Integer factorization, part 1: the \mathbb{Q} sieve

Integer factorization, part 2: detecting smoothness

Integer factorization, part 3: the number-field sieve

D. J. Bernstein
Problem: Factor 611.

The Q sieve forms a square as product of \(i(i + 611j) \) for several pairs \((i, j)\):
\[
14(625) \cdot 64(675) \cdot 75(686)
= 4410000^2.
\]

\[
\text{gcd}\{611, 14 \cdot 64 \cdot 75 - 4410000\}
= 47.
\]
The \(\mathbb{Q}(\sqrt{14}) \) sieve forms a square as product of \((i + 25j)(i + \sqrt{14}j)\) for several pairs \((i, j)\):

\[
(-11 + 3 \cdot 25)(-11 + 3\sqrt{14}) \cdot (3 + 25)(3 + \sqrt{14}) = (112 - 16\sqrt{14})^2.
\]

Compute

\[
s = (-11 + 3 \cdot 25) \cdot (3 + 25),
\]

\[
t = 112 - 16 \cdot 25,
\]

\[
gcd\{611, s - t\} = 13.
\]
Why does this work?

Answer: Have ring morphism $\mathbb{Z}[\sqrt{14}] \rightarrow \mathbb{Z}/n$, $\sqrt{14} \mapsto 25$, since $25^2 = 14$ in \mathbb{Z}/n.

Apply ring morphism to square:
\[
(-11 + 3 \cdot 25)(-11 + 3 \cdot 25) \\
\quad \cdot (3 + 25)(3 + 25)
\]
\[
= (112 - 16 \cdot 25)^2 \text{ in } \mathbb{Z}/n.
\]
i.e. $s^2 = t^2$ in \mathbb{Z}/n.

Unsurprising to find factor.
Generalize from \((x^2 - 14, 25)\) to \((f, m)\) with irred \(f \in \mathbb{Z}[x],
\)
\(m \in \mathbb{Z}, f(m) \in n\mathbb{Z}.\)

Write \(d = \deg f,
\)
\(f = f_dx^d + \cdots + f_1x^1 + f_0x^0.\)

Can take \(f_d = 1\) for simplicity, but larger \(f_d\) allows better parameter selection.

Pick \(\alpha \in \mathbb{C},\) root of \(f.\)

Then \(f_d\alpha\) is a root of monic \(g = f_d^{d-1}f(x/f_d) \in \mathbb{Z}[x].\)
Build square in \(\mathbb{Q}(\alpha) \) from congruences \((i - jm)(i - j\alpha)\) with \(i\mathbb{Z} + j\mathbb{Z} = \mathbb{Z}\) and \(j > 0\).

Could replace \(i - jx\) by higher-deg irred in \(\mathbb{Z}[x]\); quadratics seem fairly small for some number fields. But let’s not bother.

Say we have a square

\[
\prod_{(i,j) \in S} (i - jm)(i - j\alpha)
\]

in \(\mathbb{Q}(\alpha)\); now what?
\[(i - jm)(i - j\alpha)f_d^2\]
is a square in \(O\),
ring of integers of \(\mathbb{Q}(\alpha)\).

Multiply by \(g'(f_d\alpha)^2\),
putting square root into \(\mathbb{Z}[f_d\alpha]\):
compute \(r\) with \(r^2 = g'(f_d\alpha)^2\).

\[\prod(i - jm)(i - j\alpha)f_d^2.\]

Then apply the ring morphism
\[\varphi : \mathbb{Z}[f_d\alpha] \to \mathbb{Z}/n\]
taking \(f_d\alpha\) to \(f_dm\). Compute \(\text{gcd}\{n, \varphi(r) - g'(f_dm)\prod(i - jm)f_d\}\).

In \(\mathbb{Z}/n\) have \(\varphi(r)^2 = g'(f_dm)^2 \prod(i - jm)^2 f_d^2\).
How to find square product of congruences \((i - jm)(i - j\alpha)\)?

Start with congruences for, e.g., \(y^2\) pairs \((i, j)\).

Look for \(y\)-smooth congruences: \(y\)-smooth \(i - jm\) and \(y\)-smooth \(f_d \text{ norm}(i - j\alpha) = f_di^d + \cdots + f_0j^d = j^d f(i/j)\).

Find enough smooth congruences. Perform linear algebra on exponent vectors mod 2.
Exponent vectors have many “rational” components, many “algebraic” components, a few “character” components.

One rational component for each prime $p \leq y$.
Value $\text{ord}_p(i - jm)$.

One rational component for -1.
Value 0 if $i - jm > 0$,
value 1 if $i - jm < 0$.

If $\prod (i - jm)$ is a square then vectors add to 0 in rational components.
One algebraic component for each pair \((p, r)\) such that \(p\) is a prime \(\leq y;\)
\(f_d \notin p\mathbb{Z};\) \(\text{disc } f \notin p\mathbb{Z};\)
\(r \in \mathbb{F}_p; f(r) = 0\) in \(\mathbb{F}_p.\)

Value 0 if \(i - jr \notin p\mathbb{Z};\)
otherwise \(\text{ord}_p(j^d f(i/j)).\)

This is the same as
the valuation of \(i - j\alpha\)
at the prime \(p\mathcal{O} + (f_d\alpha - f_d r)\mathcal{O}.\)
Recall that \(i\mathbb{Z} + j\mathbb{Z} = \mathbb{Z},\)
so no higher-degree primes.
One character component for each pair \((p, r)\) with \(p\) in a short range above \(y\).

Value 0 if \(i - jr\) is a square in \(\mathbf{F}_p\), else 1.

If \(\prod(i - j\alpha)\) is a square then vectors add to 0 in algebraic components and character components.
Conversely, consider vectors adding to 0 in all components.

\[\prod(i - jm) \] must be a square.

Is \[\prod(i - j\alpha) \] a square?

Ideal \[\prod(i - j\alpha) \mathcal{O} \] must be square outside \(f_d \text{ disc } f \).

What about primes in \(f_d \text{ disc } f \)?

Even if ideal is square, is square root principal?

Even if ideal is generated by square of element, does square equal \[\prod(i - j\alpha) \]?
Obstruction group is small, conjecturally very small. "\((f_d \text{ disc } f)\)-Selmer group."

A few characters suffice to generate dual, forcing \(\prod (i - j \alpha) \) to be a square.

Can be quite sloppy here; easy to redo linear algebra with more characters if non-square is encountered.
Sublattices

Consider a sublattice of pairs \((i, j)\) where \(q\) divides \(j^d f(i/j)\).

Assume squarish lattice.

\((i - jm)j^d f(i/j)\) expands by factor \(q^{(d+1)/2}\) before division by \(q\).

Number of sublattice elements within any particular bound on \((i - jm)j^d f(i/j)\) is proportional to \(q^{-(d-1)/(d+1)}\).
Compared to just using $q = 1$, conjecturally obtain $y^{4/(d+1)+o(1)}$ times as many congruences by using sublattices for all y-smooth integers $q \leq y^2$.

Separately consider $i - jm$ and $j^d f(i/j)/q$ for more precise analysis.

Limit congruences accordingly, increasing smoothness chances.
Multiple number fields

Assume that $f + x - m \in \mathbb{Z}[x]$ is also irreducible.

Pick $\beta \in \mathbb{C}$, root of $f + x - m$.

Two congruences for (i, j):

$(i - jm)(i - j\alpha)$; $(i - jm)(i - j\beta)$.

Expand exponent vectors to handle both $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\beta)$.

Merge smoothness tests by testing $i - jm$ first, aborting if $i - jm$ not smooth.

Can use many number fields: $f + 2(x - m)$ etc.
Asymptotic cost exponents

Number of bit operations in number-field sieve, with theorists' parameters, is $L^{1.90...+o(1)}$ where $L = \exp((\log n)^{1/3}(\log \log n)^{2/3})$. What are theorists' parameters?

Choose degree d with $
\frac{d}{(\log n)^{1/3}(\log \log n)^{-1/3}} \in 1.40 \ldots + o(1)$.\n
Choose integer $m \approx n^{1/d}$.

Write n as

$$m^d + f_{d-1} m^{d-1} + \cdots + f_1 m + f_0$$

with each f_k below $n^{(1+o(1))/d}$.

Choose f with some randomness in case there are bad f’s.

Test smoothness of $i - jm$

for all coprime pairs (i, j)

with $1 \leq i, j \leq L^{0.95...+o(1)}$,

using primes $\leq L^{0.95...+o(1)}$.

$L^{1.90...+o(1)}$ pairs.

Conjecturally $L^{1.65...+o(1)}$

smooth values of $i - jm$.
Use $L^{0.12\ldots+o(1)}$ number fields.

For each (i, j) with smooth $i - jm$, test smoothness of $i - j\alpha$ and $i - j\beta$ and so on, using primes $\leq L^{0.82\ldots+o(1)}$.

$L^{1.77\ldots+o(1)}$ tests.

Each $|j^d f(i/j)| \leq m^{2.86\ldots+o(1)}$.

Conjecturally $L^{0.95\ldots+o(1)}$ smooth congruences.

$L^{0.95\ldots+o(1)}$ components in the exponent vectors.
Three sizes of numbers here:

$$(\log n)^{1/3}(\log \log n)^{2/3} \text{ bits: } y, i, j.$$

$$(\log n)^{2/3}(\log \log n)^{1/3} \text{ bits: } m, i - jm, j^d f(i/j).$$

$\log n \text{ bits: } n.$

Unavoidably 1/3 in exponent: usual smoothness optimization forces $(\log y)^2 \approx \log m$; balancing norms with m forces $d \log y \approx \log m$; and $d \log m \approx \log n$.
The number-field sieve is asymptotically much faster than the quadratic sieve and the elliptic-curve method. Also works well in practice.

Latest record: NFS found two prime factors 2^{332} of “RSA-200” challenge, using $\approx 5 \cdot 10^{18}$ Opteron cycles.
Batch NFS

The number-field sieve used \(L^{1.90...+o(1)} \) bit operations finding smooth \(i - jm \); only \(L^{1.77...+o(1)} \) bit operations finding smooth \(j^d f(i/j) \).

Many \(n \)'s can share one \(m \); \(L^{1.90...+o(1)} \) bit operations to find squares for all \(n \)'s.

Oops, linear algebra hurts; fix by reducing \(y \). But still end up factoring batch in much less time than factoring each \(n \) separately.