \alpha)$
to be a square.
Can be quite sloppy here; easy to redo linear algebra with more characters if non-square is encountered.

Sublattices

Consider a sublattice

of pairs (i, j) where
q divides $j^{d} f(i / j)$.
Assume squarish lattice.
$(i-j m) j^{d} f(i / j)$
expands by factor $q^{(d+1) / 2}$
before division by q.
Number of sublattice elements
within any particular bound
on $(i-j m) j^{d} f(i / j)$
is proportional to $q^{-(d-1) /(d+1)}$.

Compared to just using $q=1$, conjecturally obtain $y^{4 /(d+1)+o(1)}$
times as many congruences by using sublattices for all y-smooth integers $q \leq y^{2}$.

Separately consider
$i-j m$ and $j^{d} f(i / j) / q$
for more precise analysis.
Limit congruences accordingly, increasing smoothness chances.

Multiple number fields
Assume that $f+x-m \in \mathbf{Z}[x]$ is also irred.

Pick $\beta \in \mathbf{C}$, root of $f+x-m$.
Two congruences for (i, j) :
$(i-j m)(i-j \alpha) ;(i-j m)(i-j \beta)$.
Expand exponent vectors to
handle both $\mathbf{Q}(\alpha)$ and $\mathbf{Q}(\beta)$.
Merge smoothness tests
by testing $i-j m$ first,
aborting if $i-j m$ not smooth.
Can use many number fields:
$f+2(x-m)$ etc.

Asymptotic cost exponents

Number of bit operations
in number-field sieve,
with theorists' parameters,
is $L^{1.90 \ldots+o(1)}$ where $L=$
$\exp \left((\log n)^{1 / 3}(\log \log n)^{2 / 3}\right)$.
What are theorists' parameters?
Choose degree d with
$d /(\log n)^{1 / 3}(\log \log n)^{-1 / 3}$
$\in 1.40 \ldots+o(1)$.

Choose integer $m \approx n^{1 / d}$.
Write n as
$m^{d}+f_{d-1} m^{d-1}+\cdots+f_{1} m+f_{0}$
with each f_{k} below $n^{(1+o(1)) / d}$.
Choose f with some randomness
in case there are bad f's.
Test smoothness of $i-j m$
for all coprime pairs (i, j)
with $1 \leq i, j \leq L^{0.95 \ldots+o(1)}$,
using primes $\leq L^{0.95 \ldots+o(1)}$.
$L^{1.90 \ldots+o(1)}$ pairs.
Conjecturally $L^{1.65 \ldots+o(1)}$
smooth values of $i-j m$.

Use $L^{0.12 \ldots+o(1)}$ number fields.
For each (i, j)
with smooth $i-j m$,
test smoothness of $i-j \alpha$
and $i-j \beta$ and so on, using primes $\leq L^{0.82 \ldots+o(1)}$.
$L^{1.77 \ldots+o(1)}$ tests.
Each $\left|j^{d} f(i / j)\right| \leq m^{2.86 \ldots+o(1)}$.
Conjecturally $L^{0.95 \ldots+o(1)}$
smooth congruences.
$L^{0.95 \ldots+o(1)}$ components
in the exponent vectors.

Three sizes of numbers here:
$(\log n)^{1 / 3}(\log \log n)^{2 / 3}$ bits:
y, i, j.
$(\log n)^{2 / 3}(\log \log n)^{1 / 3}$ bits:
$m, i-j m, j^{d} f(i / j)$.
$\log n$ bits: n.
Unavoidably $1 / 3$ in exponent:
usual smoothness optimization
forces $(\log y)^{2} \approx \log m$;
balancing norms with m
forces $d \log y \approx \log m$;
and $d \log m \approx \log n$.

The number-field sieve

 is asymptotically much faster than the quadratic sieve and the elliptic-curve method.Also works well in practice.
Latest record: NFS found two prime factors $\approx 2^{332}$ of "RSA-200" challenge, using $\approx 5 \cdot 10^{18}$ Opteron cycles.

Batch NFS

The number-field sieve used $L^{1.90 \ldots+o(1)}$ bit operations
finding smooth $i-j m$; only
$L^{1.77 \ldots+o(1)}$ bit operations
finding smooth $j^{d} f(i / j)$.
Many n 's can share one m; $L^{1.90 \ldots+o(1)}$ bit operations to find squares for all n 's.

Oops, linear algebra hurts; fix by reducing y.
But still end up factoring
batch in much less time than
factoring each n separately.

