Integer factorization,
part 1: the $\mathbf{Q}$ sieve
D. J. Bernstein

Sieving small integers $i>0$
using primes $2,3,5,7$ :


Sieving $i$ and $611+i$ for small $i$ using primes $2,3,5,7$ :


etc.

Have complete factorization of the "congruences" $i(611+i)$ for some $i$ 's.
$14 \cdot 625=2^{1} 3^{0} 5^{4} 7^{1}$.
$64 \cdot 675=2^{6} 3^{3} 5^{2} 7^{0}$.
$75 \cdot 686=2^{1} 3^{1} 5^{2} 7^{3}$.
$14 \cdot 64 \cdot 75 \cdot 625 \cdot 675 \cdot 686$
$=2^{8} 3^{4} 5^{8} 7^{4}=\left(2^{4} 3^{2} 5^{4} 7^{2}\right)^{2}$.
$\operatorname{gcd}\left\{611,14 \cdot 64 \cdot 75-2^{4} 3^{2} 5^{4} 7^{2}\right\}$
$=47$.
$611=47 \cdot 13$.

Why did this find a factor of $611 ?$ Was it just blind luck: $\operatorname{gcd}\{611$, random $\}=47 ?$

No.
By construction $n$ divides $s^{2}-t^{2}$ where $s=14 \cdot 64 \cdot 75$
and $t=2^{4} 3^{2} 5^{4} 7^{2}$.
So each prime $>7$ dividing $n$ divides either $s-t$ or $s+t$.

Not terribly surprising
(but not guaranteed in advance!)
that one prime divided $s-t$ and the other divided $s+t$.

Why did the first three completely factored congruences have square product?
Was it just blind luck?
Yes. The exponent vectors
$(1,0,4,1),(6,3,2,0),(1,1,2,3)$
happened to have sum $0 \bmod 2$.
But we didn't need this luck!
Given long sequence of vectors, quickly find nonempty subsequence with sum $0 \bmod 2$.

This is linear algebra over $\mathbf{F}_{2}$.
Guaranteed to find subsequence if number of vectors exceeds length of each vector. e.g. for $n=671$ :
$1(n+1)=2^{5} 3^{1} 5^{0} 7^{1}$;
$4(n+4)=2^{2} 3^{3} 5^{2} 7^{0}$;
$15(n+15)=2^{1} 3^{1} 5^{1} 7^{3}$;
$49(n+49)=2^{4} 3^{2} 5^{1} 7^{2}$;
$64(n+64)=2^{6} 3^{1} 5^{1} 7^{2}$.
$F_{2}$-kernel of exponent matrix is gen by ( 01011 ) and (10110); e.g., $1(n+1) 15(n+15) 49(n+49)$ is a square.

Plausible conjecture: $\mathbf{Q}$ sieve can separate the odd prime divisors of any $n$, not just 611 .

Given $n$ and parameter $y$ :

1. Try to completely factor $i(n+i)$
for $i \in\left\{1,2,3, \ldots, y^{2}\right\}$
into products of primes $\leq y$.
2. Look for nonempty set of $i$ 's with $i(n+i)$ completely factored and with $\rceil i(n+i)$ square.
3. Compute $\operatorname{gcd}\{n, s-t\}$ where $s=\prod_{i} i$ and $t=\sqrt{\prod_{i} i(n+i)}$.

How large does $y$ have to be for this to find a square?

Let's aim for number of completely factored congruences to exceed length of each vector, guaranteeing a square.
(This is somewhat pessimistic; smaller numbers usually work.)

Vector length $\approx y / \log y$.
Will there be $>y / \log y$ completely factored congruences out of $y^{2}$ congruences?

What's chance of random $i(n+i)$ being $y$-smooth, ie., completely factored into primes $\leq y$ ?

Consider, e.g., $y=\left\lfloor n^{1 / 10}\right\rfloor$.
Uniform random integer in $\left[1, y^{2}\right]$
has $y$-smoothness chance $\approx 0.306$; uniform random integer in $[1, n]$ has chance $\approx 2.77 \cdot 10^{-11}$. Plausible conjecture: $y$-smoothness chance of $i(n+i)$ is $\approx 8.5 \cdot 10^{-12}$.
Find $\approx 8.5 \cdot 10^{-12} y^{2}$
fully factored congruences.

If $n \geq 2^{340}$ and $y=\left\lfloor n^{1 / 10}\right\rfloor$ then
$8.5 \cdot 10^{-12} y^{2}>3 y / \log y$, and
approximations seem fairly close,
so conjecturally the $\mathbf{Q}$ sieve
will find a square.
Find many independent squares with negligible extra effort.
If ged turns out to be 1 ,
try the next square.
Conjecturally always works:
splits odd $n$ into
prime-power factors.

How about $y \approx n^{1 / u}$
for larger $u$ ?
Uniform random integer in $[1, n]$
has $n^{1 / u}$-smoothness chance roughly $u^{-u}$.

Plausible conjecture:
$\mathbf{Q}$ sieve succeeds
with $y=\left\lfloor n^{1 / u}\right\rfloor$
for all $n \geq u^{(1+o(1)) u^{2}}$;
here $o(1)$ is as $u \rightarrow \infty$.

How about letting $u$ grow with $n$ ?
Given $n$, try sequence of $y$ 's
in geometric progression
until $\mathbf{Q}$ sieve works;
e.g., increasing powers of 2.

Plausible conjecture: final $y \in$ $\exp \sqrt{\left(\frac{1}{2}+o(1)\right) \log n \log \log n}$, $u \in \sqrt{(2+o(1)) \log n / \log \log n}$.

Cost of $\mathbf{Q}$ sieve is a power of $y$, hence subexponential in $n$.

More generally, if $y \in$
$\exp \sqrt{\left(\frac{1}{2 c}+o(1)\right) \log n \log \log n}$,
conjectured $y$-smoothness chance is $1 / y^{c+o(1)}$.

Find enough smooth congruences by changing the range of $i$ 's:
replace $y^{2}$ with $y^{c+1+o(1)}=$
$\exp \sqrt{\left(\frac{(c+1)^{2}+o(1)}{2 c}\right) \log n \log \log n}$.
Increasing c past 1
increases number of $i$ 's but reduces linear-algebra cost.
So linear algebra never dominates
when $y$ is chosen properly.

## Improving smoothness chances

Smoothness chance of $i(n+i)$ degrades as $i$ grows.
Smaller for $i \approx y^{2}$ than for $i \approx y$.
Crude analysis: $i(n+i)$ grows.
$\approx y n$ if $i \approx y$;
$\approx y^{2} n$ if $i \approx y^{2}$.
More careful analysis:
$n+i$ doesn't degrade, but $i$ is always smooth for $i \leq y$, only $30 \%$ chance for $i \approx y^{2}$.

Can we select congruences
to avoid this degradation?

Choose $q$, square of large prime. Choose a " $q$-sublattice" of $i$ 's: arithmetic progression of $i$ 's where $q$ divides each $i(n+i)$. e.g. progression $q-(n \bmod q)$,
$2 q-(n \bmod q), 3 q-(n \bmod q)$, etc.

Check smoothness of
generalized congruence $i(n+i) / q$ for $i$ 's in this sublattice. e.g. check whether $i,(n+i) / q$ are smooth for $i=q-(n \bmod q)$ etc.

Try many large $q$ 's.
Rare for $i$ 's to overlap.
e.g. $n=314159265358979323$ :

Original $\mathbf{Q}$ sieve:

$$
\begin{array}{ll}
i & n+i \\
1 & 314159265358979324 \\
2 & 314159265358979325 \\
3 & 314159265358979326
\end{array}
$$

Use $997^{2}$-sublattice, $i \in 802458+994009 Z$ :

$$
\begin{array}{rl}
i & (n+i) / 997^{2} \\
802458 & 316052737309 \\
1796467 & 316052737310 \\
2790476 & 316052737311
\end{array}
$$

Crude analysis: Sublattices eliminate the growth problem. Have practically unlimited supply of generalized congruences
$(q-(n \bmod q)) \frac{n+q-(n \bmod q)}{q}$
$q$
between 0 and $n$.
More careful analysis: Sublattices are even better than that!
For $q \approx n^{1 / 2}$ have
$i \approx(n+i) / q \approx n^{1 / 2} \approx y^{u / 2}$
so smoothness chance is roughly
$(u / 2)^{-u / 2}(u / 2)^{-u / 2}=2^{u} / u^{u}$,
$2^{u}$ times larger than before.

Even larger improvements
from changing polynomial $i(n+i)$.
"Quadratic sieve" (QS) uses
$i^{2}-n$ with $i \approx \sqrt{n}$;
have $i^{2}-n \approx n^{1 / 2+o(1)}$,
much smaller than $n$.
"MPQS" improves o(1)
using sublattices: $\left(i^{2}-n\right) / q$.
But still $\approx n^{1 / 2}$.
"Number-field sieve" (NFS)
achieves $n^{o(1)}$.

## Fast linear algebra

Given $y \times y$ matrix over $\mathbf{F}_{2}$ specifying linear $M: F_{2}^{y} \rightarrow \mathbf{F}_{2}^{y}$.
"Solving linear equations":
given $w \in \mathbf{F}_{2}^{y}$,
find some $v \in \mathbf{F}_{2}^{y}$ with $M v=w$.
Using an algorithm for that:
Choose uniform random $r \in \mathbf{F}_{2}^{y}$; compute $w=M r$; use algorithm to find $v$ with $M v=w$.

This produces uniform random kernel element, namely $v-r$.

## "Elimination"

solves linear equations
using $O\left(y^{3}\right)$ bit operations.
"Series denominators"
solve linear equations
using $y^{2+o(1)}$ bit operations
if the equations are sparse.
"Sparse": can evaluate $M$ using $y^{1+o(1)}$ bit operations.
Certainly true in $\mathbf{Q}$ sieve with usual choices of $y$.

What's the denominators method?
Consider nontrivial relation
$p_{0} w+p_{1} M w+\cdots+p_{y} M^{y} w=0$.
I'll assume $p_{0}=1$ for simplicity,
so $w=-p_{1} M w-\cdots-p_{y} M^{y} w$
$=M v$ where $v=-p_{1} w-\cdots$.
Consider series in $\mathbf{F}_{2}^{y}[[t]]$ :
$w+(M w) t+\left(M^{2} w\right) t^{2}+\cdots$.
Multiplying series by poly
$p_{0} t^{y}+p_{1} t^{y-1}+\cdots+p_{y} t^{0}$
in $\mathbf{F}_{2}[t]$ produces
poly in $F_{2}^{y}[t]$ of degree $<y$.

Save time by projecting
from $\mathbf{F}_{2}^{y}[[t]]$ to $\mathbf{F}_{2}[[t]]$.
Choose linear $r: \mathbf{F}_{2}^{y} \rightarrow \mathbf{F}_{2}$.
Series $r(w)+r(M w) t+\cdots$
has denominator dividing
$p_{0} t^{y}+p_{1} t^{y-1}+\cdots+p_{y} t^{0}$.
Compute denominator of series
from first $2 y$ terms of series
via continued fractions.
Repeat for three random $r$ 's,
compute lcm of denominators.
Obtain $p_{0}, p_{1}, \ldots$
with probability close to 1 .

