
Compressing RSA/Rabin keys

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF CCR–9983950

Alfred P. Sloan Foundation

American Institute of Mathematics

Public keys

Each user publishes a key

22047 � 22047 + 1 � � � � � 22048 � 1 .

User knows prime factors of .

Hopefully attacker doesn’t.

RSA: also publish big exponent � ;

use primes allowing � th roots.

Rabin: always use exponent 2;

use primes in 3 + 4Z.

Williams: 3 + 8Z and 7 + 8Z.

Many subsequent variants;

e.g., “RSA” using exponent 3,

and “RSA” using exponent 65537.

Compressing RSA/Rabin keys

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF CCR–9983950

Alfred P. Sloan Foundation

American Institute of Mathematics

Public keys

Each user publishes a key

22047 � 22047 + 1 � � � � � 22048 � 1 .

User knows prime factors of .

Hopefully attacker doesn’t.

RSA: also publish big exponent � ;

use primes allowing � th roots.

Rabin: always use exponent 2;

use primes in 3 + 4Z.

Williams: 3 + 8Z and 7 + 8Z.

Many subsequent variants;

e.g., “RSA” using exponent 3,

and “RSA” using exponent 65537.

The compression question

Can store in 2048 bits.

Can store 1 � 2 � � � � � � ,

randomly accessible, in 2048 � bits.

Can we use fewer bits?

Knee-jerk answer: “No!

If you can’t afford 2048 � bits,

switch to 256-bit elliptic curves.

http://cr.yp.to/ecdh.html”

But elliptic-curve signatures

have slow verification.

Want a better answer.

Public keys

Each user publishes a key

22047 � 22047 + 1 � � � � � 22048 � 1 .

User knows prime factors of .

Hopefully attacker doesn’t.

RSA: also publish big exponent � ;

use primes allowing � th roots.

Rabin: always use exponent 2;

use primes in 3 + 4Z.

Williams: 3 + 8Z and 7 + 8Z.

Many subsequent variants;

e.g., “RSA” using exponent 3,

and “RSA” using exponent 65537.

The compression question

Can store in 2048 bits.

Can store 1 � 2 � � � � � � ,

randomly accessible, in 2048 � bits.

Can we use fewer bits?

Knee-jerk answer: “No!

If you can’t afford 2048 � bits,

switch to 256-bit elliptic curves.

http://cr.yp.to/ecdh.html”

But elliptic-curve signatures

have slow verification.

Want a better answer.

Public keys

Each user publishes a key

22047 � 22047 + 1 � � � � � 22048 � 1 .

User knows prime factors of .

Hopefully attacker doesn’t.

RSA: also publish big exponent � ;

use primes allowing � th roots.

Rabin: always use exponent 2;

use primes in 3 + 4Z.

Williams: 3 + 8Z and 7 + 8Z.

Many subsequent variants;

e.g., “RSA” using exponent 3,

and “RSA” using exponent 65537.

The compression question

Can store in 2048 bits.

Can store 1 � 2 � � � � � � ,

randomly accessible, in 2048 � bits.

Can we use fewer bits?

Knee-jerk answer: “No!

If you can’t afford 2048 � bits,

switch to 256-bit elliptic curves.

http://cr.yp.to/ecdh.html”

But elliptic-curve signatures

have slow verification.

Want a better answer.

Recognizing lower entropy

22047 � � � � � 22048 � 1

so has top bit 1.

Don’t store that bit.

With Rabin-Williams: 5 + 8Z.

Don’t store bottom 3 bits.

Better: Users never generate

divisible by 3 � 5 � 7 � 11,

so only 480 possibilities

for mod 9240. Replace

bottom 13 bits with 9-bit

encoding of mod 9240.

The compression question

Can store in 2048 bits.

Can store 1 � 2 � � � � � � ,

randomly accessible, in 2048 � bits.

Can we use fewer bits?

Knee-jerk answer: “No!

If you can’t afford 2048 � bits,

switch to 256-bit elliptic curves.

http://cr.yp.to/ecdh.html”

But elliptic-curve signatures

have slow verification.

Want a better answer.

Recognizing lower entropy

22047 � � � � � 22048 � 1

so has top bit 1.

Don’t store that bit.

With Rabin-Williams: 5 + 8Z.

Don’t store bottom 3 bits.

Better: Users never generate

divisible by 3 � 5 � 7 � 11,

so only 480 possibilities

for mod 9240. Replace

bottom 13 bits with 9-bit

encoding of mod 9240.

The compression question

Can store in 2048 bits.

Can store 1 � 2 � � � � � � ,

randomly accessible, in 2048 � bits.

Can we use fewer bits?

Knee-jerk answer: “No!

If you can’t afford 2048 � bits,

switch to 256-bit elliptic curves.

http://cr.yp.to/ecdh.html”

But elliptic-curve signatures

have slow verification.

Want a better answer.

Recognizing lower entropy

22047 � � � � � 22048 � 1

so has top bit 1.

Don’t store that bit.

With Rabin-Williams: 5 + 8Z.

Don’t store bottom 3 bits.

Better: Users never generate

divisible by 3 � 5 � 7 � 11,

so only 480 possibilities

for mod 9240. Replace

bottom 13 bits with 9-bit

encoding of mod 9240.

Have reduced 2048 to 2043.

Can we do much better?

Knee-jerk answer: “No!

C’mon, you know you want to

switch to elliptic curves.”

e.g. User generates = � from

independent uniform random

21023 � � � � � 21024 � 1 ,

� 21024 � � � � � 21025 � 1 :

1 1025 log 2 chance of prime,

1 1026 log 2 chance of � prime,

1 8 chance of 3 � 7 + 8Z,

2 log 2 � 1 chance of � 22048,

so 22023 equally likely ’s.

Recognizing lower entropy

22047 � � � � � 22048 � 1

so has top bit 1.

Don’t store that bit.

With Rabin-Williams: 5 + 8Z.

Don’t store bottom 3 bits.

Better: Users never generate

divisible by 3 � 5 � 7 � 11,

so only 480 possibilities

for mod 9240. Replace

bottom 13 bits with 9-bit

encoding of mod 9240.

Have reduced 2048 to 2043.

Can we do much better?

Knee-jerk answer: “No!

C’mon, you know you want to

switch to elliptic curves.”

e.g. User generates = � from

independent uniform random

21023 � � � � � 21024 � 1 ,

� 21024 � � � � � 21025 � 1 :

1 1025 log 2 chance of prime,

1 1026 log 2 chance of � prime,

1 8 chance of 3 � 7 + 8Z,

2 log 2 � 1 chance of � 22048,

so 22023 equally likely ’s.

Recognizing lower entropy

22047 � � � � � 22048 � 1

so has top bit 1.

Don’t store that bit.

With Rabin-Williams: 5 + 8Z.

Don’t store bottom 3 bits.

Better: Users never generate

divisible by 3 � 5 � 7 � 11,

so only 480 possibilities

for mod 9240. Replace

bottom 13 bits with 9-bit

encoding of mod 9240.

Have reduced 2048 to 2043.

Can we do much better?

Knee-jerk answer: “No!

C’mon, you know you want to

switch to elliptic curves.”

e.g. User generates = � from

independent uniform random

21023 � � � � � 21024 � 1 ,

� 21024 � � � � � 21025 � 1 :

1 1025 log 2 chance of prime,

1 1026 log 2 chance of � prime,

1 8 chance of 3 � 7 + 8Z,

2 log 2 � 1 chance of � 22048,

so 22023 equally likely ’s.

Reducing entropy

Define () = 500th bit of ,

() = with 500th bit omitted.

Change key-generation procedure

to produce keys with () = 0.

Then can encode as (),

saving one bit; also save

top/bottom bits as before.

Brute-force key generation:

generate by the old method;

if () = 1, try again.

Conjecturally this takes

almost exactly 2 tries on average;

confirmed by experiment.

Have reduced 2048 to 2043.

Can we do much better?

Knee-jerk answer: “No!

C’mon, you know you want to

switch to elliptic curves.”

e.g. User generates = � from

independent uniform random

21023 � � � � � 21024 � 1 ,

� 21024 � � � � � 21025 � 1 :

1 1025 log 2 chance of prime,

1 1026 log 2 chance of � prime,

1 8 chance of 3 � 7 + 8Z,

2 log 2 � 1 chance of � 22048,

so 22023 equally likely ’s.

Reducing entropy

Define () = 500th bit of ,

() = with 500th bit omitted.

Change key-generation procedure

to produce keys with () = 0.

Then can encode as (),

saving one bit; also save

top/bottom bits as before.

Brute-force key generation:

generate by the old method;

if () = 1, try again.

Conjecturally this takes

almost exactly 2 tries on average;

confirmed by experiment.

Have reduced 2048 to 2043.

Can we do much better?

Knee-jerk answer: “No!

C’mon, you know you want to

switch to elliptic curves.”

e.g. User generates = � from

independent uniform random

21023 � � � � � 21024 � 1 ,

� 21024 � � � � � 21025 � 1 :

1 1025 log 2 chance of prime,

1 1026 log 2 chance of � prime,

1 8 chance of 3 � 7 + 8Z,

2 log 2 � 1 chance of � 22048,

so 22023 equally likely ’s.

Reducing entropy

Define () = 500th bit of ,

() = with 500th bit omitted.

Change key-generation procedure

to produce keys with () = 0.

Then can encode as (),

saving one bit; also save

top/bottom bits as before.

Brute-force key generation:

generate by the old method;

if () = 1, try again.

Conjecturally this takes

almost exactly 2 tries on average;

confirmed by experiment.

More generally, select functions

: 2048-bit strings

-bit strings and

: 2048-bit strings

(2048 �)-bit strings

with � invertible.

Change key-generation procedure

to produce keys with () = 0.

Then can encode as (),

saving bits.

Is � easy to compute

and easy to invert? Yes

for the functions we’ll consider.

Reducing entropy

Define () = 500th bit of ,

() = with 500th bit omitted.

Change key-generation procedure

to produce keys with () = 0.

Then can encode as (),

saving one bit; also save

top/bottom bits as before.

Brute-force key generation:

generate by the old method;

if () = 1, try again.

Conjecturally this takes

almost exactly 2 tries on average;

confirmed by experiment.

More generally, select functions

: 2048-bit strings

-bit strings and

: 2048-bit strings

(2048 �)-bit strings

with � invertible.

Change key-generation procedure

to produce keys with () = 0.

Then can encode as (),

saving bits.

Is � easy to compute

and easy to invert? Yes

for the functions we’ll consider.

Reducing entropy

Define () = 500th bit of ,

() = with 500th bit omitted.

Change key-generation procedure

to produce keys with () = 0.

Then can encode as (),

saving one bit; also save

top/bottom bits as before.

Brute-force key generation:

generate by the old method;

if () = 1, try again.

Conjecturally this takes

almost exactly 2 tries on average;

confirmed by experiment.

More generally, select functions

: 2048-bit strings

-bit strings and

: 2048-bit strings

(2048 �)-bit strings

with � invertible.

Change key-generation procedure

to produce keys with () = 0.

Then can encode as (),

saving bits.

Is � easy to compute

and easy to invert? Yes

for the functions we’ll consider.

Do ’s exist with () = 0?

Conjecturally chance 1 2
�

for the functions we’ll consider.

(Provable for chosen randomly

from “universal” classes.)

Brute force takes 2
�

tries;

far too slow for large .

Can we do much better?

Yes. Will come back to this.

Are the resulting keys secure?

Not necessarily!

More generally, select functions

: 2048-bit strings

-bit strings and

: 2048-bit strings

(2048 �)-bit strings

with � invertible.

Change key-generation procedure

to produce keys with () = 0.

Then can encode as (),

saving bits.

Is � easy to compute

and easy to invert? Yes

for the functions we’ll consider.

Do ’s exist with () = 0?

Conjecturally chance 1 2
�

for the functions we’ll consider.

(Provable for chosen randomly

from “universal” classes.)

Brute force takes 2
�

tries;

far too slow for large .

Can we do much better?

Yes. Will come back to this.

Are the resulting keys secure?

Not necessarily!

More generally, select functions

: 2048-bit strings

-bit strings and

: 2048-bit strings

(2048 �)-bit strings

with � invertible.

Change key-generation procedure

to produce keys with () = 0.

Then can encode as (),

saving bits.

Is � easy to compute

and easy to invert? Yes

for the functions we’ll consider.

Do ’s exist with () = 0?

Conjecturally chance 1 2
�

for the functions we’ll consider.

(Provable for chosen randomly

from “universal” classes.)

Brute force takes 2
�

tries;

far too slow for large .

Can we do much better?

Yes. Will come back to this.

Are the resulting keys secure?

Not necessarily!

The half-special number-field sieve

1998 Lenstra: “Numbers of the

form 21024 � � � � offer regular

1024-bit RSA security, as long as
� is not much smaller than 2500.”

Chance of an “unusually small”

NFS polynomial is “negligible.”

Not true. Reducing entropy,

using () = half the bits of ,

reduces conjectured security level.

Skewed NFS polynomials

(1999 Murphy) turn out to be

unusually small for these numbers.

Do ’s exist with () = 0?

Conjecturally chance 1 2
�

for the functions we’ll consider.

(Provable for chosen randomly

from “universal” classes.)

Brute force takes 2
�

tries;

far too slow for large .

Can we do much better?

Yes. Will come back to this.

Are the resulting keys secure?

Not necessarily!

The half-special number-field sieve

1998 Lenstra: “Numbers of the

form 21024 � � � � offer regular

1024-bit RSA security, as long as
� is not much smaller than 2500.”

Chance of an “unusually small”

NFS polynomial is “negligible.”

Not true. Reducing entropy,

using () = half the bits of ,

reduces conjectured security level.

Skewed NFS polynomials

(1999 Murphy) turn out to be

unusually small for these numbers.

Do ’s exist with () = 0?

Conjecturally chance 1 2
�

for the functions we’ll consider.

(Provable for chosen randomly

from “universal” classes.)

Brute force takes 2
�

tries;

far too slow for large .

Can we do much better?

Yes. Will come back to this.

Are the resulting keys secure?

Not necessarily!

The half-special number-field sieve

1998 Lenstra: “Numbers of the

form 21024 � � � � offer regular

1024-bit RSA security, as long as
� is not much smaller than 2500.”

Chance of an “unusually small”

NFS polynomial is “negligible.”

Not true. Reducing entropy,

using () = half the bits of ,

reduces conjectured security level.

Skewed NFS polynomials

(1999 Murphy) turn out to be

unusually small for these numbers.

Sharing entropy

Generate random 1

from set of all possible keys.

Define 1 = �
1((1)).

Generate random 2 1:

e.g., for = 500th bit,

generate random 2 having

same 500th bit as 1.

Similarly generate 3 � 4 � � � � .

Compress 2 to (2);

compress 3 to (3); etc.

Overall (2048 �) � + bits

to store 1 � 2 � � � � � � .

The half-special number-field sieve

1998 Lenstra: “Numbers of the

form 21024 � � � � offer regular

1024-bit RSA security, as long as
� is not much smaller than 2500.”

Chance of an “unusually small”

NFS polynomial is “negligible.”

Not true. Reducing entropy,

using () = half the bits of ,

reduces conjectured security level.

Skewed NFS polynomials

(1999 Murphy) turn out to be

unusually small for these numbers.

Sharing entropy

Generate random 1

from set of all possible keys.

Define 1 = �
1((1)).

Generate random 2 1:

e.g., for = 500th bit,

generate random 2 having

same 500th bit as 1.

Similarly generate 3 � 4 � � � � .

Compress 2 to (2);

compress 3 to (3); etc.

Overall (2048 �) � + bits

to store 1 � 2 � � � � � � .

The half-special number-field sieve

1998 Lenstra: “Numbers of the

form 21024 � � � � offer regular

1024-bit RSA security, as long as
� is not much smaller than 2500.”

Chance of an “unusually small”

NFS polynomial is “negligible.”

Not true. Reducing entropy,

using () = half the bits of ,

reduces conjectured security level.

Skewed NFS polynomials

(1999 Murphy) turn out to be

unusually small for these numbers.

Sharing entropy

Generate random 1

from set of all possible keys.

Define 1 = �
1((1)).

Generate random 2 1:

e.g., for = 500th bit,

generate random 2 having

same 500th bit as 1.

Similarly generate 3 � 4 � � � � .

Compress 2 to (2);

compress 3 to (3); etc.

Overall (2048 �) � + bits

to store 1 � 2 � � � � � � .

If distribution of 1

is uniform over ,

and distribution of 2 given 1

is uniform over 1,

then distribution of 2

is uniform over .

So attacker’s chance of factoring 2

is provably identical to

attacker’s chance of factoring 1.

Same comment with “factoring”

replaced by “forging signatures”

etc.

Sharing entropy is provably secure.

Sharing entropy

Generate random 1

from set of all possible keys.

Define 1 = �
1((1)).

Generate random 2 1:

e.g., for = 500th bit,

generate random 2 having

same 500th bit as 1.

Similarly generate 3 � 4 � � � � .

Compress 2 to (2);

compress 3 to (3); etc.

Overall (2048 �) � + bits

to store 1 � 2 � � � � � � .

If distribution of 1

is uniform over ,

and distribution of 2 given 1

is uniform over 1,

then distribution of 2

is uniform over .

So attacker’s chance of factoring 2

is provably identical to

attacker’s chance of factoring 1.

Same comment with “factoring”

replaced by “forging signatures”

etc.

Sharing entropy is provably secure.

Sharing entropy

Generate random 1

from set of all possible keys.

Define 1 = �
1((1)).

Generate random 2 1:

e.g., for = 500th bit,

generate random 2 having

same 500th bit as 1.

Similarly generate 3 � 4 � � � � .

Compress 2 to (2);

compress 3 to (3); etc.

Overall (2048 �) � + bits

to store 1 � 2 � � � � � � .

If distribution of 1

is uniform over ,

and distribution of 2 given 1

is uniform over 1,

then distribution of 2

is uniform over .

So attacker’s chance of factoring 2

is provably identical to

attacker’s chance of factoring 1.

Same comment with “factoring”

replaced by “forging signatures”

etc.

Sharing entropy is provably secure.

Time to factor 1 and 2

can be less than double

the time for a single factorization.

(e.g., Schnorr, Eratosthenes)

Analogy: brute-force search

versus a secret-key cipher

finds � target keys in same time

as finding one target key.

Problem arises with or without

shared entropy.

(e.g., Coppersmith, Bernstein)

For safety, choose key sizes

so that (conjecturally) attacker

can’t even do one factorization.

If distribution of 1

is uniform over ,

and distribution of 2 given 1

is uniform over 1,

then distribution of 2

is uniform over .

So attacker’s chance of factoring 2

is provably identical to

attacker’s chance of factoring 1.

Same comment with “factoring”

replaced by “forging signatures”

etc.

Sharing entropy is provably secure.

Time to factor 1 and 2

can be less than double

the time for a single factorization.

(e.g., Schnorr, Eratosthenes)

Analogy: brute-force search

versus a secret-key cipher

finds � target keys in same time

as finding one target key.

Problem arises with or without

shared entropy.

(e.g., Coppersmith, Bernstein)

For safety, choose key sizes

so that (conjecturally) attacker

can’t even do one factorization.

If distribution of 1

is uniform over ,

and distribution of 2 given 1

is uniform over 1,

then distribution of 2

is uniform over .

So attacker’s chance of factoring 2

is provably identical to

attacker’s chance of factoring 1.

Same comment with “factoring”

replaced by “forging signatures”

etc.

Sharing entropy is provably secure.

Time to factor 1 and 2

can be less than double

the time for a single factorization.

(e.g., Schnorr, Eratosthenes)

Analogy: brute-force search

versus a secret-key cipher

finds � target keys in same time

as finding one target key.

Problem arises with or without

shared entropy.

(e.g., Coppersmith, Bernstein)

For safety, choose key sizes

so that (conjecturally) attacker

can’t even do one factorization.

Perhaps time to factor 1 or 2

is below time to factor 1.

Analogy: brute-force search

finds some target key out of �

after 1 � of the computation.

As before, problem arises

with or without shared entropy.

For safety, multiply conjectured

factorization success chance

(e.g. ECM success chance)

by � before choosing key sizes.

Time to factor 1 and 2

can be less than double

the time for a single factorization.

(e.g., Schnorr, Eratosthenes)

Analogy: brute-force search

versus a secret-key cipher

finds � target keys in same time

as finding one target key.

Problem arises with or without

shared entropy.

(e.g., Coppersmith, Bernstein)

For safety, choose key sizes

so that (conjecturally) attacker

can’t even do one factorization.

Perhaps time to factor 1 or 2

is below time to factor 1.

Analogy: brute-force search

finds some target key out of �

after 1 � of the computation.

As before, problem arises

with or without shared entropy.

For safety, multiply conjectured

factorization success chance

(e.g. ECM success chance)

by � before choosing key sizes.

Time to factor 1 and 2

can be less than double

the time for a single factorization.

(e.g., Schnorr, Eratosthenes)

Analogy: brute-force search

versus a secret-key cipher

finds � target keys in same time

as finding one target key.

Problem arises with or without

shared entropy.

(e.g., Coppersmith, Bernstein)

For safety, choose key sizes

so that (conjecturally) attacker

can’t even do one factorization.

Perhaps time to factor 1 or 2

is below time to factor 1.

Analogy: brute-force search

finds some target key out of �

after 1 � of the computation.

As before, problem arises

with or without shared entropy.

For safety, multiply conjectured

factorization success chance

(e.g. ECM success chance)

by � before choosing key sizes.

Is this overkill?

Are there algorithms to factor

1 or 2 or � � � or �

more quickly than factoring 1?

For discrete logs, prove “no”

by randomized self-reduction.

For factorization, no hope of proof

without an extra � .

Factorization literature needs to

explicitly address multiple inputs.

Maybe we’re oversimplifying

by considering just one input.

Perhaps time to factor 1 or 2

is below time to factor 1.

Analogy: brute-force search

finds some target key out of �

after 1 � of the computation.

As before, problem arises

with or without shared entropy.

For safety, multiply conjectured

factorization success chance

(e.g. ECM success chance)

by � before choosing key sizes.

Is this overkill?

Are there algorithms to factor

1 or 2 or � � � or �

more quickly than factoring 1?

For discrete logs, prove “no”

by randomized self-reduction.

For factorization, no hope of proof

without an extra � .

Factorization literature needs to

explicitly address multiple inputs.

Maybe we’re oversimplifying

by considering just one input.

Perhaps time to factor 1 or 2

is below time to factor 1.

Analogy: brute-force search

finds some target key out of �

after 1 � of the computation.

As before, problem arises

with or without shared entropy.

For safety, multiply conjectured

factorization success chance

(e.g. ECM success chance)

by � before choosing key sizes.

Is this overkill?

Are there algorithms to factor

1 or 2 or � � � or �

more quickly than factoring 1?

For discrete logs, prove “no”

by randomized self-reduction.

For factorization, no hope of proof

without an extra � .

Factorization literature needs to

explicitly address multiple inputs.

Maybe we’re oversimplifying

by considering just one input.

Generating given bottom half

Define () = mod 21024.

Reasonably fast generation of � �

with (�) = (1), given (1):

Choose 1024-bit . Compute

� = 21024 + (�
1 (1) mod 21024).

If not both primes, try again.

If � 22048, try again.

Conjecturally 217 tries

on average.

Is this overkill?

Are there algorithms to factor

1 or 2 or � � � or �

more quickly than factoring 1?

For discrete logs, prove “no”

by randomized self-reduction.

For factorization, no hope of proof

without an extra � .

Factorization literature needs to

explicitly address multiple inputs.

Maybe we’re oversimplifying

by considering just one input.

Generating given bottom half

Define () = mod 21024.

Reasonably fast generation of � �

with (�) = (1), given (1):

Choose 1024-bit . Compute

� = 21024 + (�
1 (1) mod 21024).

If not both primes, try again.

If � 22048, try again.

Conjecturally 217 tries

on average.

Is this overkill?

Are there algorithms to factor

1 or 2 or � � � or �

more quickly than factoring 1?

For discrete logs, prove “no”

by randomized self-reduction.

For factorization, no hope of proof

without an extra � .

Factorization literature needs to

explicitly address multiple inputs.

Maybe we’re oversimplifying

by considering just one input.

Generating given bottom half

Define () = mod 21024.

Reasonably fast generation of � �

with (�) = (1), given (1):

Choose 1024-bit . Compute

� = 21024 + (�
1 (1) mod 21024).

If not both primes, try again.

If � 22048, try again.

Conjecturally 217 tries

on average.

Analogous method works for

() = 21024 .

Method reinvented several times.

Published 1991 Guillou Quisquater,

in context of reducing entropy:

“Some forms of the modulus

� � � need less storage. � � �

all of the bits of the

most significant bytes are

valued to zero.”

Generating given bottom half

Define () = mod 21024.

Reasonably fast generation of � �

with (�) = (1), given (1):

Choose 1024-bit . Compute

� = 21024 + (�
1 (1) mod 21024).

If not both primes, try again.

If � 22048, try again.

Conjecturally 217 tries

on average.

Analogous method works for

() = 21024 .

Method reinvented several times.

Published 1991 Guillou Quisquater,

in context of reducing entropy:

“Some forms of the modulus

� � � need less storage. � � �

all of the bits of the

most significant bytes are

valued to zero.”

Generating given bottom half

Define () = mod 21024.

Reasonably fast generation of � �

with (�) = (1), given (1):

Choose 1024-bit . Compute

� = 21024 + (�
1 (1) mod 21024).

If not both primes, try again.

If � 22048, try again.

Conjecturally 217 tries

on average.

Analogous method works for

() = 21024 .

Method reinvented several times.

Published 1991 Guillou Quisquater,

in context of reducing entropy:

“Some forms of the modulus

� � � need less storage. � � �

all of the bits of the

most significant bytes are

valued to zero.”

Patent application filed 1995

by Vanstone and Zuccherato:

“A method of encrypting data � � �

selecting said public key � � �

having a plurality of sets of bits,

at least one set being of a

predetermined pattern of bits � � �

and applying said public key

to encrypt the message.”

Includes some generation methods,

ranging from sensible to silly.

Granted 2000: US 6134325.

Analogous method works for

() = 21024 .

Method reinvented several times.

Published 1991 Guillou Quisquater,

in context of reducing entropy:

“Some forms of the modulus

� � � need less storage. � � �

all of the bits of the

most significant bytes are

valued to zero.”

Patent application filed 1995

by Vanstone and Zuccherato:

“A method of encrypting data � � �

selecting said public key � � �

having a plurality of sets of bits,

at least one set being of a

predetermined pattern of bits � � �

and applying said public key

to encrypt the message.”

Includes some generation methods,

ranging from sensible to silly.

Granted 2000: US 6134325.

Analogous method works for

() = 21024 .

Method reinvented several times.

Published 1991 Guillou Quisquater,

in context of reducing entropy:

“Some forms of the modulus

� � � need less storage. � � �

all of the bits of the

most significant bytes are

valued to zero.”

Patent application filed 1995

by Vanstone and Zuccherato:

“A method of encrypting data � � �

selecting said public key � � �

having a plurality of sets of bits,

at least one set being of a

predetermined pattern of bits � � �

and applying said public key

to encrypt the message.”

Includes some generation methods,

ranging from sensible to silly.

Granted 2000: US 6134325.

More patents filed by Lenstra,

responding to silly methods.

“Select a number ; � � � obtain the

factor � as �
�

; check whether

the factor � is prime; if the factor

� is prime, compute the number

� as the product of and � and

determine that the number � is the

RSA modulus; and if the factor �

is not prime, adjust � and repeat

the check of whether the factor � is

prime.”

Granted 2002: US 6404890,

US 6496929.

Patent application filed 1995

by Vanstone and Zuccherato:

“A method of encrypting data � � �

selecting said public key � � �

having a plurality of sets of bits,

at least one set being of a

predetermined pattern of bits � � �

and applying said public key

to encrypt the message.”

Includes some generation methods,

ranging from sensible to silly.

Granted 2000: US 6134325.

More patents filed by Lenstra,

responding to silly methods.

“Select a number ; � � � obtain the

factor � as �
�

; check whether

the factor � is prime; if the factor

� is prime, compute the number

� as the product of and � and

determine that the number � is the

RSA modulus; and if the factor �

is not prime, adjust � and repeat

the check of whether the factor � is

prime.”

Granted 2002: US 6404890,

US 6496929.

Patent application filed 1995

by Vanstone and Zuccherato:

“A method of encrypting data � � �

selecting said public key � � �

having a plurality of sets of bits,

at least one set being of a

predetermined pattern of bits � � �

and applying said public key

to encrypt the message.”

Includes some generation methods,

ranging from sensible to silly.

Granted 2000: US 6134325.

More patents filed by Lenstra,

responding to silly methods.

“Select a number ; � � � obtain the

factor � as �
�

; check whether

the factor � is prime; if the factor

� is prime, compute the number

� as the product of and � and

determine that the number � is the

RSA modulus; and if the factor �

is not prime, adjust � and repeat

the check of whether the factor � is

prime.”

Granted 2002: US 6404890,

US 6496929.

These key-generation methods

allow compression from

2048 bits to 1024 bits.

Exactly how fast is this?

Can we make it even faster?

What if () = mod 21280?

What if () = mod 21536?

Do we still have fast

key-generation methods?

More patents filed by Lenstra,

responding to silly methods.

“Select a number ; � � � obtain the

factor � as �
�

; check whether

the factor � is prime; if the factor

� is prime, compute the number

� as the product of and � and

determine that the number � is the

RSA modulus; and if the factor �

is not prime, adjust � and repeat

the check of whether the factor � is

prime.”

Granted 2002: US 6404890,

US 6496929.

These key-generation methods

allow compression from

2048 bits to 1024 bits.

Exactly how fast is this?

Can we make it even faster?

What if () = mod 21280?

What if () = mod 21536?

Do we still have fast

key-generation methods?

More patents filed by Lenstra,

responding to silly methods.

“Select a number ; � � � obtain the

factor � as �
�

; check whether

the factor � is prime; if the factor

� is prime, compute the number

� as the product of and � and

determine that the number � is the

RSA modulus; and if the factor �

is not prime, adjust � and repeat

the check of whether the factor � is

prime.”

Granted 2002: US 6404890,

US 6496929.

These key-generation methods

allow compression from

2048 bits to 1024 bits.

Exactly how fast is this?

Can we make it even faster?

What if () = mod 21280?

What if () = mod 21536?

Do we still have fast

key-generation methods?

Unbalanced primes

Take () = mod 21280.

Choose 768-bit . Compute

� = 21280 + (�
1 (1) mod 21280).

If not both primes, try again.

If � 22048, try again.

This allows compression from

2048 bits to 768 bits,

with unbalanced � � .

(1998 Lenstra)

ECM more dangerous than NFS!

Don’t want so small.

These key-generation methods

allow compression from

2048 bits to 1024 bits.

Exactly how fast is this?

Can we make it even faster?

What if () = mod 21280?

What if () = mod 21536?

Do we still have fast

key-generation methods?

Unbalanced primes

Take () = mod 21280.

Choose 768-bit . Compute

� = 21280 + (�
1 (1) mod 21280).

If not both primes, try again.

If � 22048, try again.

This allows compression from

2048 bits to 768 bits,

with unbalanced � � .

(1998 Lenstra)

ECM more dangerous than NFS!

Don’t want so small.

These key-generation methods

allow compression from

2048 bits to 1024 bits.

Exactly how fast is this?

Can we make it even faster?

What if () = mod 21280?

What if () = mod 21536?

Do we still have fast

key-generation methods?

Unbalanced primes

Take () = mod 21280.

Choose 768-bit . Compute

� = 21280 + (�
1 (1) mod 21280).

If not both primes, try again.

If � 22048, try again.

This allows compression from

2048 bits to 768 bits,

with unbalanced � � .

(1998 Lenstra)

ECM more dangerous than NFS!

Don’t want so small.

Primes in lattices

Take () = mod 21366.

Choose 683-bit 0. Compute

� 0 = �
1

0 (1) mod 2683.

Idea: will take = 0 + 2683
1

and � = � 0 + 2683 � 1.

Use lattice reduction

to try to find 1 � � 1 2341

with ((1)
�

0 � 0) 2683

1 � 0 + � 1 0 (mod 2683).

Good chance of success.

(2003 Coppersmith)

Unbalanced primes

Take () = mod 21280.

Choose 768-bit . Compute

� = 21280 + (�
1 (1) mod 21280).

If not both primes, try again.

If � 22048, try again.

This allows compression from

2048 bits to 768 bits,

with unbalanced � � .

(1998 Lenstra)

ECM more dangerous than NFS!

Don’t want so small.

Primes in lattices

Take () = mod 21366.

Choose 683-bit 0. Compute

� 0 = �
1

0 (1) mod 2683.

Idea: will take = 0 + 2683
1

and � = � 0 + 2683 � 1.

Use lattice reduction

to try to find 1 � � 1 2341

with ((1)
�

0 � 0) 2683

1 � 0 + � 1 0 (mod 2683).

Good chance of success.

(2003 Coppersmith)

Unbalanced primes

Take () = mod 21280.

Choose 768-bit . Compute

� = 21280 + (�
1 (1) mod 21280).

If not both primes, try again.

If � 22048, try again.

This allows compression from

2048 bits to 768 bits,

with unbalanced � � .

(1998 Lenstra)

ECM more dangerous than NFS!

Don’t want so small.

Primes in lattices

Take () = mod 21366.

Choose 683-bit 0. Compute

� 0 = �
1

0 (1) mod 2683.

Idea: will take = 0 + 2683
1

and � = � 0 + 2683 � 1.

Use lattice reduction

to try to find 1 � � 1 2341

with ((1)
�

0 � 0) 2683

1 � 0 + � 1 0 (mod 2683).

Good chance of success.

(2003 Coppersmith)

This allows compression from

2048 bits to 682 bits,

with balanced � � .

Minor flaw: uniform random 0

does not produce exactly

uniform random integer .

But confirm experimentally

that each 0 has good chance

of producing at least one .

This implies that each choice

of has probability

not far above uniform.

Primes in lattices

Take () = mod 21366.

Choose 683-bit 0. Compute

� 0 = �
1

0 (1) mod 2683.

Idea: will take = 0 + 2683
1

and � = � 0 + 2683 � 1.

Use lattice reduction

to try to find 1 � � 1 2341

with ((1)
�

0 � 0) 2683

1 � 0 + � 1 0 (mod 2683).

Good chance of success.

(2003 Coppersmith)

This allows compression from

2048 bits to 682 bits,

with balanced � � .

Minor flaw: uniform random 0

does not produce exactly

uniform random integer .

But confirm experimentally

that each 0 has good chance

of producing at least one .

This implies that each choice

of has probability

not far above uniform.

Primes in lattices

Take () = mod 21366.

Choose 683-bit 0. Compute

� 0 = �
1

0 (1) mod 2683.

Idea: will take = 0 + 2683
1

and � = � 0 + 2683 � 1.

Use lattice reduction

to try to find 1 � � 1 2341

with ((1)
�

0 � 0) 2683

1 � 0 + � 1 0 (mod 2683).

Good chance of success.

(2003 Coppersmith)

This allows compression from

2048 bits to 682 bits,

with balanced � � .

Minor flaw: uniform random 0

does not produce exactly

uniform random integer .

But confirm experimentally

that each 0 has good chance

of producing at least one .

This implies that each choice

of has probability

not far above uniform.

Some open questions:

Find random � � 21024

given � mod 21500? Maybe

use higher-dimensional lattices.

Or 2768, � 21280?

Doesn’t seem to improve

lattice effectiveness.

Find three balanced integers

given half the bits of product?

Do better with another shape?

This allows compression from

2048 bits to 682 bits,

with balanced � � .

Minor flaw: uniform random 0

does not produce exactly

uniform random integer .

But confirm experimentally

that each 0 has good chance

of producing at least one .

This implies that each choice

of has probability

not far above uniform.

Some open questions:

Find random � � 21024

given � mod 21500? Maybe

use higher-dimensional lattices.

Or 2768, � 21280?

Doesn’t seem to improve

lattice effectiveness.

Find three balanced integers

given half the bits of product?

Do better with another shape?

This allows compression from

2048 bits to 682 bits,

with balanced � � .

Minor flaw: uniform random 0

does not produce exactly

uniform random integer .

But confirm experimentally

that each 0 has good chance

of producing at least one .

This implies that each choice

of has probability

not far above uniform.

Some open questions:

Find random � � 21024

given � mod 21500? Maybe

use higher-dimensional lattices.

Or 2768, � 21280?

Doesn’t seem to improve

lattice effectiveness.

Find three balanced integers

given half the bits of product?

Do better with another shape?

Key-generation speed

Start with many ’s.

Use trial division etc.

Then try 2
�

�
1 mod .

26 exponentiations

to find one prime.

Traditional key generation

chooses � � independently.

27 exponentiations.

Faster, slightly non-uniform:

build visible primes (Maurer).

If determines � :

212 exponentiations.

Some open questions:

Find random � � 21024

given � mod 21500? Maybe

use higher-dimensional lattices.

Or 2768, � 21280?

Doesn’t seem to improve

lattice effectiveness.

Find three balanced integers

given half the bits of product?

Do better with another shape?

Key-generation speed

Start with many ’s.

Use trial division etc.

Then try 2
�

�
1 mod .

26 exponentiations

to find one prime.

Traditional key generation

chooses � � independently.

27 exponentiations.

Faster, slightly non-uniform:

build visible primes (Maurer).

If determines � :

212 exponentiations.

Some open questions:

Find random � � 21024

given � mod 21500? Maybe

use higher-dimensional lattices.

Or 2768, � 21280?

Doesn’t seem to improve

lattice effectiveness.

Find three balanced integers

given half the bits of product?

Do better with another shape?

Key-generation speed

Start with many ’s.

Use trial division etc.

Then try 2
�

�
1 mod .

26 exponentiations

to find one prime.

Traditional key generation

chooses � � independently.

27 exponentiations.

Faster, slightly non-uniform:

build visible primes (Maurer).

If determines � :

212 exponentiations.

For () = mod 21008:

Each determines

pool of 216 possible � ’s.

Select randomly from pool

until finding a prime.

27 exponentiations.

For () = mod 21350:

Obtain pool of pairs (� �)

with all different ’s

and all different � ’s.

212 exponentiations.

Key-generation speed

Start with many ’s.

Use trial division etc.

Then try 2
�

�
1 mod .

26 exponentiations

to find one prime.

Traditional key generation

chooses � � independently.

27 exponentiations.

Faster, slightly non-uniform:

build visible primes (Maurer).

If determines � :

212 exponentiations.

For () = mod 21008:

Each determines

pool of 216 possible � ’s.

Select randomly from pool

until finding a prime.

27 exponentiations.

For () = mod 21350:

Obtain pool of pairs (� �)

with all different ’s

and all different � ’s.

212 exponentiations.

Key-generation speed

Start with many ’s.

Use trial division etc.

Then try 2
�

�
1 mod .

26 exponentiations

to find one prime.

Traditional key generation

chooses � � independently.

27 exponentiations.

Faster, slightly non-uniform:

build visible primes (Maurer).

If determines � :

212 exponentiations.

For () = mod 21008:

Each determines

pool of 216 possible � ’s.

Select randomly from pool

until finding a prime.

27 exponentiations.

For () = mod 21350:

Obtain pool of pairs (� �)

with all different ’s

and all different � ’s.

212 exponentiations.

Can use lattice structure

to share trial divisions.

Or use batch factorization.

Still many exponentiations.

Is there a better method?

If not, might as well

take opposite approach:

compress slightly more.

Lattice reduction is fast,

so can afford many 0’s

before each exponentiation.

For () = mod 21008:

Each determines

pool of 216 possible � ’s.

Select randomly from pool

until finding a prime.

27 exponentiations.

For () = mod 21350:

Obtain pool of pairs (� �)

with all different ’s

and all different � ’s.

212 exponentiations.

Can use lattice structure

to share trial divisions.

Or use batch factorization.

Still many exponentiations.

Is there a better method?

If not, might as well

take opposite approach:

compress slightly more.

Lattice reduction is fast,

so can afford many 0’s

before each exponentiation.

For () = mod 21008:

Each determines

pool of 216 possible � ’s.

Select randomly from pool

until finding a prime.

27 exponentiations.

For () = mod 21350:

Obtain pool of pairs (� �)

with all different ’s

and all different � ’s.

212 exponentiations.

Can use lattice structure

to share trial divisions.

Or use batch factorization.

Still many exponentiations.

Is there a better method?

If not, might as well

take opposite approach:

compress slightly more.

Lattice reduction is fast,

so can afford many 0’s

before each exponentiation.

Protocol violations

One user generates 1.

Second user sees (1)

and generates 2.

Security of 2 was proven

assuming uniform random 1.

What if first user cheats,

and doesn’t generate

uniform random 1?

Recall half-special NFS:

can construct rare values

allowing easier factorization.

Can use lattice structure

to share trial divisions.

Or use batch factorization.

Still many exponentiations.

Is there a better method?

If not, might as well

take opposite approach:

compress slightly more.

Lattice reduction is fast,

so can afford many 0’s

before each exponentiation.

Protocol violations

One user generates 1.

Second user sees (1)

and generates 2.

Security of 2 was proven

assuming uniform random 1.

What if first user cheats,

and doesn’t generate

uniform random 1?

Recall half-special NFS:

can construct rare values

allowing easier factorization.

Can use lattice structure

to share trial divisions.

Or use batch factorization.

Still many exponentiations.

Is there a better method?

If not, might as well

take opposite approach:

compress slightly more.

Lattice reduction is fast,

so can afford many 0’s

before each exponentiation.

Protocol violations

One user generates 1.

Second user sees (1)

and generates 2.

Security of 2 was proven

assuming uniform random 1.

What if first user cheats,

and doesn’t generate

uniform random 1?

Recall half-special NFS:

can construct rare values

allowing easier factorization.

One solution is to

generate 1 � � 1 � 1 publicly

from digits of � :

10th, 20th, 30th, etc.

Not random, but conjecturally safe.

Variant: 1 without 1 � � 1.

Another solution is to

generate 1 � � 1 � 1 publicly

from SHA-256 output.

Another solution is to

generate 1 � � 1 � 1 publicly

from 1955 RAND tables.

Protocol violations

One user generates 1.

Second user sees (1)

and generates 2.

Security of 2 was proven

assuming uniform random 1.

What if first user cheats,

and doesn’t generate

uniform random 1?

Recall half-special NFS:

can construct rare values

allowing easier factorization.

One solution is to

generate 1 � � 1 � 1 publicly

from digits of � :

10th, 20th, 30th, etc.

Not random, but conjecturally safe.

Variant: 1 without 1 � � 1.

Another solution is to

generate 1 � � 1 � 1 publicly

from SHA-256 output.

Another solution is to

generate 1 � � 1 � 1 publicly

from 1955 RAND tables.

