Compressing RSA /Rabin keys Public keys

D. J. Bernstein Each user publishes a key U €

2047 ~2047 2048
Thanks to: {2 2 +1.. 2 1}'
University of lllinois at Chicago User knows prime factors of U.
NSF CCR-9983950 Hopefully attacker doesn't.

Alfred P. Sloan Foundation

| | | RSA: also publish big exponent e;
American Institute of Mathematics

use primes allowing eth roots.
Rabin: always use exponent 2;
use primes in 3 + 4Z.
Williams: 3+ 8Z and 7 + 8Z.
Many subsequent variants;
e.g., "RSA" using exponent 3,
and “RSA" using exponent 65537.

/Rabin keys Public keys The compression ¢

Each user publishes a key U € Can store U in 20:

{22047 22047 4 7 2204 11 Can store Uy, Us, .
is at Chicago User knows prime factors of U. randomly accessib
0 Hopefully attacker doesn't. Can we use fewer
undation | RSA: also publish big exponent e; Knee-jerk answer:
- of Mathematics . . ,

use primes allowing eth roots. If you can’t afford

Rabin: always use exponent 2; switch to 256-bit «

use primes in 3 + 4Z. http://cr.yp.tc

Williams: 3 +8Z and 7 + 8Z.

| But elliptic-curve :
Many subsequent variants;

have slow verificat

e.g., "RSA” using exponent 3, Want a better ans

and “RSA" using exponent 65537.

Public keys

Each user publishes a key U €
{22047 22047 41 ... 22048 L 1}

User knows prime factors of U.
Hopefully attacker doesn't.

RSA: also publish big exponent e;
use primes allowing eth roots.
Rabin: always use exponent 2;
use primes in 3+ 4Z.

Williams: 3+ 8Z and 7 + 8Z.
Many subsequent variants;

e.g., "RSA" using exponent 3,

and “RSA" using exponent 65537.

The compression guestion

Can store U in 2048 bits.
Can store Uy, Uy, ..., Uy,
randomly accessible, in 2048n bits.

Can we use fewer bits?

Knee-jerk answer: “No!

If you can't afford 2048n bits,
switch to 256-bit elliptic curves.
http://cr.yp.to/ecdh.html”

But elliptic-curve signatures

have slow verification.
Want a better answer.

s a key U €
R]

factors of U.
~doesn't.

big exponent e;
g eth roots.

exponent 2;
\L.

and 7 + 8Z.
variants;
exponent 3,

exponent 65537.

The compression guestion

Can store U in 2048 bits.
Can store Uy, Us, ..., Uy,

randomly accessible, in 2048n bits.

Can we use fewer bits?

Knee-jerk answer: “No!

If you can't afford 2048n bits,
switch to 256-bit elliptic curves.
http://cr.yp.to/ecdh.html”

But elliptic-curve signatures

have slow verification.
Want a better answer.

Recognizing lower

U e {22947, ... 2
so U has top bit 1
Don't store that b

With Rabin-Willia
Don't store bottor

Better: Users neve
divisible by 3,5, 7,
so only 480 possib
for U mod 9240. |
bottom 13 bits wr
encoding of U mo

The compression guestion

Can store U in 2048 bits.
Can store Uy, Us, ..., Uy,

randomly accessible, in 2048n bits.

Can we use fewer bits?

Knee-jerk answer: “Nol!

If you can't afford 2048n bits,
switch to 256-bit elliptic curves.
http://cr.yp.to/ecdh.html”

But elliptic-curve signatures

have slow verification.
Want a better answer.

Recognizing lower entropy

U & {22047 o 22048 . 1}
so U has top bit 1.
Don't store that bit.

With Rabin-Williams: U € 5 + 8Z.
Don't store bottom 3 bits.

Better: Users never generate U
divisible by 3,5, 7, 11,

so only 480 possibilities

for U mod 9240. Replace
bottom 13 bits with 9-bit
encoding of U mod 9240.

juestion

18 bits.
., Unp,

le, In 2048n bits.

bits?

“No!

2048n bits,
|liptic curves.
y/ecdh.html”

signatures
on.

WEr.

Recognizing lower entropy

U & {22047 o 22048 . 1}
so U has top bit 1.
Don't store that bit.

With Rabin-Williams: U € 5 + 8Z.

Don't store bottom 3 bits.

Better: Users never generate U
divisible by 3,5, 7, 11,

so only 480 possibilities

for U mod 9240. Replace
bottom 13 bits with 9-bit
encoding of U mod 9240.

Have reduced 204
Can we do much |

Knee-jerk answer:
C'mon, you know
switch to elliptic ¢

e.g. User generate

independent unifol

pe {21023 ol
ge {2102 o1
~ 1/1025 log 2 ch:
~ 1/1026 log 2 ch:
~ 1/8 chance of {
~ 2log2 — 1 chan
so > 22923 equally

Recognizing lower entropy

U & {22047 o 22048 . 1}
so U has top bit 1.
Don't store that bit.

With Rabin-Williams: U € 5 + 8Z.

Don't store bottom 3 bits.

Better: Users never generate U
divisible by 3,5, 7, 11,

so only 480 possibilities

for U mod 9240. Replace
bottom 13 bits with 9-bit
encoding of U mod 9240.

Have reduced 2048 to 2043.
Can we do much better?

Knee-jerk answer: “No!
C'mon, you know you want to
switch to elliptic curves.”

e.g. User generates U = pg from

independent uniform random

p € {21023, . 21024 o 1},

g e {2194, . 210> 11,
~ 1/1025log 2 chance of p prime,

~ 1/1026 log 2 chance of g prime,
~ 1/8 chance of {3,7} 4 8Z,

~ 2log2 — 1 chance of pg < 22943
so > 22923 equally likely U'’s.

entropy

048 1}

It.

ms: U € b + 8Z.

n 3 bits.

r generate U
11,

ilities
Replace

th 9-bit

d 9240.

Have reduced 2048 to 2043.
Can we do much better?

Knee-jerk answer: “Nol!
C'mon, you know you want to
switch to elliptic curves.”

e.g. User generates U = pg from

independent uniform random
p € {21023, . 21024 o 1},

g e {2194, . 210> 11,
~ 1/1025log 2 chance of p prime,

~ 1/1026 log 2 chance of g prime,
~ 1/8 chance of {3,7} 4 8Z,

~ 2log?2 — 1 chance of pg < 22943,

so > 22923 equally likely U'’s.

Reducing entropy

Define f(U) = 50(
g(U) = U with 50

Change key-gener:
to produce keys U
Then can encode
saving one bit; als
top/bottom bits a

Brute-force key ge
generate U by the
if f(U)=1, try a
Conjecturally this
almost exactly 2 t
confirmed by expe

Have reduced 2048 to 2043.
Can we do much better?

Knee-jerk answer: “No!
C'mon, you know you want to
switch to elliptic curves.”

e.g. User generates U = pg from
independent uniform random

pe {21023 01024 _ 11
g e {21024 21025 _ 11,

~ 1/1025log 2 chance of p prime,

~ 1/1026 log 2 chance of g prime,
~ 1/8 chance of {3,7} 4 8Z,

~ 2log?2 — 1 chance of pg < 22943,

so > 22923 equally likely U'’s.

Reducing entropy

Define f(U) = 500th bit of U,
g(U) = U with 500th bit omitted.

Change key-generation procedure
to produce keys U with f(U) = 0.
Then can encode U as g(U),
saving one bit; also save
top/bottom bits as before.

Brute-force key generation:
generate U by the old method;

if f(U)=1, try again.
Conjecturally this takes

almost exactly 2 tries on average;
confirmed by experiment.

3 to 2043.
yetter?

"Nol!
you want to

urves.’

s U = pg from

‘m random
024 1}

025 1}

ance of p prime,

ance of g prime,
3,7} +8Z,

ce of pg < 22043,
likely U's.

Reducing entropy

Define f(U) = 500th bit of U,
g(U) = U with 500th bit omitted.

Change key-generation procedure
to produce keys U with f(U) = 0.
Then can encode U as g(U),
saving one bit; also save
top/bottom bits as before.

Brute-force key generation:
generate U by the old method;

if f(U)=1, try again.
Conjecturally this takes

almost exactly 2 tries on average;
confirmed by experiment.

More generally, sel
f : {2048-bit strin
— {k-bit stril
g : {2048-bit strin
— {(2048 — |
with f X g invertil

Change key-gener:
to produce keys U
Then can encode
saving k bits.

Is f X g easy to c«
and easy to Invert
for the functions v

Reducing entropy

Define f(U) = 500th bit of U,

g(U) = U with 500th bit omitted.

Change key-generation procedure

to produce keys U with f(U) = 0.

Then can encode U as g(U),
saving one bit; also save
top/bottom bits as before.

Brute-force key generation:
generate U by the old method;

if f(U)=1, try again.
Conjecturally this takes

almost exactly 2 tries on average;
confirmed by experiment.

More generally, select functions
f : {2048-bit strings}

— {k-bit strings} and
g : {2048-bit strings}

— {(2048 — k)-bit strings}
with f X g invertible.

Change key-generation procedure
to produce keys U with f(U) = 0.
Then can encode U as g(U),
saving k bits.

Is f X g easy to compute
and easy to invert? Yes
for the functions we'll consider.

)th bit of U,

Oth bit omitted.

1tion procedure

with f(U) = 0.

U as g(U),
0 save
s before.

neration:

old method;
rain.

takes

ries on average;

riment.

More generally, select functions
f : {2048-bit strings}

— {k-bit strings} and
g : {2048-bit strings}

— {(2048 — k)-bit strings}
with f X g invertible.

Change key-generation procedure

to produce keys U with f(U) = 0.

Then can encode U as g(U),
saving k bits.

Is f X g easy to compute
and easy to invert? Yes
for the functions we'll consider.

Do U's exist with
Conjecturally chan
for the functions v

(Provable for f ch
from “universal” ¢

Brute force takes :
far too slow for lai

Can we do much |
Yes. Will come ba

Are the resulting }
Not necessarily!

More generally, select functions
f : {2048-bit strings}

— {k-bit strings} and
g : {2048-bit strings}

— {(2048 — k)-bit strings}
with f X g invertible.

Change key-generation procedure

to produce keys U with f(U) = 0.

Then can encode U as g(U),
saving k bits.

Is f X g easy to compute
and easy to invert? Yes
for the functions we'll consider.

Do U’s exist with f(U) = 07
Conjecturally chance ~ 1/2*

for the functions we'll consider.
(Provable for f chosen randomly
from “universal” classes.)

Brute force takes ~s 2k tries;
far too slow for large k.

Can we do much better?
Yes. Will come back to this.

Are the resulting keys secure?
Not necessarily!

ect functions

gs}
1gs} and

s}
¢)-bit strings}
le.

1tion procedure

with f(U) = 0.

U as g(U),

ympute
? Yes

ve'll consider.

Do U's exist with f(U) = 07
Conjecturally chance ~ 1/2*

for the functions we'll consider.

(Provable for f chosen randomly

from “universal” classes.)

Brute force takes ~s 2% tries;

far too slow for large k.

Can we do much better?

Yes. Wil

come back to this.

Are the resulting keys secure?

Not necessarily!

The half-special n

1998 Lenstra: “Nu

form
1024-bit RSA secL
t is not much sma
Chance of an “unt
NFS polynomial is

Not true. Reducin
using f(U) = half

reduces conjecture

Skewed NFS polyr
(1999 Murphy) tu
unusually small fol

Do U’s exist with f(U) = 07 The half-special number-field sieve
Conjecturally chance ~ 1/2*

1998 Lenstra: “Numbers of the
form 21924 4 ¢ . offer regular
1024-bit RSA security, as long as

for the functions we'll consider.

(Provable for f chosen randomly

from “universal” classes. . ,
) t is not much smaller than 2299

Brute force takes ~ 2% tries:; Chance of an “unusually small”

far too slow for large k. NFS polynomial is “negligible.”

Can we do much better?

| | Not true. Reducing entropy,
Yes. Will come back to this.

using f(U) = half the bits of U,
Are the resulting keys secure? reduces conjectured security level.

M
Not necessarily! Skewed NFS polynomials

(1999 Murphy) turn out to be
unusually small for these numbers.

f(U) =07

ce ~s 1/2K
ve'll consider.
osen randomly
lasses.)

v 2k tries;
ge k.

yetter?
ck to this.

eys secure’?

The half-special number-field sieve

Sharing entropy

1998 Lenstra: “Numbers of the

form 21024 + ¢ . offer regular

1024-bit RSA security, as long as

t 1s not much smaller t
Chance of an “unusual

han 2200 7

y small”

NFS polynomial is “negligible.”

Not true. Reducing entropy,
using f(U) = half the bits of U,
reduces conjectured security level.

Skewed NFS polynomials
(1999 Murphy) turn out to be
unusually small for these numbers.

Generate random
from set S of all

Define 51 = 5N f

Generate random
e.g., for f = 500t}
generate random (
same 500th bit as
Similarly generate

Compress Us to g
compress U3 to g(
Overall (2048 — k
to store Uy, Uy, ...

The half-special number-field sieve Sharing entropy

1998 Lenstra: “Numbers of the Generate random Uy
form 21924 4 ¢ . offer regular from set S of all possible keys.
1024-bit RSA security, as long as Define S1 = SN f1(f(Uy)).

t is not much smaller than 2290 "
Generate random Uy € Sy:

e.g., for f = 500th bit,
generate random Us having

Chance of an “unusually small”
NFS polynomial is “negligible.”

Not true. Reducing entropy, same 500th bit as Uj.
using f(U) = half the bits of U, Similarly generate U3, Uy,

reduces conjectured security level.
] Y Compress Us to g(Uo);

Skewed NFS polynomials compress U3 to g(U3); etc.
(1999 Murphy) turn out to be Overall (2048 — k)n + k bits

unusually small for these numbers. to store Uy, U, ..., U,.

imber-field sieve

Sharing entropy

imbers of the

offer regular

rity, as long as

ller than 2°Y0 "

isually small”
“negligible.”

g entropy,
the bits of U,

d security level.

yomials
rn out to be
- these numbers.

Generate random Ujq

from set S of all possible keys.

Define S1 = SN f1(f(Uy)).

Generate random Uy € Sy:
e.g., for f = 500th bit,
generate random Us having

same 500th bit as U;.
Similarly generate Us, Uy,

Compress Us to g(Uo);
compress U3 to g(U3); etc.
Overall (2048 — k)n + k bits
to store Uy, Uy, ..., Un.

If distribution of L
Is uniform over S,
and distribution of
Is uniform over 53
then distribution ¢
Is uniform over S.

So attacker’s chan
Is provably identic
attacker’'s chance
Same comment wi
replaced by “forgir
etc.

Sharing entropy is

Sharing entropy

Generate random Ujq

from set S of all possible keys.

Define S1 = SN f1(f(Uy)).

Generate random Uy € Sy:
e.g., for f = 500th bit,
generate random Us having

same 500th bit as U;.
Similarly generate Us, U,,

Compress Us to g(Uo);
compress U3 to g(U3); etc.
Overall (2048 — k)n + k bits
to store Uy, U, ..., Un.

If distribution of Uj

Is uniform over S,

and distribution of Uy given U;
Is uniform over 57,

then distribution of Us

Is uniform over S.

So attacker’'s chance of factoring Us
Is provably identical to

attacker’'s chance of factoring Uj.
Same comment with “factoring”
replaced by “forging signatures”
etc.

Sharing entropy is provably secure.

U1

0ssible keys.

~L(f(Lh)).

U> € 57:

1 bit,

J> having
Ui .

Uz, Ug,

U2);

U3); etc.
)n + k bits
L Un.

If distribution of Uj

Is uniform over S,

and distribution of Uy given U;
Is uniform over 57,

then distribution of Us

Is uniform over S.

So attacker’'s chance of factoring Us
Is provably identical to

attacker’'s chance of factoring Uj.
Same comment with “factoring”
replaced by “forging signatures”
etc.

Sharing entropy is provably secure.

Time to factor Uq
can be less than d
the time for a sing
(e.g., Schnorr, Era

Analogy: brute-fo
versus a secret-key
finds n target key:s
as finding one targ

Problem arises wit
shared entropy.
(e.g., Coppersmitt

For safety, choose
so that (conjectur:
can't even do one

If distribution of Uj

Is uniform over S,

and distribution of Uy given U;
Is uniform over 57,

then distribution of Us

Is uniform over S.

So attacker’'s chance of factoring Us
Is provably identical to

attacker’'s chance of factoring Uj.
Same comment with “factoring”
replaced by “forging signatures”
etc.

Sharing entropy is provably secure.

Time to factor Uy and U>
can be less than double

the time for a single factorization.
(e.g., Schnorr, Eratosthenes)

Analogy: brute-force search
versus a secret-key cipher

finds n target keys in same time
as finding one target key.

Problem arises with or without
shared entropy.
(e.g., Coppersmith, Bernstein)

For safety, choose key sizes
so that (conjecturally) attacker
can't even do one factorization.

4|
Uy given Uy

f U

ce of factoring U»
al to

of factoring Uj.
th “factoring”

12 signatures”

provably secure.

Time to factor Uy and U>
can be less than double

the time for a single factorization.

(e.g., Schnorr, Eratosthenes)

Analogy: brute-force search
versus a secret-key cipher

finds n target keys in same time
as finding one target key.

Problem arises with or without
shared entropy.
(e.g., Coppersmith, Bernstein)

For safety, choose key sizes
so that (conjecturally) attacker
can't even do one factorization.

Perhaps time to fe
Is below time to f:

Analogy: brute-for
finds some target
after =~ 1/n of the

As before, problen
with or without sh

For safety, multipl
factorization succe
(e.g. ECM success
by n before choos

Time to factor Uy and U>
can be less than double

the time for a single factorization.

(e.g., Schnorr, Eratosthenes)

Analogy: brute-force search
versus a secret-key cipher

finds n target keys in same time
as finding one target key.

Problem arises with or without
shared entropy.
(e.g., Coppersmith, Bernstein)

For safety, choose key sizes
so that (conjecturally) attacker
can't even do one factorization.

Perhaps time to factor U; or U>
Is below time to factor Us.

Analogy: brute-force search
finds some target key out of n
after ~ 1/n of the computation.

As before, problem arises
with or without shared entropy.

For safety, multiply conjectured
factorization success chance
(e.g. ECM success chance)

by n before choosing key sizes.

and U>
ouble

|le factorization.

tosthenes)

ce search

/ cipher

5 In same time
et key.

h or without

, Bernstein)

key sizes
ally) attacker
factorization.

Perhaps time to factor U; or U>
Is below time to factor Us.

Analogy: brute-force search
finds some target key out of n

after ~ 1/n of the computation.

As before, problem arises
with or without shared entropy.

For safety, multiply conjectured
factorization success chance
(e.g. ECM success chance)

by n before choosing key sizes.

Is this overkill?

Are there algorithi
Ui or Uy or ... or
more quickly than

For discrete logs, |
by randomized sel;

For factorization, |
without an extra 1
Factorization liter:
explicitly address 1
Maybe we're overs
by considering just

Perhaps time to factor U; or U>
Is below time to factor Us.

Analogy: brute-force search
finds some target key out of n

after ~ 1/n of the computation.

As before, problem arises
with or without shared entropy.

For safety, multiply conjectured
factorization success chance
(e.g. ECM success chance)

by n before choosing key sizes.

Is this overkill?

Are there algorithms to factor
Ui or Uy or ... or Uy
more quickly than factoring U;?

For discrete logs, prove "no”
by randomized self-reduction.

For factorization, no hope of proof
without an extra n.

Factorization literature needs to
explicitly address multiple inputs.
Maybe we're oversimplifying

by considering just one input.

ctor Uy or Uy
ctor U].

‘ce search

key out of n

» computation.

1 arises
ared entropy.

y conjectured
ss chance
chance)

ing key sizes.

Is this overkill?

Are there algorithms to factor
Ui or Uy or ... or Uy
more quickly than factoring U;?

For discrete logs, prove "no”
by randomized self-reduction.

For factorization, no hope of proof
without an extra n.

Factorization literature needs to
explicitly address multiple inputs.
Maybe we're oversimplifying

by considering just one input.

Generating U give

Define f(U) = U 1

Reasonably fast g

with f(pq) = f(U
Choose 1024-bit p
g = 21024 | (p-1;
If not both primes
If pg > 22048 try

Conjecturally = 21
on average.

Is this overkill?

Are there algorithms to factor
Ui or Uy or ... or Uy
more quickly than factoring U;?

For discrete logs, prove "no”
by randomized self-reduction.

For factorization, no hope of proof
without an extra n.

Factorization literature needs to
explicitly address multiple inputs.
Maybe we're oversimplifying

by considering just one input.

Generating U given bottom half

Define f(U) = U mod 21024,

Reasonably fast generation of p, g
with f(pq) = f(U1), given f(U1):
Choose 1024-bit ». Compute
g = 21024 4+ (P_lf(Ul) mod 21024)_
If not both primes, try again.
If pg > 22948 try again.

Conjecturally ~ 217 tries
on average.

ns to factor
factoring U717

yrove ‘no’
—reduction.

no hope of proof
2.

1ture needs to
nultiple inputs.
implifying

- one Input.

Generating U given bottom half

Define f(U) = U mod 21024,

Reasonably fast generation of p, g

with f(pq) = f(U1), given f(U1):
Choose 1024-bit ». Compute

g = 21024 4+ (P_lf(Ul) mod 21024)_

If not both primes, try again.
If pg > 22948 try again.

Conjecturally ~ 217 tries
on average.

Analogous methoc
F(U) = [U/2%]

Method reinventec

Published 1991 Gt
in context of redu
“Some forms of tf
. need less storz
all of the bits of tl
most significant by
valued to zero."

Generating U given bottom half

Define f(U) = U mod 21024,

Reasonably fast generation of p, g

with f(pq) = f(U1), given f(U1):
Choose 1024-bit ». Compute

g = 21024 4+ (P_lf(Ul) mod 21024)_

If not both primes, try again.
If pg > 22948 try again.

Conjecturally ~ 217 tries
on average.

Analogous method works for
F(U) = (U219

Method reinvented several times.

Published 1991 Guillou Quisquater,
in context of reducing entropy:
“Some forms of the modulus

. need less storage. ...
all of the bits of the y
most significant bytes are
valued to zero.”

n bottom half

nod 21024

neration of p, g
1), given f(Uq):

. Compute

(Uy) mod 21024)

, try again.
again.

' tries

Analogous method works for
F(U) = (U219

Method reinvented several times.

Published 1991 Guillou Quisquater,
in context of reducing entropy:
“Some forms of the modulus

. need less storage. ...
all of the bits of the y
most significant bytes are
valued to zero.”

Patent application

by Vanstone and .
“A method of enc

selecting said publ

having a plurality

at least one set be

predetermined pat

and app
to encry

Includes

ying said

bt the me

some gen

ranging from sensi

Granted

2000: US

Analogous method works for
F(U) = (U219

Method reinvented several times.

Published 1991 Guillou Quisquater,

in context of reducing entropy:
“Some forms of the modulus

. need less storage. ...
all of the bits of the vy
most significant bytes are
valued to zero.”

Patent application filed 1995

by Vanstone and Zuccherato:

“A method of encrypting data. ..
selecting said public key. ..
having a plurality of sets of bits,
at least one set being of a
predetermined pattern of bits. ..
and applying said public key

to encrypt the message.”

Includes some generation methods,
ranging from sensible to silly.

Granted 2000: US 6134325.

| works for

] several times.

lillou Quisquater,
CIng entropy:
e modulus

ge. ...

ey
/tes are

Patent application filed 1995
by Vanstone and Zuccherato:

“A method of encrypting data. ..

selecting said public key. ..

having a plurality of sets of bits,

at least one set being of a

predetermined pattern of bits. ..

and app
to encry

Includes some generation methods,

ying said public key

ot the message.”

ranging from sensible to silly.

Granted

2000: US 6134325.

More patents filed
responding to silly
“Select a number
factor g as ’n//P; C
the factor q is prir
g 1S prime, comput
n as the product «
determine that the
RSA modulus: anc
Is not prime, adjus
the check of whetl

prime.”

Granted 2002: US
US 6496929.

Patent application filed 1995
by Vanstone and Zuccherato:

“A method of encrypting data. ..

selecting said public key. ..

having a plurality of sets of bits,

at least one set being of a

predetermined pattern of bits. ..

and app
to encry

Includes

ying said public key

ot the message.”

some generation methods,

ranging from sensible to silly.

Granted

2000: US 6134325.

More patents filed by Lenstra,
responding to silly methods.

“Select a number p; ... obtain the
factor g as n'/p; check whether
the factor g is prime; if the factor

g 1s prime, compute the number

n as the product of p and g and
determine that the number n Is the
RSA modulus; and if the factor g

Is not prime, adjust g and repeat
the check of whether the factor g is

prime.”

Granted 2002: US 6404890,
US 6496929.

filed 1995
“uccherato:
rypting data. . .
ic key. ..
of sets of bits,
ing of a
tern of bits. ..
public key
ssage.”

eration methods,

ble to silly.

1 6134325.

More patents filed by Lenstra,
responding to silly methods.
obtain the

factor g as n'/p; check whether

“Select a number p; ...

the factor g is prime; if the factor

g 1s prime, compute the number

n as the product of p and g and
determine that the number n Is the
RSA modulus; and if the factor g

Is not prime, adjust g and repeat
the check of whether the factor g is

prime.”

Granted 2002: US 6404890,
US 6496929.

T
al

nese key-generat

OW Ccompression

2048 bits to 1024

Exactly how fast i

Can we make it ey

What if f(U) =U
What if f(U) = U
Do we still have f:

key-generation me

More patents filed by Lenstra,
responding to silly methods.

“Select a number p; ... obtain the
factor g as n'/p; check whether
the factor g is prime; if the factor

g 1s prime, compute the number

n as the product of p and g and
determine that the number n Is the
RSA modulus; and if the factor g

Is not prime, adjust g and repeat
the check of whether the factor g is

prime.”

Granted 2002: US 6404890,
US 6496929.

These key-generation methods

allow compression from
2048 bits to 1024 bits.

Exactly how fast is this?
Can we make it even faster?

What if f(U) = U mod 212807
What if f(U) = U mod 21307
Do we still have fast

key-generation methods?

by Lenstra,
methods.

»; ... obtain the
heck whether

ne; if the factor
e the number

f » and g and

> number n is the
| if the factor g

t g and repeat
ner the factor g is

6404390,

These key-generation methods

allow compression from
2048 bits to 1024 bits.

Exactly how fast is this?
Can we make it even faster?

What if f(U) = U mod 212807
What if f(U) = U mod 21307
Do we still have fast

key-generation methods?

Unbalanced prime:

Take f(U) =Um

Choose 768-bit p.
If not both primes
If pg > 22048 try

This allows compr
2048 bits to 768 &
with unbalanced p
(1998 Lenstra)

ECM more danger
Don't want p so s

These key-generation methods

allow compression from
2048 bits to 1024 bits.

Exactly how fast is this?
Can we make it even faster?

What if f(U) = U mod 212807
What if f(U) = U mod 21307
Do we still have fast

key-generation methods?

Unbalanced primes

Take f(U) = U mod 21280,

Choose 768-bit ». Compute
g = 21280 + (p—l]c(Ul) mod 21280).
If not both primes, try again.
If pg > 22048 try again.

This allows compression from
2048 bits to 768 bits,

with unbalanced 7, g.

(1998 Lenstra)

ECM more dangerous than NFS!
Don't want p so small.

lon methods
from
bits.

5 this?
en faster?

21280?
21536?

MOQ

MOC

1St
thods?

Unbalanced primes

Take f(U) = U mod 21280,

Choose 768-bit ». Compute

g = 21280 + (p—l]c(Ul) mod 21280).

If not both primes, try again.
If pg > 22048 try again.

This allows compression from
2048 bits to 768 bits,

with unbalanced 7, g.

(1998 Lenstra)

ECM more dangerous than NFS!
Don't want p so small.

Primes in lattices

Take f(U) =Um

Choose 683-bit pg

q0 = Py F(U1) mc
ldea: will take p =
and q = q¢ + 2°%3

Use lattice reducti
to try to find p1, g

with (f(U1) — pogq

p190 + q1po (Mo
Good chance of st

(2003 Coppersmit

Unbalanced primes Primes in lattices

Take f(U) = U mod 21280, Take f(U) = U mod 21300
Choose 768-bit p. Compute Choose 683-bit pg. Compute
q =22+ (p~1f(th) mod 212%0). g0 = py ™ F(Lh) mod 293,

If not both primes, try again. Idea: will take p = pg + 2983p4
If pg > 22048 try again. and ¢ = gg + 2°%3¢.

This allows compression from Use lattice reduction

2048 bits to 768 bits, to try to find pq, g ~ 234
with unbalanced p, g. with (f(U1) — poqo)/2°83 =
(1998 Lenstra) p190 + q1p0 (mod 2083).
ECM more dangerous than NFS! Good chance of success.
Don’'t want » so small. (2003 Coppersmith)

>
od 21280

Compute

(U1) mod 21289).
, try again.
again.

ession from
1ts,

D, q

ous than NFS!
mall.

Primes in lattices

Take f(U) = U mod 21300

Choose 683-bit pg. Compute
g0 = py ' f(U1) mod 2083,

ldea: will take » = pg + 7683

and q = qg + 2°%3¢;.

Use lattice reduction
to try to find pq, g ~ 234

with (f(U1) — pogo)/2°% =
p1go + q1po (mod 2°93),
Good chance of success.

(2003 Coppersmith)

P1

This allows compr
2048 bits to 682 L
with balanced p, g

Minor flaw: unifor
does not produce
uniform random ir
But confirm exper
that each pg has g
of producing at le:
This implies that ¢

of » has probabilit
not far above unif

Primes in lattices

Take f(U) = U mod 2130°

Choose 683-bit pg. Compute
g0 = py " f(U1) mod 2083,

Idea: will take p = pg + 2983p4
and ¢ = gg + 2°%3¢.

Use lattice reduction
to try to find pq, g ~ 234

with (f(U1) — pogo)/2°% =
p1go + q1po (mod 2°93),
Good chance of success.

(2003 Coppersmith)

This allows compression from
2048 bits to 682 bits,
with balanced p, gq.

Minor flaw: uniform random pg
does not produce exactly
uniform random integer .

But confirm experimentally
that each pg has good chance
of producing at least one ».
This implies that each choice

of » has probability
not far above uniform.

5d 21366_

. Compute
yd 2083

- po + 2%y
q1-

|CCESS.

)

This allows compression from
2048 bits to 682 bits,
with balanced p, gq.

Minor flaw: uniform random pg
does not produce exactly
uniform random integer .

But confirm experimentally
that each pg has good chance
of producing at least one ».
This implies that each choice

of » has probability
not far above uniform.

Some open questic

Find random p, g ¢
given pq mod 2120
use higher-dimens

Or p ~ 2708 g
Doesn't seem to It
lattice effectivenes

Find three balance

given half the bits

Do better with an

This allows compression from
2048 bits to 682 bits,
with balanced p, gq.

Minor flaw: uniform random pg
does not produce exactly
uniform random integer .

But confirm experimentally
that each pg has good chance
of producing at least one ».
This implies that each choice

of » has probability
not far above uniform.

Some open questions:

Find random p, g ~ 21024
given pg mod 212997 Maybe
use higher-dimensional lattices.

Or p ~s 2768 ¢~ 212807
Doesn't seem to improve
lattice effectiveness.

Find three balanced integers

given half the bits of product?

Do better with another f shape?

ession from
1ts,

m random pg
exactly

teger p.
imentally
rood chance
1St one p.
rach choice

Y
orm.

Some open questions:

Find random p, g ~ 21024

given pg mod 212997 Maybe
use higher-dimensional lattices.

Or p ~s 2768 ¢~ 212807
Doesn't seem to improve
lattice effectiveness.

Find three balanced integers

given half the bits of product?

Do better with another f shape?

Key-generation sp.

Start with many p
Use trial division €
Then try 2P~ mo
~ 20 exponentiatit
to find one prime.

Traditional key gel
chooses p, g indep
~ 2/ exponentiati
Faster, slightly no
build visible prime

If p determines gq:
~ 212 exponentiat

Some open questions: Key-generation speed

21024 Start with many p's.

Find random p, g ~
given pg mod 212997 Maybe Use trial division etc.
use higher-dimensional lattices. Then try 2P~ mod .

~ 20 exponentiations
Or D A~ 2768’ g~ 21280? P

, . to find one prime.
Doesn’'t seem to improve

lattice effectiveness. Traditional key generation
chooses p, g independently.

Find three balanced integers 7 o
~ 2' exponentiations.

given half the bits of product? | |
Faster, slightly non-uniform:

Do better with another f shape? build visible primes (Maurer).

If p determines q:
~ 212 exponentiations.

ONS:
L »1024

0?7 Maybe
onal lattices.
21280?

nprove
S.

d Integers
of product?

other f shape?

Key-generation speed

Start with many p's.

Use trial division etc.
Then try 2P~ mod .
~ 20 exponentiations
to find one prime.

Traditional key generation
chooses p, g independently:.
~ 2/ exponentiations.

Faster, slightly non-uniform:
build visible primes (Maurer).

If p determines q:
~ 212 exponentiations.

For

f(U) = U moc

Each » determines

pool of 210 possib

Select randomly fr

until finding a prir

~ 2/ exponentiati

For

f(U) = U moc

Obtain pool of pai

wit

n all different 1

dNda

all different ¢’

~ 212 exponentiat

Key-generation speed

Start with many p's.

Use trial division etc.
Then try 2P~ mod .
~ 20 exponentiations
to find one prime.

Traditional key generation
chooses p, g independently:.
~ 2/ exponentiations.

Faster, slightly non-uniform:
build visible primes (Maurer).

If p determines q:
~ 212 exponentiations.

For f(U) = U mod 21998;

Eac
POO

n p determines
of 210 possible ¢'s.

Select randomly from pool

until finding a prime.

~ 2/ exponentiations.

For f(U) = U mod 213°9;
Obtain pool of pairs (p, q)

wit

1 d

dNda

al

~ 212

| different p's

different ¢g’s.
exponentiations.

neration
endently.
ons.

1-uniform:

s (Maurer).

lons.

For f(U) = U mod 21998;

Eac
POO

n p determines
of 210 possible ¢'s.

Select randomly from pool

until finding a prime.

~ 2/ exponentiations.

For f(U) = U mod 213°9;
Obtain pool of pairs (p, q)

wit

1 d

dNda

al

~ 212

| different p's

different ¢g’s.
exponentiations.

Can use lattice str
to share trial divis
Or use batch factc
Still many exponel

Is there a better n

If not, might as w
take opposite appt
compress slightly
L attice reduction |
so can afford man:
before each expon

For f(U) = U mod 21998;
Each » determines

pool of 210 possible ¢'s.
Select randomly from pool
until finding a prime.

~ 2/ exponentiations.

For f(U) = U mod 213°9;
Obtain pool of pairs (p, q)
with all different p's

and all different ¢'s.
~ 212 exponentiations.

Can use lattice structure
to share trial divisions.

Or use batch factorization.
Still many exponentiations.

Is there a better method?

If not, might as well
take opposite approach:
compress slightly more.
Lattice reduction is fast,
so can afford many pg's
before each exponentiation.

y 21008:

e g's.
om pool
ne.
ons.

y 21350:

rs (p, q)

10NS.

Can use lattice structure
to share trial divisions.

Or use batch factorization.
Still many exponentiations.

Is there a better method?

If not, might as well

take opposite approach:
compress slightly more.
Lattice reduction is fast,

so can afford many pg's
before each exponentiation.

Protocol violation:

One user generate
Second user sees ;
and generates U>.

Security of Uy was

assuming uniform

What if first user «
and doesn't gener:
uniform random U

Recall half-special
can construct rare
allowing easier fac

Can use lattice structure
to share trial divisions.

Or use batch factorization.
Still many exponentiations.

Is there a better method?

If not, might as well

take opposite approach:
compress slightly more.
Lattice reduction is fast,

so can afford many pg's
before each exponentiation.

Protocol violations

One user generates Uj.
Second user sees f(U1)
and generates U>.

Security of Uy was proven
assuming uniform random Uj.

What if first user cheats,
and doesn't generate
uniform random U;?

Recall half-special NFS:
can construct rare f values
allowing easier factorization.

ucture
ons.
rization.
1tiations.

1ethod?

o]

oach:
nore.

s fast,

Y P0'S
entiation.

Protocol violations

One user generates Uj.
Second user sees f(U1)
and generates U>.

Security of Uy was proven
assuming uniform random Uj.

What if first user cheats,
and doesn't generate
uniform random U;?

Recall half-special NFS:
can construct rare f values
allowing easier factorization.

One solution is to
generate p1, g1, Uj
from digits of r:

10th, 20th, 30th,
Not random, but «
Variant: Ui witho

Another solution 1

generate p1, g1, Uy
from SHA-256 out

Another solution 1

generate p1, 91, Uq
from 1955 RAND

Protocol violations

One user generates Uj.
Second user sees f(U1)
and generates U>.

Security of Uy was proven

assuming uniform random Uj.

What if first user cheats,
and doesn't generate
uniform random U;?

Recall half-special NFS:
can construct rare f values
allowing easier factorization.

One solution is to

generate p1, q1, U1 publicly

from digits of r:

10th, 20th, 30th, etc.

Not random, but conjecturally safe.
Variant: U; without p1, 97.

Another solution Is to
generate p1, g1, U1 publicly
from SHA-256 output.

Another solution is to

generate p1, q1, U1 publicly
from 1955 RAND tables.

