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Problem: Factor 611.

The Q sieve forms a square

as product of
�
(

�
+ 611 )

for several pairs (
� �

):

14(625) � 64(675) � 75(686)
= 44100002.

gcd 611
�
14 � 64 � 75 � 4410000

= 47.



The Q( 14) sieve forms a square

as product of (
�
+ 25 )(

�
+ 14 )

for several pairs (
� �

):

( � 11 + 3 � 25)( � 11 + 3 14)

� (3 + 25)(3 + 14)

= (112 � 16 14)2.

Compute
� = ( � 11 + 3 � 25) � (3 + 25),

�
= 112 � 16 � 25,

gcd 611
� � �

�
= 13.



Why does this work?

Answer: Have ring morphism

Z[ 14] Z � , 14 � 25,

since 252 = 14 in Z � .

Apply ring morphism to square:

( � 11 + 3 � 25)( � 11 + 3 � 25)
� (3 + 25)(3 + 25)

= (112 � 16 � 25)2 in Z � .

i.e. � 2 =
� 2 in Z � .

Unsurprising to find factor.



Generalize from ( � 2 � 14
�
25)

to (
�

) with irred Z[ � ],

Z, ( ) � Z.

Write = deg ,

= � �
�
+ � � � + 1 � 1 + 0 � 0.

Can take � = 1 for simplicity,

but larger � allows

better parameter selection.

Pick � C, root of .

Then � � is a root of

monic =
� � 1

� ( � � ) Z[ � ].



Build square in Q( � ) from

congruences (
�

� )(
�

� � )

with
�
Z + Z = Z and 0.

Could replace
�

� � by

higher-deg irred in Z[ � ];

quadratics seem fairly small

for some number fields.

But let’s not bother.

Say we have a square

( ����� ) � (
�

� )(
�

� � )

in Q( � ); now what?



(
�

� )(
�

� � ) 2
�

is a square in ,

ring of integers of Q( � ).

Multiply by � ( � � )2,

putting square root into Z[ � � ]:

compute � with � 2 = � ( � � )2 �
(

�
� )(

�
� � ) 2

� .

Then apply the ring morphism

: Z[ � � ] Z � taking

� � to � . Compute gcd �
�

( � ) � � ( � ) (
�

� ) � .

In Z � have ( � )2 =

� ( � )2 (
�

� )2 2
� .



How to find square product

of congruences (
�

� )(
�

� � )?

Start with congruences for,

e.g., 2 pairs (
� �

).

Look for -smooth congruences:

-smooth
�

� and

-smooth � norm(
�

� � ) =

�
� �

+ � � � + 0
�

=
�

(
�

).

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.



Exponent vectors have

many “rational” components,

many “algebraic” components,

a few “character” components.

One rational component

for each prime .

Value ord � (
�

� ).

One rational component for � 1.

Value 0 if
�

� 0,

value 1 if
�

� 0.

If (
�

� ) is a square

then vectors add to 0

in rational components.



One algebraic component

for each pair (
�

� ) such that

is a prime ;

� Z; disc Z;

� F � ; ( � ) = 0 in F � .

Value 0 if
�

� � Z;

otherwise ord � (
�

(
�

)).

This is the same as

the valuation of
�

� �

at the prime + ( � � � � � ) .

Recall that
�
Z + Z = Z,

so no higher-degree primes.



One character component

for each pair (
�

� ) with

in a short range above .

Value 0 if
�

� � is a

square in F � , else 1.

If (
�

� � ) is a square

then vectors add to 0

in algebraic components

and character components.



Conversely, consider vectors

adding to 0 in all components.

(
�

� ) must be a square.

Is (
�

� � ) a square?

Ideal (
�

� � ) must be

square outside � disc .

What about primes in � disc ?

Even if ideal is square,

is square root principal?

Even if ideal is generated

by square of element,

does square equal (
�

� � )?



Obstruction group is small,

conjecturally very small.

“( � disc )-Selmer group.”

A few characters

suffice to generate dual,

forcing (
�

� � )

to be a square.

Can be quite sloppy here;

easy to redo linear algebra

with more characters if

non-square is encountered.



Sublattices

Consider a sublattice

of pairs (
� �

) where
� divides

�
(

�
).

Assume squarish lattice.

(
�

� )
�

(
�

)

expands by factor � ( � +1) � 2

before division by � .

Number of sublattice elements

within any particular bound

on (
�

� )
�

(
�

)

is proportional to � � ( � � 1) � ( � +1).



Compared to just using � = 1,

conjecturally obtain 4 � ( � +1)+ � (1)

times as many congruences

by using sublattices for

all -smooth integers � 2.

Separately consider
�

� and
�

(
�

) �

for more precise analysis.

Limit congruences accordingly,

increasing smoothness chances.



Multiple number fields

Assume that + � � Z[ � ]

is also irred.

Pick C, root of + � � .

Two congruences for (
� �

):

(
�

� )(
�

� � ); (
�

� )(
�

� ).

Expand exponent vectors to

handle both Q( � ) and Q( ).

Merge smoothness tests

by testing
�

� first,

aborting if
�

� not smooth.

Can use many number fields:

+ 2( � � ) etc.



Asymptotic cost exponents

Number of bit operations

in number-field sieve,

with theorists’ parameters,

is 1 � 90 ����� + � (1) where =

exp((log � )1 � 3(log log � )2 � 3).

What are theorists’ parameters?

Choose degree with

(log � )1 � 3(log log � )
� 1 � 3

1 � 40 � � � + � (1).



Choose integer � 1 � �
.

Write � as
�
+ � � 1

� � 1 + � � � + 1 + 0

with each � below � (1+ � (1)) � �
.

Choose with some randomness

in case there are bad ’s.

Test smoothness of
�

�
for all coprime pairs (

� �
)

with 1
� � 0 � 95 ����� + � (1),

using primes 0 � 95 � ��� + � (1).

1 � 90 ����� + � (1) pairs.

Conjecturally 1 � 65 � ��� + � (1)

smooth values of
�

� .



Use 0 � 12 ��� � + � (1) number fields.

For each (
� �

)

with smooth
�

� ,

test smoothness of
�

� �

and
�

� and so on,

using primes 0 � 82 � ��� + � (1).

1 � 77 ����� + � (1) tests.

Each
� �

(
�

)
� 2 � 86 ����� + � (1).

Conjecturally 0 � 95 � ��� + � (1)

smooth congruences.

0 � 95 ����� + � (1) components

in the exponent vectors.



Three sizes of numbers here:

(log � )1 � 3(log log � )2 � 3 bits:

,
�
, .

(log � )2 � 3(log log � )1 � 3 bits:

,
�

� ,
�

(
�

).

log � bits: � .

Unavoidably 1 3 in exponent:

usual smoothness optimization

forces (log )2 log ;

balancing norms with

forces log log ;

and log log � .



The number-field sieve

is asymptotically much faster

than the quadratic sieve

and the elliptic-curve method.

Also works well in practice.

Latest record: NFS found

two prime factors 2332

of “RSA-200” challenge, using

5 � 1018 Opteron cycles.



Batch NFS

The number-field sieve used
1 � 90 ����� + � (1) bit operations

finding smooth
�

� ; only
1 � 77 ����� + � (1) bit operations

finding smooth
�

(
�

).

Many � ’s can share one ;
1 � 90 ����� + � (1) bit operations

to find squares for all � ’s.

Oops, linear algebra hurts;

fix by reducing .

But still end up factoring

batch in much less time than

factoring each � separately.


