Integer factorization, part 1: the \mathbf{Q} sieve

Integer factorization, part 2: detecting smoothness
D. J. Bernstein

The \mathbf{Q} sieve factors n

 by combining enough y-smooth congruences $i(n+i)$."Enough" $\approx ">y / \log y . "$
Plausible conjecture: if $y \in$ $\exp \sqrt{\left(\frac{1}{2}+o(1)\right) \log n \log \log n}$ then $y^{2+o(1)}$ congruences have enough smooth congruences.

Linear sieve, quadratic sieve, number-field sieve: similar.

How to figure out which congruences are smooth?

Could use trial division:
For each congruence,
remove factors of 2 ,
remove factors of 3 , remove factors of 5 , etc.; use all primes $p \leq y$. $y^{3+o(1)}$ bit operations: $y^{1+o(1)}$ for each congruence. Want something faster!

Textbook answer: Sieving.

Generate in order of p,
then sort in order of i,
all pairs (i, p) with
i in range and $i(n+i) \in p \mathbf{Z}$.
Pairs for one p are
$(p, p),(2 p, p),(3 p, p)$, etc.
and $(p-(n \bmod p), p)$ etc.
$(\lg y)^{O(1)}$ bit operations
for each congruence.

Do record-setting factorizations use the textbook answer? No!

Sieving has two big problems.
First problem:
Sieving needs large i range,
$\geq y^{1+o(1)}$ consecutive values.
Limits number of sublattices,
so limits smoothness chance.
Can eliminate this problem using "remainder trees."

Given $c_{1}, c_{2}, \ldots, c_{m}$
together having $y(\lg y)^{O(1)}$ bits:
Can compute $c_{1} c_{2} \cdots c_{m}$
with $y(\lg y)^{O(1)}$ operations.
Actually compute "product tree" of $c_{1}, c_{2}, \ldots, c_{m}$.
Root: $c_{1} c_{2} \cdots c_{m}$.
Left subtree if $m \geq 2$:
product tree of $c_{1}, \ldots, c_{\lceil m / 2\rceil}$.
Right subtree if $m \geq 2$:
product tree of $c_{\lceil m / 2\rceil+1}, \ldots, c_{m}$.
e.g. tree for $23,29,84,15,58,19$:

Obtain each level of tree with $y(\lg y)^{O(1)}$ operations by multiplying lower-level pairs. Use FFT-based multiplication.

Remainder tree
of $P, c_{1}, c_{2}, \ldots, c_{m}$ has one
node $P \bmod C$ for each node C
in product tree of $c_{1}, c_{2}, \ldots, c_{m}$.
e.g. remainder tree of

223092870, 23, 29, 84, 15, 58, 19:

Use product tree to compute product P of primes $p \leq y$.

Use remainder tree to compute
$P \bmod c_{1}, P \bmod c_{2}, \ldots$.
Now c_{1} is y-smooth iff $P^{2^{k}} \bmod c_{1}=0$ for minimal $k \geq 0$ with $2^{2^{k}} \geq c_{1}$. Similarly c_{2} etc.

Total $y(\lg y)^{O(1)}$ operations
if c_{1}, c_{2}, \ldots together have $y(\lg y)^{O(1)}$ bits.

Second problem with sieving, not fixed by remainder trees:
Need $y^{1+o(1)}$ bits of storage.
Real machines don't have much
fast memory: it's expensive.
Effect is not visible for
small computations on
single serial CPUs,
but becomes critical in
huge parallel computations.
How to quickly find primes above size of fast memory?

The rho method

Define $\rho_{0}=0, \rho_{k+1}=\rho_{k}^{2}+11$.
Every prime $\leq 2^{20}$ divides $S=$
$\left(\rho_{1}-\rho_{2}\right)\left(\rho_{2}-\rho_{4}\right)\left(\rho_{3}-\rho_{6}\right)$
$\cdots\left(\rho_{3575}-\rho_{7150}\right)$.
Also many larger primes.
Can compute $\operatorname{gcd}\{c, S\}$ using $\approx 2^{14}$ multiplications mod c, very little memory.

Compare to $\approx 2^{16}$ divisions for trial division up to 2^{20}.

More generally: Choose z.
Compute $\operatorname{gcd}\{c, S\}$ where $S=$
$\left(\rho_{1}-\rho_{2}\right)\left(\rho_{2}-\rho_{4}\right) \cdots\left(\rho_{z}-\rho_{2 z}\right)$.
How big does z have to be
for all primes $\leq y$ to divide S ?
Plausible conjecture: $y^{1 / 2+o(1)}$; so $y^{1 / 2+o(1)}$ muts $\bmod c$.

Reason: Consider first collision in
$\rho_{1} \bmod p, \rho_{2} \bmod p, \ldots$
If $\rho_{i} \bmod p=\rho_{j} \bmod p$
then $\rho_{k} \bmod p=\rho_{2 k} \bmod p$
for $k \in(j-i) \mathbf{Z} \cap[i, \infty] \cap[j, \infty]$.

The $p-1$ method

Have built an integer S
divisible by all primes $\leq y$.
Less costly way to do this?
First attempt:
Define $S_{1}=2^{E(z)}-1$ where
$E(z)=\operatorname{lcm}\{1,2,3, \ldots, z\}$.
If $E(z) \in(p-1) \mathbf{Z}$ then $S_{1} \in p \mathbf{Z}$.
Can tweak to find more p 's:
e.g., could instead use product of $2^{E(z)}-1$ and $2^{E(z) q}-1$
for all primes $q \in[z+1, z \log z]$; could replace $E(z)$ by $E(z)^{2}$.
e.g. $z=20$:
$E(z)=2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$ $=232792560$.
$S_{1}=2^{E(z)}-1$ has prime divisors
$3,5,7,11,13,17,19,23,29,31$,
$37,41,43,53,61,67,71,73,79$,
89, 97, 103, 109, 113, 127, 131,
137, 151, 157, 181, 191, 199, etc.
Compute S_{1} with 34 mults.

As $z \rightarrow \infty:(1.44 \ldots+o(1)) z$ multiplications to compute S_{1}.

Dividing $E(z)$ is stronger than z-smoothness but not much.

Plausible conjecture: if $z \in$
$\exp \sqrt{\left(\frac{1}{2}+o(1)\right) \log y \log \log y}$
then $p-1$ divides $E(z)$
with chance $1 / z^{1+o(1)}$
for uniform random prime $p \leq y$.
So method finds some primes at surprisingly high speed.
What about the other primes?

The $p+1$ method
Second attempt:
Define $v_{0}=2, v_{1}=10$, $v_{2 i}=v_{i}^{2}-2$,
$v_{2 i+1}=v_{i} v_{i+1}-v_{1}$.
Define $S_{2}=v_{E(z)}-2$.
Point of v_{i} formulas:
$v_{i}=\alpha^{i}+\alpha^{-i}$
in $\mathbf{Z}[\alpha] /\left(\alpha^{2}-10 \alpha+1\right)$.
If $E(z) \in(p+1) Z$
and $10^{2}-4$ non-square in F_{p}
then $F_{p}[\alpha] /\left(\alpha^{2}-10 \alpha+1\right)$
is a field so $S_{2} \in p \mathbf{Z}$.
e.g. $z=20, E(z)=232792560$: $S_{2}=v_{E(z)}-2$ has prime divisors $3,5,7,11,13,17,19,23,29,37$, $41,43,53,59,67,71,73,79,83$, 89, 97, 103, 109, 113, 131, 151, 179, 181, 191, 211, 227, 233, 239, 241, 251, 271, 307, 313, 331, 337, 373, 409, 419, 439, 457, 467, 547, 569, 571, 587, 593, 647, 659, 673, 677, 683, 727, 857, 859, 881, 911, 937, 967, 971, etc.

The elliptic-curve method

Fix $a \in\{6,10,14,18, \ldots\}$.
Define $x_{1}=2, d_{1}=1$,
$x_{2 i}=\left(x_{i}^{2}-d_{i}^{2}\right)^{2}$,
$d_{2 i}=4 x_{i} d_{i}\left(x_{i}^{2}+a x_{i} d_{i}+d_{i}^{2}\right)$, $x_{2 i+1}=4\left(x_{i} x_{i+1}-d_{i} d_{i+1}\right)^{2}$, $d_{2 i+1}=8\left(x_{i} d_{i+1}-d_{i} x_{i+1}\right)^{2}$.

Define $S_{a}=d_{E(z)}$.
Have now supplemented S_{1}, S_{2} with S_{6}, S_{10}, S_{14}, etc. Variability of a is important.

Point of x_{i}, d_{i} formulas:
If $d_{i}\left(a^{2}-4\right)(4 a+10) \notin p \mathbf{Z}$
then i th multiple of $(2,1)$
on the elliptic curve
$(4 a+10) y^{2}=x^{3}+a x^{2}+x$
over \mathbf{F}_{p} is $\left(x_{i} / d_{i}, \ldots\right)$.
If $\left(a^{2}-4\right)(4 a+10) \notin p \mathbf{Z}$
and $E(z) \in($ order of $(2,1)) \mathbf{Z}$
then $S_{a} \in p \mathbf{Z}$.
Order of elliptic-curve group depends on a but is always
in $[p+1-2 \sqrt{p}, p+1+2 \sqrt{p}]$.

Consider smallest z
such that product of S_{a}
for first z choices of a
is divisible by every $p \leq y$.
Plausible conjecture: $z \in$ $\exp \sqrt{\left(\frac{1}{2}+o(1)\right) \log y \log \log y}$.

Computing this product takes $\approx 12 z^{2}$ mults; i.e.
$\exp \sqrt{(2+o(1)) \log y \log \log y}$.

Early aborts

Neverending supply of congruences
\downarrow initial selection
Smallest congruences
\downarrow
Partial factorizations
using primes $\leq y^{1 / 2}$
\downarrow early abort
Smallest unfactored parts

Partial factorizations using primes $\leq y$
\downarrow final abort
Smooth congruences

Say we use trial division.
Time $y^{1 / 2+o(1)}$ for $\leq y^{1 / 2}$.
Time $y^{1+o(1)}$ for $\leq y$.
Say we choose "smallest"
so that each congruence has chance $y^{1 / 2+o(1)} / y^{1+o(1)}$ of surviving early abort.
Fact: A y-smooth congruence has chance $y^{-1 / 4+o(1)}$ of surviving early abort.

Have reduced trial-division time by factor $y^{1 / 2+o(1)}$. Have reduced identify-a-smooth time by factor $y^{1 / 4+o(1)}$.

More generally, can abort at $y^{1 / k}, y^{2 / k}$, etc.
to reduce trial-division time by factor $y^{1-1 / k+o(1)}$.
This reduces identify-a-smooth time by factor $y^{(1-1 / k) / 2+o(1)}$.

Generalize beyond trial division to sieving, remainder trees, trial division, rho, ECM.

Use many aborts to combine many methods into one grand unified method for smoothness detection.

Are all primes small?

Instead of using these methods to find smooth congruences c, can apply them directly to n.

Worst case: n is product of two primes $\approx \sqrt{n}$.

Take $y \approx \sqrt{n}$.
Number of milts mod n
in elliptic-curve method:
$\exp \sqrt{(2+o(1)) \log y \log \log y}=$
$\exp \sqrt{(1+o(1)) \log n \log \log n}$.

Faster than \mathbf{Q} sieve.
Comparable to quadratic sieve, using much less memory.

Slower than number-field sieve for sufficiently large n.

One elliptic-curve computation found a prime $\approx 2^{219}$
in $\approx 3 \cdot 10^{12}$ Opteron cycles.
Fairly lucky in retrospect.

