Compressing RSA /Rabin keys Public keys
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2047 ~2047 2048
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University of lllinois at Chicago User knows prime factors of U.
NSF CCR-9983950 Hopefully attacker doesn't.
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| | | RSA: also publish big exponent e;
American Institute of Mathematics

use primes allowing eth roots.
Rabin: always use exponent 2;
use primes in 3 + 4Z.
Williams: 3+ 8Z and 7 + 8Z.
Many subsequent variants;
e.g., "RSA" using exponent 3,
and “RSA" using exponent 65537.
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Public keys

Each user publishes a key U €
{22047 22047 41 ... 22048 L 1}

User knows prime factors of U.
Hopefully attacker doesn't.

RSA: also publish big exponent e;
use primes allowing eth roots.
Rabin: always use exponent 2;
use primes in 3+ 4Z.

Williams: 3+ 8Z and 7 + 8Z.
Many subsequent variants;

e.g., "RSA" using exponent 3,

and “RSA" using exponent 65537.

The compression guestion

Can store U in 2048 bits.
Can store Uy, Uy, ..., Uy,
randomly accessible, in 2048n bits.

Can we use fewer bits?

Knee-jerk answer: “No!

If you can't afford 2048n bits,
switch to 256-bit elliptic curves.
http://cr.yp.to/ecdh.html”

But elliptic-curve signatures

have slow verification.
Want a better answer.
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Can store Uy, Us, ..., Uy,

randomly accessible, in 2048n bits.

Can we use fewer bits?

Knee-jerk answer: “No!

If you can't afford 2048n bits,
switch to 256-bit elliptic curves.
http://cr.yp.to/ecdh.html”

But elliptic-curve signatures

have slow verification.
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The compression guestion

Can store U in 2048 bits.
Can store Uy, Us, ..., Uy,

randomly accessible, in 2048n bits.

Can we use fewer bits?

Knee-jerk answer: “Nol!

If you can't afford 2048n bits,
switch to 256-bit elliptic curves.
http://cr.yp.to/ecdh.html”

But elliptic-curve signatures

have slow verification.
Want a better answer.

Recognizing lower entropy

U & {22047 o 22048 . 1}
so U has top bit 1.
Don't store that bit.

With Rabin-Williams: U € 5 + 8Z.
Don't store bottom 3 bits.

Better: Users never generate U
divisible by 3,5, 7, 11,

so only 480 possibilities

for U mod 9240. Replace
bottom 13 bits with 9-bit
encoding of U mod 9240.
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Recognizing lower entropy

U & {22047 o 22048 . 1}
so U has top bit 1.
Don't store that bit.

With Rabin-Williams: U € 5 + 8Z.

Don't store bottom 3 bits.

Better: Users never generate U
divisible by 3,5, 7, 11,

so only 480 possibilities

for U mod 9240. Replace
bottom 13 bits with 9-bit
encoding of U mod 9240.

Have reduced 204
Can we do much |

Knee-jerk answer:
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Recognizing lower entropy

U & {22047 o 22048 . 1}
so U has top bit 1.
Don't store that bit.

With Rabin-Williams: U € 5 + 8Z.

Don't store bottom 3 bits.

Better: Users never generate U
divisible by 3,5, 7, 11,

so only 480 possibilities

for U mod 9240. Replace
bottom 13 bits with 9-bit
encoding of U mod 9240.

Have reduced 2048 to 2043.
Can we do much better?

Knee-jerk answer: “No!
C'mon, you know you want to
switch to elliptic curves.”

e.g. User generates U = pg from

independent uniform random

p € {21023, . 21024 o 1},

g e {2194, . 210> 11,
~ 1/1025log 2 chance of p prime,

~ 1/1026 log 2 chance of g prime,
~ 1/8 chance of {3,7} 4 8Z,

~ 2log2 — 1 chance of pg < 22943
so > 22923 equally likely U'’s.
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Have reduced 2048 to 2043.
Can we do much better?

Knee-jerk answer: “Nol!
C'mon, you know you want to
switch to elliptic curves.”

e.g. User generates U = pg from

independent uniform random
p € {21023, . 21024 o 1},

g e {2194, . 210> 11,
~ 1/1025log 2 chance of p prime,

~ 1/1026 log 2 chance of g prime,
~ 1/8 chance of {3,7} 4 8Z,

~ 2log?2 — 1 chance of pg < 22943,

so > 22923 equally likely U'’s.

Reducing entropy

Define f(U) = 50(
g(U) = U with 50
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Then can encode
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Have reduced 2048 to 2043.
Can we do much better?

Knee-jerk answer: “No!
C'mon, you know you want to
switch to elliptic curves.”

e.g. User generates U = pg from
independent uniform random

pe {21023 01024 _ 11
g e {21024 21025 _ 11,

~ 1/1025log 2 chance of p prime,

~ 1/1026 log 2 chance of g prime,
~ 1/8 chance of {3,7} 4 8Z,

~ 2log?2 — 1 chance of pg < 22943,

so > 22923 equally likely U'’s.

Reducing entropy

Define f(U) = 500th bit of U,
g(U) = U with 500th bit omitted.

Change key-generation procedure
to produce keys U with f(U) = 0.
Then can encode U as g(U),
saving one bit; also save
top/bottom bits as before.

Brute-force key generation:
generate U by the old method;

if f(U)=1, try again.
Conjecturally this takes

almost exactly 2 tries on average;
confirmed by experiment.
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Reducing entropy

Define f(U) = 500th bit of U,
g(U) = U with 500th bit omitted.

Change key-generation procedure
to produce keys U with f(U) = 0.
Then can encode U as g(U),
saving one bit; also save
top/bottom bits as before.

Brute-force key generation:
generate U by the old method;

if f(U)=1, try again.
Conjecturally this takes

almost exactly 2 tries on average;
confirmed by experiment.
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Reducing entropy

Define f(U) = 500th bit of U,

g(U) = U with 500th bit omitted.

Change key-generation procedure

to produce keys U with f(U) = 0.

Then can encode U as g(U),
saving one bit; also save
top/bottom bits as before.

Brute-force key generation:
generate U by the old method;

if f(U)=1, try again.
Conjecturally this takes

almost exactly 2 tries on average;
confirmed by experiment.

More generally, select functions
f : {2048-bit strings}

— {k-bit strings} and
g : {2048-bit strings}

— {(2048 — k)-bit strings}
with f X g invertible.

Change key-generation procedure
to produce keys U with f(U) = 0.
Then can encode U as g(U),
saving k bits.

Is f X g easy to compute
and easy to invert? Yes
for the functions we'll consider.
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— {k-bit strings} and
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with f X g invertible.

Change key-generation procedure

to produce keys U with f(U) = 0.

Then can encode U as g(U),
saving k bits.

Is f X g easy to compute
and easy to invert? Yes
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More generally, select functions
f : {2048-bit strings}

— {k-bit strings} and
g : {2048-bit strings}

— {(2048 — k)-bit strings}
with f X g invertible.

Change key-generation procedure

to produce keys U with f(U) = 0.

Then can encode U as g(U),
saving k bits.

Is f X g easy to compute
and easy to invert? Yes
for the functions we'll consider.

Do U’s exist with f(U) = 07
Conjecturally chance ~ 1/2*

for the functions we'll consider.
(Provable for f chosen randomly
from “universal” classes.)

Brute force takes ~s 2k tries;
far too slow for large k.

Can we do much better?
Yes. Will come back to this.

Are the resulting keys secure?
Not necessarily!
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for the functions we'll consider.

(Provable for f chosen randomly

from “universal” classes.)

Brute force takes ~s 2% tries;

far too slow for large k.
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Do U’s exist with f(U) = 07 The half-special number-field sieve
Conjecturally chance ~ 1/2*

1998 Lenstra: “Numbers of the
form 21924 4 ¢ . offer regular
1024-bit RSA security, as long as

for the functions we'll consider.

(Provable for f chosen randomly

from “universal” classes. . ,
) t is not much smaller than 2299

Brute force takes ~ 2% tries:; Chance of an “unusually small”

far too slow for large k. NFS polynomial is “negligible.”

Can we do much better?

| | Not true. Reducing entropy,
Yes. Will come back to this.

using f(U) = half the bits of U,
Are the resulting keys secure? reduces conjectured security level.

M
Not necessarily! Skewed NFS polynomials

(1999 Murphy) turn out to be
unusually small for these numbers.
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The half-special number-field sieve Sharing entropy

1998 Lenstra: “Numbers of the Generate random Uy
form 21924 4 ¢ . offer regular from set S of all possible keys.
1024-bit RSA security, as long as Define S1 = SN f1(f(Uy)).

t is not much smaller than 2290 "
Generate random Uy € Sy:

e.g., for f = 500th bit,
generate random Us having

Chance of an “unusually small”
NFS polynomial is “negligible.”

Not true. Reducing entropy, same 500th bit as Uj.
using f(U) = half the bits of U, Similarly generate U3, Uy, . . ..

reduces conjectured security level.
] Y Compress Us to g(Uo);

Skewed NFS polynomials compress U3 to g(U3); etc.
(1999 Murphy) turn out to be Overall (2048 — k)n + k bits

unusually small for these numbers. to store Uy, U, ..., U,.
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Generate random Ujq

from set S of all possible keys.

Define S1 = SN f1(f(Uy)).

Generate random Uy € Sy:
e.g., for f = 500th bit,
generate random Us having

same 500th bit as U;.
Similarly generate Us, Uy, . . ..

Compress Us to g(Uo);
compress U3 to g(U3); etc.
Overall (2048 — k)n + k bits
to store Uy, Uy, ..., Un.
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Sharing entropy

Generate random Ujq

from set S of all possible keys.

Define S1 = SN f1(f(Uy)).

Generate random Uy € Sy:
e.g., for f = 500th bit,
generate random Us having

same 500th bit as U;.
Similarly generate Us, U,, . . ..

Compress Us to g(Uo);
compress U3 to g(U3); etc.
Overall (2048 — k)n + k bits
to store Uy, U, ..., Un.

If distribution of Uj

Is uniform over S,

and distribution of Uy given U;
Is uniform over 57,

then distribution of Us

Is uniform over S.

So attacker’'s chance of factoring Us
Is provably identical to

attacker’'s chance of factoring Uj.
Same comment with “factoring”
replaced by “forging signatures”
etc.

Sharing entropy is provably secure.
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Is uniform over S.
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If distribution of Uj

Is uniform over S,

and distribution of Uy given U;
Is uniform over 57,

then distribution of Us

Is uniform over S.

So attacker’'s chance of factoring Us
Is provably identical to

attacker’'s chance of factoring Uj.
Same comment with “factoring”
replaced by “forging signatures”
etc.

Sharing entropy is provably secure.

Time to factor Uy and U>
can be less than double

the time for a single factorization.
(e.g., Schnorr, Eratosthenes)

Analogy: brute-force search
versus a secret-key cipher

finds n target keys in same time
as finding one target key.

Problem arises with or without
shared entropy.
(e.g., Coppersmith, Bernstein)

For safety, choose key sizes
so that (conjecturally) attacker
can't even do one factorization.
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versus a secret-key cipher
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Time to factor Uy and U>
can be less than double

the time for a single factorization.

(e.g., Schnorr, Eratosthenes)

Analogy: brute-force search
versus a secret-key cipher

finds n target keys in same time
as finding one target key.

Problem arises with or without
shared entropy.
(e.g., Coppersmith, Bernstein)

For safety, choose key sizes
so that (conjecturally) attacker
can't even do one factorization.

Perhaps time to factor U; or U>
Is below time to factor Us.

Analogy: brute-force search
finds some target key out of n
after ~ 1/n of the computation.

As before, problem arises
with or without shared entropy.

For safety, multiply conjectured
factorization success chance
(e.g. ECM success chance)

by n before choosing key sizes.
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Analogy: brute-force search
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after ~ 1/n of the computation.

As before, problem arises
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Perhaps time to factor U; or U>
Is below time to factor Us.

Analogy: brute-force search
finds some target key out of n

after ~ 1/n of the computation.

As before, problem arises
with or without shared entropy.

For safety, multiply conjectured
factorization success chance
(e.g. ECM success chance)

by n before choosing key sizes.

Is this overkill?

Are there algorithms to factor
Ui or Uy or ... or Uy
more quickly than factoring U;?

For discrete logs, prove "no”
by randomized self-reduction.

For factorization, no hope of proof
without an extra n.

Factorization literature needs to
explicitly address multiple inputs.
Maybe we're oversimplifying

by considering just one input.
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Is this overkill?

Are there algorithms to factor
Ui or Uy or ... or Uy
more quickly than factoring U;?

For discrete logs, prove "no”
by randomized self-reduction.

For factorization, no hope of proof
without an extra n.

Factorization literature needs to
explicitly address multiple inputs.
Maybe we're oversimplifying

by considering just one input.

Generating U give

Define f(U) = U 1

Reasonably fast g

with f(pq) = f(U
Choose 1024-bit p
g = 21024 | (p-1;
If not both primes
If pg > 22048 try

Conjecturally = 21
on average.



Is this overkill?

Are there algorithms to factor
Ui or Uy or ... or Uy
more quickly than factoring U;?

For discrete logs, prove "no”
by randomized self-reduction.

For factorization, no hope of proof
without an extra n.

Factorization literature needs to
explicitly address multiple inputs.
Maybe we're oversimplifying

by considering just one input.

Generating U given bottom half

Define f(U) = U mod 21024,

Reasonably fast generation of p, g
with f(pq) = f(U1), given f(U1):
Choose 1024-bit ». Compute
g = 21024 4+ (P_lf(Ul) mod 21024)_
If not both primes, try again.
If pg > 22948 try again.

Conjecturally ~ 217 tries
on average.
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Generating U given bottom half

Define f(U) = U mod 21024,

Reasonably fast generation of p, g

with f(pq) = f(U1), given f(U1):
Choose 1024-bit ». Compute

g = 21024 4+ (P_lf(Ul) mod 21024)_

If not both primes, try again.
If pg > 22948 try again.

Conjecturally ~ 217 tries
on average.

Analogous methoc
F(U) = [U/2%]
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Generating U given bottom half

Define f(U) = U mod 21024,

Reasonably fast generation of p, g

with f(pq) = f(U1), given f(U1):
Choose 1024-bit ». Compute

g = 21024 4+ (P_lf(Ul) mod 21024)_

If not both primes, try again.
If pg > 22948 try again.

Conjecturally ~ 217 tries
on average.

Analogous method works for
F(U) = (U219

Method reinvented several times.

Published 1991 Guillou Quisquater,
in context of reducing entropy:
“Some forms of the modulus

. need less storage. ...
all of the bits of the y
most significant bytes are
valued to zero.”
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Analogous method works for
F(U) = (U219

Method reinvented several times.

Published 1991 Guillou Quisquater,

in context of reducing entropy:
“Some forms of the modulus

. need less storage. ...
all of the bits of the vy
most significant bytes are
valued to zero.”

Patent application filed 1995

by Vanstone and Zuccherato:

“A method of encrypting data. ..
selecting said public key. ..
having a plurality of sets of bits,
at least one set being of a
predetermined pattern of bits. ..
and applying said public key

to encrypt the message.”

Includes some generation methods,
ranging from sensible to silly.

Granted 2000: US 6134325.
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by Vanstone and Zuccherato:

“A method of encrypting data. ..
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and app
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Includes some generation methods,

ying said public key

ot the message.”

ranging from sensible to silly.

Granted
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Patent application filed 1995
by Vanstone and Zuccherato:

“A method of encrypting data. ..

selecting said public key. ..

having a plurality of sets of bits,

at least one set being of a

predetermined pattern of bits. ..

and app
to encry

Includes

ying said public key

ot the message.”

some generation methods,

ranging from sensible to silly.

Granted

2000: US 6134325.

More patents filed by Lenstra,
responding to silly methods.

“Select a number p; ... obtain the
factor g as n'/p; check whether
the factor g is prime; if the factor

g 1s prime, compute the number

n as the product of p and g and
determine that the number n Is the
RSA modulus; and if the factor g

Is not prime, adjust g and repeat
the check of whether the factor g is

prime.”

Granted 2002: US 6404890,
US 6496929.
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More patents filed by Lenstra,
responding to silly methods.
obtain the

factor g as n'/p; check whether

“Select a number p; ...

the factor g is prime; if the factor

g 1s prime, compute the number

n as the product of p and g and
determine that the number n Is the
RSA modulus; and if the factor g

Is not prime, adjust g and repeat
the check of whether the factor g is

prime.”

Granted 2002: US 6404890,
US 6496929.
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More patents filed by Lenstra,
responding to silly methods.

“Select a number p; ... obtain the
factor g as n'/p; check whether
the factor g is prime; if the factor

g 1s prime, compute the number

n as the product of p and g and
determine that the number n Is the
RSA modulus; and if the factor g

Is not prime, adjust g and repeat
the check of whether the factor g is

prime.”

Granted 2002: US 6404890,
US 6496929.

These key-generation methods

allow compression from
2048 bits to 1024 bits.

Exactly how fast is this?
Can we make it even faster?

What if f(U) = U mod 212807
What if f(U) = U mod 21307
Do we still have fast

key-generation methods?
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These key-generation methods

allow compression from
2048 bits to 1024 bits.

Exactly how fast is this?
Can we make it even faster?

What if f(U) = U mod 212807
What if f(U) = U mod 21307
Do we still have fast

key-generation methods?

Unbalanced prime:

Take f(U) =Um

Choose 768-bit p.
If not both primes
If pg > 22048 try

This allows compr
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These key-generation methods

allow compression from
2048 bits to 1024 bits.

Exactly how fast is this?
Can we make it even faster?

What if f(U) = U mod 212807
What if f(U) = U mod 21307
Do we still have fast

key-generation methods?

Unbalanced primes

Take f(U) = U mod 21280,

Choose 768-bit ». Compute
g = 21280 + (p—l]c(Ul) mod 21280).
If not both primes, try again.
If pg > 22048 try again.

This allows compression from
2048 bits to 768 bits,

with unbalanced 7, g.

(1998 Lenstra)

ECM more dangerous than NFS!
Don't want p so small.
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Unbalanced primes

Take f(U) = U mod 21280,

Choose 768-bit ». Compute

g = 21280 + (p—l]c(Ul) mod 21280).

If not both primes, try again.
If pg > 22048 try again.

This allows compression from
2048 bits to 768 bits,

with unbalanced 7, g.

(1998 Lenstra)

ECM more dangerous than NFS!
Don't want p so small.

Primes in lattices

Take f(U) =Um

Choose 683-bit pg

q0 = Py F(U1) mc
ldea: will take p =
and q = q¢ + 2°%3

Use lattice reducti
to try to find p1, g

with (f(U1) — pogq

p190 + q1po (Mo
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Unbalanced primes Primes in lattices

Take f(U) = U mod 21280, Take f(U) = U mod 21300
Choose 768-bit p. Compute Choose 683-bit pg. Compute
q =22+ (p~1f(th) mod 212%0). g0 = py ™ F(Lh) mod 293,

If not both primes, try again. Idea: will take p = pg + 2983p4
If pg > 22048 try again. and ¢ = gg + 2°%3¢.

This allows compression from Use lattice reduction

2048 bits to 768 bits, to try to find pq, g ~ 234
with unbalanced p, g. with (f(U1) — poqo)/2°83 =
(1998 Lenstra) p190 + q1p0  (mod 2083).
ECM more dangerous than NFS! Good chance of success.
Don’'t want » so small. (2003 Coppersmith)
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Primes in lattices

Take f(U) = U mod 21300

Choose 683-bit pg. Compute
g0 = py ' f(U1) mod 2083,

ldea: will take » = pg + 7683

and q = qg + 2°%3¢;.

Use lattice reduction
to try to find pq, g ~ 234

with (f(U1) — pogo)/2°% =
p1go + q1po  (mod 2°93),
Good chance of success.

(2003 Coppersmith)
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Primes in lattices

Take f(U) = U mod 2130°

Choose 683-bit pg. Compute
g0 = py " f(U1) mod 2083,

Idea: will take p = pg + 2983p4
and ¢ = gg + 2°%3¢.

Use lattice reduction
to try to find pq, g ~ 234

with (f(U1) — pogo)/2°% =
p1go + q1po  (mod 2°93),
Good chance of success.

(2003 Coppersmith)

This allows compression from
2048 bits to 682 bits,
with balanced p, gq.

Minor flaw: uniform random pg
does not produce exactly
uniform random integer .

But confirm experimentally
that each pg has good chance
of producing at least one ».
This implies that each choice

of » has probability
not far above uniform.
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This allows compression from
2048 bits to 682 bits,
with balanced p, gq.

Minor flaw: uniform random pg
does not produce exactly
uniform random integer .

But confirm experimentally
that each pg has good chance
of producing at least one ».
This implies that each choice

of » has probability
not far above uniform.

Some open questic

Find random p, g ¢
given pq mod 2120
use higher-dimens

Or p ~ 2708 g
Doesn't seem to It
lattice effectivenes
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This allows compression from
2048 bits to 682 bits,
with balanced p, gq.

Minor flaw: uniform random pg
does not produce exactly
uniform random integer .

But confirm experimentally
that each pg has good chance
of producing at least one ».
This implies that each choice

of » has probability
not far above uniform.

Some open questions:

Find random p, g ~ 21024
given pg mod 212997 Maybe
use higher-dimensional lattices.

Or p ~s 2768 ¢~ 212807
Doesn't seem to improve
lattice effectiveness.

Find three balanced integers

given half the bits of product?

Do better with another f shape?
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Some open questions:

Find random p, g ~ 21024

given pg mod 212997 Maybe
use higher-dimensional lattices.

Or p ~s 2768 ¢~ 212807
Doesn't seem to improve
lattice effectiveness.

Find three balanced integers

given half the bits of product?

Do better with another f shape?

Key-generation sp.

Start with many p
Use trial division €
Then try 2P~ mo
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to find one prime.
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Some open questions: Key-generation speed

21024 Start with many p's.

Find random p, g ~
given pg mod 212997 Maybe Use trial division etc.
use higher-dimensional lattices. Then try 2P~ mod .

~ 20 exponentiations
Or D A~ 2768’ g~ 21280? P

, . to find one prime.
Doesn’'t seem to improve

lattice effectiveness. Traditional key generation
chooses p, g independently.

Find three balanced integers 7 o
~ 2' exponentiations.

given half the bits of product? | |
Faster, slightly non-uniform:

Do better with another f shape? build visible primes (Maurer).

If p determines q:
~ 212 exponentiations.
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Key-generation speed

Start with many p's.

Use trial division etc.
Then try 2P~ mod .
~ 20 exponentiations
to find one prime.

Traditional key generation
chooses p, g independently:.
~ 2/ exponentiations.

Faster, slightly non-uniform:
build visible primes (Maurer).

If p determines q:
~ 212 exponentiations.
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Key-generation speed

Start with many p's.

Use trial division etc.
Then try 2P~ mod .
~ 20 exponentiations
to find one prime.

Traditional key generation
chooses p, g independently:.
~ 2/ exponentiations.

Faster, slightly non-uniform:
build visible primes (Maurer).

If p determines q:
~ 212 exponentiations.

For f(U) = U mod 21998;

Eac
POO

n p determines
of 210 possible ¢'s.

Select randomly from pool

until finding a prime.

~ 2/ exponentiations.

For f(U) = U mod 213°9;
Obtain pool of pairs (p, q)

wit

1 d

dNda

al

~ 212

| different p's

different ¢g’s.
exponentiations.
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For f(U) = U mod 21998;

Eac
POO

n p determines
of 210 possible ¢'s.

Select randomly from pool

until finding a prime.

~ 2/ exponentiations.

For f(U) = U mod 213°9;
Obtain pool of pairs (p, q)

wit

1 d
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| different p's

different ¢g’s.
exponentiations.
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For f(U) = U mod 21998;
Each » determines

pool of 210 possible ¢'s.
Select randomly from pool
until finding a prime.

~ 2/ exponentiations.

For f(U) = U mod 213°9;
Obtain pool of pairs (p, q)
with all different p's

and all different ¢'s.
~ 212 exponentiations.

Can use lattice structure
to share trial divisions.

Or use batch factorization.
Still many exponentiations.

Is there a better method?

If not, might as well
take opposite approach:
compress slightly more.
Lattice reduction is fast,
so can afford many pg's
before each exponentiation.
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Can use lattice structure
to share trial divisions.

Or use batch factorization.
Still many exponentiations.

Is there a better method?

If not, might as well

take opposite approach:
compress slightly more.
Lattice reduction is fast,

so can afford many pg's
before each exponentiation.

Protocol violation:

One user generate
Second user sees ;
and generates U>.

Security of Uy was

assuming uniform
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Can use lattice structure
to share trial divisions.

Or use batch factorization.
Still many exponentiations.

Is there a better method?

If not, might as well

take opposite approach:
compress slightly more.
Lattice reduction is fast,

so can afford many pg's
before each exponentiation.

Protocol violations

One user generates Uj.
Second user sees f(U1)
and generates U>.

Security of Uy was proven
assuming uniform random Uj.

What if first user cheats,
and doesn't generate
uniform random U;?

Recall half-special NFS:
can construct rare f values
allowing easier factorization.
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Protocol violations

One user generates Uj.
Second user sees f(U1)
and generates U>.

Security of Uy was proven
assuming uniform random Uj.

What if first user cheats,
and doesn't generate
uniform random U;?

Recall half-special NFS:
can construct rare f values
allowing easier factorization.

One solution is to
generate p1, g1, Uj
from digits of r:

10th, 20th, 30th,
Not random, but «
Variant: Ui witho

Another solution 1

generate p1, g1, Uy
from SHA-256 out

Another solution 1

generate p1, 91, Uq
from 1955 RAND



Protocol violations

One user generates Uj.
Second user sees f(U1)
and generates U>.

Security of Uy was proven

assuming uniform random Uj.

What if first user cheats,
and doesn't generate
uniform random U;?

Recall half-special NFS:
can construct rare f values
allowing easier factorization.

One solution is to

generate p1, q1, U1 publicly

from digits of r:

10th, 20th, 30th, etc.

Not random, but conjecturally safe.
Variant: U; without p1, 97.

Another solution Is to
generate p1, g1, U1 publicly
from SHA-256 output.

Another solution is to

generate p1, q1, U1 publicly
from 1955 RAND tables.




