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Public keys

Each user publishes a key

22047 � 22047 + 1 � � � � � 22048 � 1 .

User knows prime factors of .

Hopefully attacker doesn’t.

RSA: also publish big exponent � ;

use primes allowing � th roots.

Rabin: always use exponent 2;

use primes in 3 + 4Z.

Williams: 3 + 8Z and 7 + 8Z.

Many subsequent variants;

e.g., “RSA” using exponent 3,

and “RSA” using exponent 65537.
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The compression question

Can store in 2048 bits.

Can store 1 � 2 � � � � � � ,

randomly accessible, in 2048 � bits.

Can we use fewer bits?

Knee-jerk answer: “No!

If you can’t afford 2048 � bits,

switch to 256-bit elliptic curves.

http://cr.yp.to/ecdh.html”

But elliptic-curve signatures

have slow verification.

Want a better answer.
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Recognizing lower entropy

22047 � � � � � 22048 � 1

so has top bit 1.

Don’t store that bit.

With Rabin-Williams: 5 + 8Z.

Don’t store bottom 3 bits.

Better: Users never generate

divisible by 3 � 5 � 7 � 11,

so only 480 possibilities

for mod 9240. Replace

bottom 13 bits with 9-bit

encoding of mod 9240.
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Knee-jerk answer: “No!
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switch to elliptic curves.”

e.g. User generates = � from

independent uniform random

21023 � � � � � 21024 � 1 ,

� 21024 � � � � � 21025 � 1 :

1 1025 log 2 chance of prime,

1 1026 log 2 chance of � prime,

1 8 chance of 3 � 7 + 8Z,

2 log 2 � 1 chance of � 22048,

so 22023 equally likely ’s.
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Are the resulting keys secure?

Not necessarily!
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(1999 Murphy) turn out to be

unusually small for these numbers.
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Sharing entropy

Generate random 1

from set of all possible keys.

Define 1 = �
1( ( 1)).

Generate random 2 1:

e.g., for = 500th bit,
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same 500th bit as 1.
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(e.g., Coppersmith, Bernstein)

For safety, choose key sizes
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can’t even do one factorization.
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