Compressing RSA/Rabin keys
D. J. Bernstein

Thanks to:
University of Illinois at Chicago NSF CCR-9983950
Alfred P. Sloan Foundation
American Institute of Mathematics

Public keys

Each user publishes a key $U \in$ $\left\{2^{2047}, 2^{2047}+1, \ldots, 2^{2048}-1\right\}$.

User knows prime factors of U. Hopefully attacker doesn't.

RSA: also publish big exponent e; use primes allowing eth roots.
Rabin: always use exponent 2 ; use primes in $3+4 \mathbf{Z}$.
Williams: $3+8 \mathbf{Z}$ and $7+8 \mathbf{Z}$.
Many subsequent variants; e.g., "RSA" using exponent 3, and "RSA" using exponent 65537.

/Rabin keys

Public keys

Each user publishes a key $U \in$ $\left\{2^{2047}, 2^{2047}+1, \ldots, 2^{2048}-1\right\}$.

User knows prime factors of U. Hopefully attacker doesn't.

RSA: also publish big exponent e; use primes allowing eth roots.
Rabin: always use exponent 2 ;
use primes in $3+4 Z$.
Williams: $3+8 \mathbf{Z}$ and $7+8 \mathbf{Z}$.
Many subsequent variants;
e.g., "RSA" using exponent 3, and "RSA" using exponent 65537.

The compression

Can store U in 20
Can store U_{1}, U_{2}. randomly accessib

Can we use fewer
Knee-jerk answer: If you can't afford switch to 256-bit http://cr.yp.tc

But elliptic-curve have slow verificat Want a better ans

Public keys

Each user publishes a key $U \in$ $\left\{2^{2047}, 2^{2047}+1, \ldots, 2^{2048}-1\right\}$. User knows prime factors of U. Hopefully attacker doesn't.

RSA: also publish big exponent e; use primes allowing eth roots. Rabin: always use exponent 2 ; use primes in $3+4 \mathbf{Z}$.
Williams: $3+8 \mathbf{Z}$ and $7+8 \mathbf{Z}$.
Many subsequent variants; e.g., "RSA" using exponent 3, and "RSA" using exponent 65537.

The compression question

Can store U in 2048 bits.
Can store $U_{1}, U_{2}, \ldots, U_{n}$, randomly accessible, in $2048 n$ bits.

Can we use fewer bits?
Knee-jerk answer: "No!
If you can't afford $2048 n$ bits, switch to 256 -bit elliptic curves. http://cr.yp.to/ecdh.html"

But elliptic-curve signatures
have slow verification.
Want a better answer.

The compression question

s a key $U \in$
$\left.\ldots, 2^{2048}-1\right\}$.
factors of U. doesn't.
big exponent e;
g eth roots.
exponent 2;
$4 Z$.
and $7+8 \mathbf{Z}$.
variants;
exponent 3,
exponent 65537 .

Can store U in 2048 bits.
Can store $U_{1}, U_{2}, \ldots, U_{n}$,
randomly accessible, in $2048 n$ bits.
Can we use fewer bits?
Knee-jerk answer: "No!
If you can't afford 2048n bits, switch to 256-bit elliptic curves. http://cr.yp.to/ecdh.html"

But elliptic-curve signatures
have slow verification.
Want a better answer.

Recognizing lower

$U \in\left\{2^{2047}, \ldots, 2^{2}\right.$
so U has top bit 1 Don't store that b

With Rabin-Willia Don't store bottor

Better: Users nev divisible by $3,5,7$, so only 480 possib for $U \bmod 9240$. bottom 13 bits wi encoding of U mo

The compression question

Can store U in 2048 bits.
Can store $U_{1}, U_{2}, \ldots, U_{n}$, randomly accessible, in $2048 n$ bits.

Can we use fewer bits?
Knee-jerk answer: "No!
If you can't afford $2048 n$ bits, switch to 256-bit elliptic curves. http://cr.yp.to/ecdh.html"

But elliptic-curve signatures
have slow verification.
Want a better answer.

Recognizing lower entropy

$U \in\left\{2^{2047}, \ldots, 2^{2048}-1\right\}$
so U has top bit 1 .
Don't store that bit.
With Rabin-Williams: $U \in 5+8 \mathbf{Z}$.
Don't store bottom 3 bits.
Better: Users never generate U divisible by $3,5,7,11$, so only 480 possibilities for $U \bmod 9240$. Replace bottom 13 bits with 9-bit encoding of $U \bmod 9240$.

question

48 bits.
\ldots, U_{n},
e, in $2048 n$ bits. bits?
"No!
$2048 n$ bits,
elliptic curves.
s/ecdh.html"
signatures
ion.
wer.

Recognizing lower entropy

$U \in\left\{2^{2047}, \ldots, 2^{2048}-1\right\}$
so U has top bit 1 .
Don't store that bit.
With Rabin-Williams: $U \in 5+8 \mathbf{Z}$.
Don't store bottom 3 bits.
Better: Users never generate U divisible by $3,5,7,11$, so only 480 possibilities for $U \bmod 9240$. Replace bottom 13 bits with 9-bit encoding of $U \bmod 9240$.

Have reduced 204 Can we do much Knee-jerk answer: C'mon, you know switch to elliptic c
e.g. User generat independent unifo
$p \in\left\{2^{1023}, \ldots, 2^{1}\right.$
$q \in\left\{2^{1024}, \ldots, 2^{1}\right.$
$\approx 1 / 1025 \log 2 \mathrm{ch}$
$\approx 1 / 1026 \log 2 \mathrm{ch}$
$\approx 1 / 8$ chance of $\{$
$\approx 2 \log 2-1$ chan
so $>2^{2023}$ equally

Recognizing lower entropy

$U \in\left\{2^{2047}, \ldots, 2^{2048}-1\right\}$
so U has top bit 1 .
Don't store that bit.
With Rabin-Williams: $U \in 5+8 \mathbf{Z}$.
Don't store bottom 3 bits.
Better: Users never generate U divisible by $3,5,7,11$, so only 480 possibilities for $U \bmod 9240$. Replace bottom 13 bits with 9-bit encoding of $U \bmod 9240$.

Have reduced 2048 to 2043.
Can we do much better?
Knee-jerk answer: "No!
C'mon, you know you want to switch to elliptic curves."
e.g. User generates $U=p q$ from independent uniform random
$p \in\left\{2^{1023}, \ldots, 2^{1024}-1\right\}$,
$q \in\left\{2^{1024}, \ldots, 2^{1025}-1\right\}:$
$\approx 1 / 1025 \log 2$ chance of p prime,
$\approx 1 / 1026 \log 2$ chance of q prime,
$\approx 1 / 8$ chance of $\{3,7\}+8 \mathbf{Z}$,
$\approx 2 \log 2-1$ chance of $p q<2^{2048}$,
so $>2^{2023}$ equally likely U 's.

entropy

$048-1\}$
it.
ms: $U \in 5+8 \mathbf{Z}$.
n 3 bits.
er generate U
11,
ilities
Replace
th 9 -bit
d 9240 .

Have reduced 2048 to 2043.

Reducing entropy

Define $f(U)=50$ $g(U)=U$ with 50

Change key-gener to produce keys U Then can encode saving one bit; als top/bottom bits a

Brute-force key ge generate U by the if $f(U)=1$, try a Conjecturally this almost exactly 2 t confirmed by expe

Have reduced 2048 to 2043.
Can we do much better?
Knee-jerk answer: "No!
C'mon, you know you want to switch to elliptic curves."
e.g. User generates $U=p q$ from independent uniform random
$p \in\left\{2^{1023}, \ldots, 2^{1024}-1\right\}$,
$q \in\left\{2^{1024}, \ldots, 2^{1025}-1\right\}:$
$\approx 1 / 1025 \log 2$ chance of p prime,
$\approx 1 / 1026 \log 2$ chance of q prime,
$\approx 1 / 8$ chance of $\{3,7\}+8 \mathbf{Z}$,
$\approx 2 \log 2-1$ chance of $p q<2^{2048}$,
so $>2^{2023}$ equally likely U 's.

Reducing entropy

Define $f(U)=500$ th bit of U, $g(U)=U$ with 500th bit omitted.

Change key-generation procedure to produce keys U with $f(U)=0$.
Then can encode U as $g(U)$,
saving one bit; also save top/bottom bits as before.

Brute-force key generation: generate U by the old method; if $f(U)=1$, try again.
Conjecturally this takes almost exactly 2 tries on average; confirmed by experiment.

8 to 2043. etter?
"No!
you want to
urves."
s $U=p q$ from
m random
$024-1\}$,
$025-1\}$:
ance of p prime, ance of q prime,
$3,7\}+8 \mathbf{Z}$,
ce of $p q<2^{2048}$,
likely U's.

Reducing entropy

Define $f(U)=500$ th bit of U, $g(U)=U$ with 500th bit omitted.

Change key-generation procedure to produce keys U with $f(U)=0$.
Then can encode U as $g(U)$,
saving one bit; also save top/bottom bits as before.

Brute-force key generation: generate U by the old method;
if $f(U)=1$, try again.
Conjecturally this takes
almost exactly 2 tries on average; confirmed by experiment.

More generally, se $f:\{2048$-bit strin
$\rightarrow\{k$-bit strii
$g:\{2048$-bit strin $\rightarrow\{(2048-1$
with $f \times g$ invertil
Change key-gener to produce keys U Then can encode saving k bits.

Is $f \times g$ easy to cc and easy to invert for the functions v

Reducing entropy

Define $f(U)=500$ th bit of U, $g(U)=U$ with 500th bit omitted.

Change key-generation procedure to produce keys U with $f(U)=0$.
Then can encode U as $g(U)$,
saving one bit; also save top/bottom bits as before.

Brute-force key generation: generate U by the old method; if $f(U)=1$, try again. Conjecturally this takes almost exactly 2 tries on average; confirmed by experiment.

More generally, select functions $f:\{2048-$ bit strings $\}$
$\rightarrow\{k$-bit strings $\}$ and $g:\{2048-$ bit strings $\}$
$\rightarrow\{(2048-k)$-bit strings $\}$ with $f \times g$ invertible.

Change key-generation procedure to produce keys U with $f(U)=0$.
Then can encode U as $g(U)$, saving k bits.

Is $f \times g$ easy to compute and easy to invert? Yes for the functions we'll consider.

Dth bit of U, Oth bit omitted.
ation procedure with $f(U)=0$.
U as $g(U)$,
o save
s before.
neration:
old method;
jain.
takes
ries on average; riment.

More generally, select functions $f:\{2048$-bit strings $\}$
$\rightarrow\{k$-bit strings $\}$ and
$g:\{2048$-bit strings $\}$
$\rightarrow\{(2048-k)$-bit strings $\}$
with $f \times g$ invertible.
Change key-generation procedure to produce keys U with $f(U)=0$.
Then can encode U as $g(U)$, saving k bits.

Is $f \times g$ easy to compute and easy to invert? Yes for the functions we'll consider.

Do U's exist with Conjecturally chan for the functions v (Provable for f ch from "universal"

Brute force takes far too slow for la Can we do much Yes. Will come ba Are the resulting Not necessarily!

More generally, select functions $f:\{2048$-bit strings $\}$
$\rightarrow\{k$-bit strings $\}$ and $g:\{2048$-bit strings $\}$
$\rightarrow\{(2048-k)$-bit strings $\}$ with $f \times g$ invertible.

Change key-generation procedure to produce keys U with $f(U)=0$. Then can encode U as $g(U)$, saving k bits.

Is $f \times g$ easy to compute and easy to invert? Yes for the functions we'll consider.

Do U's exist with $f(U)=0$? Conjecturally chance $\approx 1 / 2^{k}$ for the functions we'll consider. (Provable for f chosen randomly from "universal" classes.)

Brute force takes $\approx 2^{k}$ tries; far too slow for large k.
Can we do much better?
Yes. Will come back to this.
Are the resulting keys secure?
Not necessarily!
ect functions
e)-bit strings\} ole.
ation procedure with $f(U)=0$.
U as $g(U)$,
ompute
Yes
ve'll consider.

Do U's exist with $f(U)=0$?
Conjecturally chance $\approx 1 / 2^{k}$ for the functions we'll consider.
(Provable for f chosen randomly from "universal" classes.)

Brute force takes $\approx 2^{k}$ tries; far too slow for large k.
Can we do much better?
Yes. Will come back to this.
Are the resulting keys secure?
Not necessarily!

The half-special n
1998 Lenstra: "N form $2^{1024} \pm t \ldots$. 1024-bit RSA sect t is not much sma Chance of an "unt NFS polynomial is

Not true. Reducin using $f(U)=$ half reduces conjecture

Skewed NFS polyr (1999 Murphy) tu unusually small fo

Do U's exist with $f(U)=0$? Conjecturally chance $\approx 1 / 2^{k}$ for the functions we'll consider.
(Provable for f chosen randomly from "universal" classes.)

Brute force takes $\approx 2^{k}$ tries; far too slow for large k.

Can we do much better?
Yes. Will come back to this.
Are the resulting keys secure? Not necessarily!

The half-special number-field sieve

1998 Lenstra: "Numbers of the form $2^{1024} \pm t \ldots$ offer regular 1024-bit RSA security, as long as t is not much smaller than 2^{500}." Chance of an "unusually small" NFS polynomial is "negligible."

Not true. Reducing entropy, using $f(U)=$ half the bits of U, reduces conjectured security level.

Skewed NFS polynomials (1999 Murphy) turn out to be unusually small for these numbers.

$$
f(U)=0 ?
$$

ce $\approx 1 / 2^{k}$
ve'll consider.
osen randomly
lasses.)
$\approx 2^{k}$ tries;
ge k.
etter?
ck to this.
keys secure?

The half-special number-field sieve

1998 Lenstra: "Numbers of the form $2^{1024} \pm t \ldots$ offer regular 1024-bit RSA security, as long as t is not much smaller than 2^{500}." Chance of an "unusually small" NFS polynomial is "negligible."

Not true. Reducing entropy, using $f(U)=$ half the bits of U, reduces conjectured security level.

Skewed NFS polynomials (1999 Murphy) turn out to be unusually small for these numbers.

Sharing entropy

Generate random from set S of all Define $S_{1}=S \cap f$

Generate random e.g., for $f=500 \mathrm{tr}$ generate random same 500th bit as Similarly generate

Compress U_{2} to g compress U_{3} to $g($ Overall (2048-k) to store U_{1}, U_{2}, \ldots

The half-special number-field sieve

1998 Lenstra: "Numbers of the form $2^{1024} \pm t \ldots$ offer regular 1024-bit RSA security, as long as t is not much smaller than 2^{500}." Chance of an "unusually small" NFS polynomial is "negligible."

Not true. Reducing entropy, using $f(U)=$ half the bits of U, reduces conjectured security level.

Skewed NFS polynomials (1999 Murphy) turn out to be unusually small for these numbers.

Sharing entropy

Generate random U_{1} from set S of all possible keys.
Define $S_{1}=S \cap f^{-1}\left(f\left(U_{1}\right)\right)$.
Generate random $U_{2} \in S_{1}$:
e.g., for $f=500$ th bit, generate random U_{2} having same 500th bit as U_{1}.
Similarly generate U_{3}, U_{4}, \ldots
Compress U_{2} to $g\left(U_{2}\right)$;
compress U_{3} to $g\left(U_{3}\right)$; etc.
Overall $(2048-k) n+k$ bits to store $U_{1}, U_{2}, \ldots, U_{n}$.

umber-field sieve

umbers of the offer regular rity, as long as ller than $2^{500 . " ~}$
isually small"
"negligible."
g entropy, the bits of U,
d security level.
nomials
rn out to be these numbers.

Sharing entropy

Generate random U_{1} from set S of all possible keys.
Define $S_{1}=S \cap f^{-1}\left(f\left(U_{1}\right)\right)$.
Generate random $U_{2} \in S_{1}$:
e.g., for $f=500$ th bit, generate random U_{2} having
same 500th bit as U_{1}.
Similarly generate U_{3}, U_{4}, \ldots
Compress U_{2} to $g\left(U_{2}\right)$;
compress U_{3} to $g\left(U_{3}\right)$; etc.
Overall $(2048-k) n+k$ bits
to store $U_{1}, U_{2}, \ldots, U_{n}$.

If distribution of U is uniform over S, and distribution of is uniform over S_{1} then distribution 0 is uniform over S.

So attacker's chan is provably identic attacker's chance Same comment w replaced by "forgi etc.

Sharing entropy is

Sharing entropy

Generate random U_{1} from set S of all possible keys.
Define $S_{1}=S \cap f^{-1}\left(f\left(U_{1}\right)\right)$.
Generate random $U_{2} \in S_{1}$:
e.g., for $f=500$ th bit, generate random U_{2} having same 500th bit as U_{1}.
Similarly generate U_{3}, U_{4}, \ldots.
Compress U_{2} to $g\left(U_{2}\right)$;
compress U_{3} to $g\left(U_{3}\right)$; etc.
Overall $(2048-k) n+k$ bits
to store $U_{1}, U_{2}, \ldots, U_{n}$.

If distribution of U_{1}
is uniform over S, and distribution of U_{2} given U_{1} is uniform over S_{1}, then distribution of U_{2} is uniform over S.

So attacker's chance of factoring U_{2} is provably identical to attacker's chance of factoring U_{1}. Same comment with "factoring" replaced by "forging signatures" etc.

Sharing entropy is provably secure.

If distribution of U_{1}

is uniform over S,
and distribution of U_{2} given U_{1}
is uniform over S_{1},
then distribution of U_{2}
is uniform over S.
So attacker's chance of factoring U_{2} is provably identical to attacker's chance of factoring U_{1}. Same comment with "factoring" replaced by "forging signatures" etc.

Sharing entropy is provably secure.

Time to factor U_{1} can be less than d the time for a sing (e.g., Schnorr, Era

Analogy: brute-for versus a secret-key finds n target key as finding one tare

Problem arises wit shared entropy.
(e.g., Coppersmith

For safety, choose so that (conjectur can't even do one

If distribution of U_{1}
is uniform over S, and distribution of U_{2} given U_{1} is uniform over S_{1}, then distribution of U_{2}
is uniform over S.
So attacker's chance of factoring U_{2} is provably identical to
attacker's chance of factoring U_{1}.
Same comment with "factoring" replaced by "forging signatures" etc.

Sharing entropy is provably secure.

Time to factor U_{1} and U_{2} can be less than double the time for a single factorization. (e.g., Schnorr, Eratosthenes)

Analogy: brute-force search versus a secret-key cipher finds n target keys in same time as finding one target key.

Problem arises with or without shared entropy.
(e.g., Coppersmith, Bernstein)

For safety, choose key sizes
so that (conjecturally) attacker
can't even do one factorization.

U_{2} given U_{1}

f U_{2}
ce of factoring U_{2}
al to
of factoring U_{1}.
th "factoring"
ig signatures"

Time to factor U_{1} and U_{2} can be less than double the time for a single factorization. (e.g., Schnorr, Eratosthenes)

Analogy: brute-force search versus a secret-key cipher finds n target keys in same time as finding one target key.

Problem arises with or without shared entropy.
(e.g., Coppersmith, Bernstein)

For safety, choose key sizes so that (conjecturally) attacker can't even do one factorization.

Perhaps time to f is below time to f

Analogy: brute-for finds some target
after $\approx 1 / n$ of the finds some target
after $\approx 1 / n$ of the As before, problen
with or without sh As before, problen
with or without sh For safety, multipl
factorization succe For safety, multipl
factorization succe (e.g. ECM success
by n before choos (e.g. ECM success
by n before choos

Time to factor U_{1} and U_{2} can be less than double the time for a single factorization.
(e.g., Schnorr, Eratosthenes)

Analogy: brute-force search
versus a secret-key cipher finds n target keys in same time as finding one target key.

Problem arises with or without shared entropy.
(e.g., Coppersmith, Bernstein)

For safety, choose key sizes so that (conjecturally) attacker can't even do one factorization.

Perhaps time to factor U_{1} or U_{2} is below time to factor U_{1}.

Analogy: brute-force search finds some target key out of n after $\approx 1 / n$ of the computation.

As before, problem arises with or without shared entropy.

For safety, multiply conjectured factorization success chance (e.g. ECM success chance)
by n before choosing key sizes.
and U_{2}
ouble
le factorization.
tosthenes)
ce search
cipher
s in same time set key.
h or without

Bernstein)
key sizes
ally) attacker factorization.

Perhaps time to factor U_{1} or U_{2} is below time to factor U_{1}.

Analogy: brute-force search finds some target key out of n after $\approx 1 / n$ of the computation.

As before, problem arises with or without shared entropy.

For safety, multiply conjectured factorization success chance (e.g. ECM success chance)
by n before choosing key sizes.

Is this overkill?
Are there algorithr U_{1} or U_{2} or \ldots or more quickly than For discrete logs, by randomized sel

For factorization, without an extra r Factorization liter explicitly address Maybe we're overs by considering just

Perhaps time to factor U_{1} or U_{2} is below time to factor U_{1}.

Analogy: brute-force search finds some target key out of n after $\approx 1 / n$ of the computation.

As before, problem arises with or without shared entropy.

For safety, multiply conjectured factorization success chance (e.g. ECM success chance)
by n before choosing key sizes.

Is this overkill?
Are there algorithms to factor U_{1} or U_{2} or \ldots or U_{n} more quickly than factoring U_{1} ?

For discrete logs, prove "no" by randomized self-reduction.

For factorization, no hope of proof without an extra n.
Factorization literature needs to explicitly address multiple inputs. Maybe we're oversimplifying by considering just one input.
actor U_{1} or U_{2} ator U_{1}.
ce search
key out of n
computation.
arises
ared entropy.
y conjectured
ss chance chance)
ing key sizes.

Is this overkill?
Are there algorithms to factor U_{1} or U_{2} or \ldots or U_{n} more quickly than factoring U_{1} ?

For discrete logs, prove "no" by randomized self-reduction.

For factorization, no hope of proof without an extra n.
Factorization literature needs to explicitly address multiple inputs. Maybe we're oversimplifying by considering just one input.

Generating U give

Define $f(U)=U$
Reasonably fast g with $f(p q)=f(U$
Choose 1024-bit p $q=2^{1024}+\left(p^{-1} f\right.$ If not both primes If $p q>2^{2048}$, try

Conjecturally $\approx 2^{1}$ on average.

Are there algorithms to factor U_{1} or U_{2} or \ldots or U_{n} more quickly than factoring U_{1} ?

For discrete logs, prove "no" by randomized self-reduction.

For factorization, no hope of proof without an extra n.
Factorization literature needs to explicitly address multiple inputs. Maybe we're oversimplifying by considering just one input.

Generating U given bottom half

Define $f(U)=U \bmod 2^{1024}$.
Reasonably fast generation of p, q with $f(p q)=f\left(U_{1}\right)$, given $f\left(U_{1}\right)$:
Choose 1024-bit p. Compute $q=2^{1024}+\left(p^{-1} f\left(U_{1}\right) \bmod 2^{1024}\right)$.
If not both primes, try again.
If $p q>2^{2048}$, try again.
Conjecturally $\approx 2^{17}$ tries on average.

Generating U given bottom half

ns to factor
U_{n}
factoring U_{1} ?
orove "no"
-reduction.
no hope of proof
ature needs to
nultiple inputs.
implifying one input.

Define $f(U)=U \bmod 2^{1024}$.
Reasonably fast generation of p, q
with $f(p q)=f\left(U_{1}\right)$, given $f\left(U_{1}\right)$:
Choose 1024-bit p. Compute $q=2^{1024}+\left(p^{-1} f\left(U_{1}\right) \bmod 2^{1024}\right)$. If not both primes, try again.
If $p q>2^{2048}$, try again.
Conjecturally $\approx 2^{17}$ tries on average.

Analogous methoc $f(U)=\left\lfloor U / 2^{1024}\right\rfloor$

Method reinventec
Published 1991 Gı in context of redu "Some forms of th ... need less stora all of the bits of tl most significant by valued to zero."

Generating U given bottom half

Define $f(U)=U \bmod 2^{1024}$.
Reasonably fast generation of p, q with $f(p q)=f\left(U_{1}\right)$, given $f\left(U_{1}\right)$: Choose 1024-bit p. Compute $q=2^{1024}+\left(p^{-1} f\left(U_{1}\right) \bmod 2^{1024}\right)$. If not both primes, try again. If $p q>2^{2048}$, try again.

Conjecturally $\approx 2^{17}$ tries on average.

Analogous method works for $f(U)=\left\lfloor U / 2^{1024}\right\rfloor$.

Method reinvented several times.
Published 1991 Guillou Quisquater, in context of reducing entropy:
"Some forms of the modulus
... need less storage. ...
all of the bits of the y
most significant bytes are valued to zero."
$\operatorname{nod} 2^{1024}$.
eneration of p, q
), given $f\left(U_{1}\right)$:
Compute $\left.\left(U_{1}\right) \bmod 2^{1024}\right)$. try again.
again.
.7 tries

Analogous method works for $f(U)=\left\lfloor U / 2^{1024}\right\rfloor$.

Method reinvented several times.
Published 1991 Guillou Quisquater, in context of reducing entropy:
"Some forms of the modulus
... need less storage. ...
all of the bits of the y most significant bytes are valued to zero."

Patent application by Vanstone and
"A method of enc selecting said publ having a plurality at least one set be predetermined pat and applying said to encrypt the me

Includes some gen ranging from sensi

Granted 2000: US

Analogous method works for $f(U)=\left\lfloor U / 2^{1024}\right\rfloor$.

Method reinvented several times.
Published 1991 Guillou Quisquater, in context of reducing entropy:
"Some forms of the modulus
... need less storage. ...
all of the bits of the y
most significant bytes are
valued to zero."

Patent application filed 1995 by Vanstone and Zuccherato: "A method of encrypting data. . . selecting said public key... having a plurality of sets of bits, at least one set being of a predetermined pattern of bits... and applying said public key to encrypt the message."

Includes some generation methods, ranging from sensible to silly.

Granted 2000: US 6134325.

works for

several times.
iillou Quisquater, cing entropy:
e modulus
ge. ..
1e y
tes are

Patent application filed 1995 by Vanstone and Zuccherato:
"A method of encrypting data. . . selecting said public key... having a plurality of sets of bits, at least one set being of a predetermined pattern of bits... and applying said public key to encrypt the message."

Includes some generation methods, ranging from sensible to silly.

Granted 2000: US 6134325.

More patents filed responding to silly "Select a number factor q as n^{\prime} / p; the factor q is prin q is prime, compu n as the product determine that the RSA modulus; anc is not prime, adjus the check of whet prime."

Granted 2002: US US 6496929.

Patent application filed 1995 by Vanstone and Zuccherato: "A method of encrypting data. . . selecting said public key... having a plurality of sets of bits, at least one set being of a predetermined pattern of bits... and applying said public key to encrypt the message."

Includes some generation methods, ranging from sensible to silly.

Granted 2000: US 6134325.

More patents filed by Lenstra, responding to silly methods.
"Select a number $p ; \ldots$ obtain the factor q as n^{\prime} / p; check whether the factor q is prime; if the factor q is prime, compute the number n as the product of p and q and determine that the number n is the RSA modulus; and if the factor q is not prime, adjust q and repeat the check of whether the factor q is prime."

Granted 2002: US 6404890, US 6496929.
filed 1995

Zuccherato:

rypting data. . .
ic key...
of sets of bits, ing of a
tern of bits. . .
public key
ssage."
eration methods,
ble to silly.
6134325.

More patents filed by Lenstra, responding to silly methods. "Select a number $p ; \ldots$ obtain the factor q as n^{\prime} / p; check whether the factor q is prime; if the factor q is prime, compute the number n as the product of p and q and determine that the number n is the RSA modulus; and if the factor q is not prime, adjust q and repeat the check of whether the factor q is prime."

Granted 2002: US 6404890, US 6496929.

These key-generat allow compression 2048 bits to 1024

Exactly how fast Can we make it ev

What if $f(U)=U$ What if $f(U)=U$ Do we still have f_{a} key-generation me

More patents filed by Lenstra, responding to silly methods.
"Select a number $p ; \ldots$ obtain the factor q as n^{\prime} / p; check whether the factor q is prime; if the factor q is prime, compute the number n as the product of p and q and determine that the number n is the RSA modulus; and if the factor q is not prime, adjust q and repeat the check of whether the factor q is prime."

Granted 2002: US 6404890, US 6496929.

These key-generation methods allow compression from 2048 bits to 1024 bits.

Exactly how fast is this?
Can we make it even faster?
What if $f(U)=U \bmod 2^{1280}$?
What if $f(U)=U \bmod 2^{1536}$?
Do we still have fast key-generation methods?
by Lenstra, methods.
$p ; \ldots$ obtain the heck whether ne; if the factor te the number of p and q and number n is the if the factor q t q and repeat ner the factor q is

6404890,

These key-generation methods allow compression from 2048 bits to 1024 bits.

Exactly how fast is this?
Can we make it even faster?
What if $f(U)=U \bmod 2^{1280}$?
What if $f(U)=U \bmod 2^{1536}$?
Do we still have fast
key-generation methods?

Unbalanced prime

Take $f(U)=U \mathrm{~m}$
Choose 768-bit p. $q=2^{1280}+\left(p^{-1} f\right.$ If not both primes If $p q>2^{2048}$, try

This allows compr 2048 bits to 768 b with unbalanced p (1998 Lenstra)

ECM more danger Don't want p so s

These key-generation methods allow compression from 2048 bits to 1024 bits.

Exactly how fast is this?
Can we make it even faster?
What if $f(U)=U \bmod 2^{1280}$?
What if $f(U)=U \bmod 2^{1536}$?
Do we still have fast
key-generation methods?

Unbalanced primes

Take $f(U)=U \bmod 2^{1280}$.
Choose 768-bit p. Compute $q=2^{1280}+\left(p^{-1} f\left(U_{1}\right) \bmod 2^{1280}\right)$.
If not both primes, try again.
If $p q>2^{2048}$, try again.
This allows compression from 2048 bits to 768 bits, with unbalanced p, q.
(1998 Lenstra)
ECM more dangerous than NFS!
Don't want p so small.
ion methods from bits.
this?
en faster?
$\bmod 2^{1280} ?$
$\bmod 2^{1536}$?
st
thods?

Unbalanced primes

Take $f(U)=U \bmod 2^{1280}$.
Choose 768-bit p. Compute $q=2^{1280}+\left(p^{-1} f\left(U_{1}\right) \bmod 2^{1280}\right)$.
If not both primes, try again.
If $p q>2^{2048}$, try again.
This allows compression from 2048 bits to 768 bits, with unbalanced p, q. (1998 Lenstra)

ECM more dangerous than NFS!
Don't want p so small.

Primes in lattices
Take $f(U)=U \mathrm{~m}$
Choose 683-bit p_{0} $q_{0}=p_{0}^{-1} f\left(U_{1}\right) \mathrm{mc}$ Idea: will take $p=$ and $q=q_{0}+2^{683}$

Use lattice reducti to try to find p_{1}, q with $\left(f\left(U_{1}\right)-p_{0} q\right.$
$p_{1} q_{0}+q_{1} p_{0} \quad$ (mo Good chance of st
(2003 Coppersmit

Unbalanced primes

Take $f(U)=U \bmod 2^{1280}$.
Choose 768-bit p. Compute $q=2^{1280}+\left(p^{-1} f\left(U_{1}\right) \bmod 2^{1280}\right)$. If not both primes, try again. If $p q>2^{2048}$, try again.

This allows compression from 2048 bits to 768 bits, with unbalanced p, q.
(1998 Lenstra)
ECM more dangerous than NFS! Don't want p so small.

Primes in lattices

Take $f(U)=U \bmod 2^{1366}$.
Choose 683-bit p_{0}. Compute $q_{0}=p_{0}^{-1} f\left(U_{1}\right) \bmod 2^{683}$. Idea: will take $p=p_{0}+2^{683} p_{1}$ and $q=q_{0}+2^{683} q_{1}$.

Use lattice reduction to try to find $p_{1}, q_{1} \approx 2^{341}$ with $\left(f\left(U_{1}\right)-p_{0} q_{0}\right) / 2^{683} \equiv$ $p_{1} q_{0}+q_{1} p_{0} \quad\left(\bmod 2^{683}\right)$.
Good chance of success.
(2003 Coppersmith)

Primes in lattices

od 2^{1280}.
Compute $\left.\left(U_{1}\right) \bmod 2^{1280}\right)$. try again.
again.
ession from its,
q

ous than NFS!

mall.

Take $f(U)=U \bmod 2^{1366}$.
Choose 683-bit p_{0}. Compute $q_{0}=p_{0}^{-1} f\left(U_{1}\right) \bmod 2^{683}$.
Idea: will take $p=p_{0}+2^{683} p_{1}$
and $q=q_{0}+2^{683} q_{1}$.
Use lattice reduction
to try to find $p_{1}, q_{1} \approx 2^{341}$
with $\left(f\left(U_{1}\right)-p_{0} q_{0}\right) / 2^{683} \equiv$
$p_{1} q_{0}+q_{1} p_{0} \quad\left(\bmod 2^{683}\right)$.
Good chance of success.
(2003 Coppersmith)

This allows compr 2048 bits to 682 with balanced p, q

Minor flaw: unifor does not produce uniform random in But confirm exper that each p_{0} has of producing at lea This implies that of p has probabilit not far above unif

Take $f(U)=U \bmod 2^{1366}$.
Choose 683-bit p_{0}. Compute $q_{0}=p_{0}^{-1} f\left(U_{1}\right) \bmod 2^{683}$. Idea: will take $p=p_{0}+2^{683} p_{1}$
and $q=q_{0}+2^{683} q_{1}$.
Use lattice reduction to try to find $p_{1}, q_{1} \approx 2^{341}$
with $\left(f\left(U_{1}\right)-p_{0} q_{0}\right) / 2^{683} \equiv$ $p_{1} q_{0}+q_{1} p_{0} \quad\left(\bmod 2^{683}\right)$.
Good chance of success.
(2003 Coppersmith)

This allows compression from 2048 bits to 682 bits, with balanced p, q.

Minor flaw: uniform random p_{0} does not produce exactly uniform random integer p. But confirm experimentally that each p_{0} has good chance of producing at least one p. This implies that each choice of p has probability not far above uniform.

Compute d 2^{683}.

$1 \approx 2^{341}$
0) $/ 2^{683} \equiv$
d 2^{683}).
ICcess.

This allows compression from 2048 bits to 682 bits, with balanced p, q.

Minor flaw: uniform random p_{0} does not produce exactly uniform random integer p.
But confirm experimentally that each p_{0} has good chance of producing at least one p.
This implies that each choice of p has probability not far above uniform.

Some open questic
Find random p, q given $p q \bmod 2^{150}$ use higher-dimens

Or $p \approx 2^{768}, q \approx$ Doesn't seem to ir lattice effectivenes

Find three balance given half the bits

Do better with an

This allows compression from 2048 bits to 682 bits, with balanced p, q.

Minor flaw: uniform random p_{0} does not produce exactly uniform random integer p. But confirm experimentally that each p_{0} has good chance of producing at least one p. This implies that each choice of p has probability not far above uniform.

Some open questions:

Find random $p, q \approx 2^{1024}$ given $p q \bmod 2^{1500}$? Maybe use higher-dimensional lattices.
$\operatorname{Or} p \approx 2^{768}, q \approx 2^{1280}$?
Doesn't seem to improve lattice effectiveness.

Find three balanced integers given half the bits of product?

Do better with another f shape?
ession from
Some open questions:
Key-generation sp
Find random $p, q \approx 2^{1024}$ given $p q \bmod 2^{1500}$? Maybe use higher-dimensional lattices.
$\operatorname{Or} p \approx 2^{768}, q \approx 2^{1280}$?
Doesn't seem to improve lattice effectiveness.

Find three balanced integers given half the bits of product?

Do better with another f shape?

Start with many Use trial division ϵ Then try $2^{p-1} \mathrm{mo}$ $\approx 2^{6}$ exponentiati to find one prime.

Traditional key ge chooses p, q indep $\approx 2^{7}$ exponentiati Faster, slightly no build visible prime

If p determines q :
$\approx 2^{12}$ exponentiat

Some open questions:

Find random $p, q \approx 2^{1024}$ given $p q \bmod 2^{1500}$? Maybe use higher-dimensional lattices.
$\operatorname{Or} p \approx 2^{768}, q \approx 2^{1280}$?
Doesn't seem to improve lattice effectiveness.

Find three balanced integers given half the bits of product?

Do better with another f shape?

Key-generation speed

Start with many p 's. Use trial division etc. Then try $2^{p-1} \bmod p$.
$\approx 2^{6}$ exponentiations
to find one prime.
Traditional key generation chooses p, q independently.
$\approx 2^{7}$ exponentiations.
Faster, slightly non-uniform:
build visible primes (Maurer).
If p determines q :
$\approx 2^{12}$ exponentiations.

ons:

$\approx 2^{1024}$
0 ? Maybe onal lattices.
$2^{1280} ?$
nprove
s.
ed integers of product?
other f shape?

Key-generation speed

Start with many p 's.
Use trial division etc.
Then try $2^{p-1} \bmod p$.
$\approx 2^{6}$ exponentiations
to find one prime.
Traditional key generation chooses p, q independently.
$\approx 2^{7}$ exponentiations.
Faster, slightly non-uniform: build visible primes (Maurer).

If p determines q :
$\approx 2^{12}$ exponentiations.

For $f(U)=U$ moc
Each p determines pool of 2^{16} possib Select randomly fr until finding a prir
$\approx 2^{7}$ exponentiati
For $f(U)=U \mathrm{moc}$ Obtain pool of pai with all different x and all different q $\approx 2^{12}$ exponentiat

Key-generation speed

Start with many p 's.
Use trial division etc.
Then try $2^{p-1} \bmod p$.
$\approx 2^{6}$ exponentiations
to find one prime.
Traditional key generation chooses p, q independently.
$\approx 2^{7}$ exponentiations.
Faster, slightly non-uniform:
build visible primes (Maurer).
If p determines q :
$\approx 2^{12}$ exponentiations.

For $f(U)=U \bmod 2^{1008}$:
Each p determines pool of 2^{16} possible q 's.
Select randomly from pool until finding a prime.
$\approx 2^{7}$ exponentiations.
For $f(U)=U \bmod 2^{1350}$:
Obtain pool of pairs (p, q)
with all different p 's
and all different q 's.
$\approx 2^{12}$ exponentiations.

For $f(U)=U \bmod 2^{1008}$
Each p determines pool of 2^{16} possible q 's.
Select randomly from pool
until finding a prime.
$\approx 2^{7}$ exponentiations.
For $f(U)=U \bmod 2^{1350}$:
Obtain pool of pairs (p, q)
with all different p 's
and all different q 's.
$\approx 2^{12}$ exponentiations.

Can use lattice str to share trial divis Or use batch factc Still many expone Is there a better m If not, might as w take opposite appr compress slightly Lattice reduction so can afford man before each expon

For $f(U)=U \bmod 2^{1008}$:
Each p determines pool of 2^{16} possible q 's.
Select randomly from pool until finding a prime.
$\approx 2^{7}$ exponentiations.
For $f(U)=U \bmod 2^{1350}$:
Obtain pool of pairs (p, q)
with all different p 's
and all different q 's.
$\approx 2^{12}$ exponentiations.

Can use lattice structure to share trial divisions.
Or use batch factorization.
Still many exponentiations.
Is there a better method?
If not, might as well
take opposite approach:
compress slightly more.
Lattice reduction is fast,
so can afford many p_{0} 's
before each exponentiation.
22^{1008} le q 's. om pool ne. ons.
2^{1350}
rs (p, q)
ions.

Can use lattice structure to share trial divisions.
Or use batch factorization.
Still many exponentiations.
Is there a better method?
If not, might as well
take opposite approach:
compress slightly more.
Lattice reduction is fast, so can afford many p_{0} 's before each exponentiation.

Protocol violations
One user generate Second user sees and generates U_{2}.

Security of U_{2} was assuming uniform

What if first user and doesn't gener uniform random U

Recall half-special
can construct rare allowing easier fac

Can use lattice structure to share trial divisions.
Or use batch factorization.
Still many exponentiations.
Is there a better method?
If not, might as well
take opposite approach:
compress slightly more.
Lattice reduction is fast,
so can afford many p_{0} 's
before each exponentiation.

Protocol violations

One user generates U_{1}. Second user sees $f\left(U_{1}\right)$ and generates U_{2}.

Security of U_{2} was proven assuming uniform random U_{1}.

What if first user cheats, and doesn't generate uniform random U_{1} ?

Recall half-special NFS:
can construct rare f values allowing easier factorization.

ucture

 ons. rization.tiations.
nethod?
ell
oach:
nore.
s fast,
y p_{0} 's
entiation.

Protocol violations

One user generates U_{1}.
Second user sees $f\left(U_{1}\right)$
and generates U_{2}.
Security of U_{2} was proven assuming uniform random U_{1}.

What if first user cheats, and doesn't generate uniform random U_{1} ?

Recall half-special NFS:
can construct rare f values
allowing easier factorization.

One solution is to generate p_{1}, q_{1}, U_{1} from digits of π : 10th, 20th, 30th, Not random, but Variant: U_{1} witho Another solution i generate p_{1}, q_{1}, U_{1} from SHA-256 out

Another solution i generate p_{1}, q_{1}, U_{1} from 1955 RAND

Protocol violations

One user generates U_{1}.
Second user sees $f\left(U_{1}\right)$
and generates U_{2}.
Security of U_{2} was proven assuming uniform random U_{1}.

What if first user cheats, and doesn't generate uniform random U_{1} ?

Recall half-special NFS:
can construct rare f values
allowing easier factorization.

One solution is to generate p_{1}, q_{1}, U_{1} publicly from digits of π :
10th, 20th, 30th, etc.
Not random, but conjecturally safe.
Variant: U_{1} without p_{1}, q_{1}.
Another solution is to
generate p_{1}, q_{1}, U_{1} publicly from SHA-256 output.

Another solution is to
generate p_{1}, q_{1}, U_{1} publicly from 1955 RAND tables.

