
New speed records

for point multiplication

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF CCR–9983950

Alfred P. Sloan Foundation

640838 Pentium M cycles

to compute a 32-byte secret

shared by Dan and Tanja,

given Dan’s 32-byte secret key �

and Tanja’s 32-byte public key .

All known attacks: 2128 cycles.

This is the new speed record

for high-security Diffie-Hellman.

Encrypt and authenticate messages

using hash of shared secret as key.

Diffie-Hellman is the bottleneck

if total message length is short.



New speed records

for point multiplication

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF CCR–9983950

Alfred P. Sloan Foundation

640838 Pentium M cycles

to compute a 32-byte secret

shared by Dan and Tanja,

given Dan’s 32-byte secret key �

and Tanja’s 32-byte public key .

All known attacks: 2128 cycles.

This is the new speed record

for high-security Diffie-Hellman.

Encrypt and authenticate messages

using hash of shared secret as key.

Diffie-Hellman is the bottleneck

if total message length is short.

640838 Pentium M (695) cycles

to compute � -coordinate of � th

multiple of ( � � � � ) on Curve25519,

given 0 � 1 � � � � � 2256 � 1 and
� 2254 + 8 0 � 1 � � � � � 2251 � 1 .

Curve25519 is the elliptic curve
2 = � 3 + 486662 � 2 + �

mod the prime 2255 � 19.

624786 Athlon (622) cycles;

832457 Pentium III (686) cycles;

957904 Pentium 4 (f12) cycles.

I anticipate similar cycle counts

for UltraSPARC, PowerPC, etc.



640838 Pentium M cycles

to compute a 32-byte secret

shared by Dan and Tanja,

given Dan’s 32-byte secret key �

and Tanja’s 32-byte public key .

All known attacks: 2128 cycles.

This is the new speed record

for high-security Diffie-Hellman.

Encrypt and authenticate messages

using hash of shared secret as key.

Diffie-Hellman is the bottleneck

if total message length is short.

640838 Pentium M (695) cycles

to compute � -coordinate of � th

multiple of ( � � � � ) on Curve25519,

given 0 � 1 � � � � � 2256 � 1 and
� 2254 + 8 0 � 1 � � � � � 2251 � 1 .

Curve25519 is the elliptic curve
2 = � 3 + 486662 � 2 + �

mod the prime 2255 � 19.

624786 Athlon (622) cycles;

832457 Pentium III (686) cycles;

957904 Pentium 4 (f12) cycles.

I anticipate similar cycle counts

for UltraSPARC, PowerPC, etc.



640838 Pentium M cycles

to compute a 32-byte secret

shared by Dan and Tanja,

given Dan’s 32-byte secret key �

and Tanja’s 32-byte public key .

All known attacks: 2128 cycles.

This is the new speed record

for high-security Diffie-Hellman.

Encrypt and authenticate messages

using hash of shared secret as key.

Diffie-Hellman is the bottleneck

if total message length is short.

640838 Pentium M (695) cycles

to compute � -coordinate of � th

multiple of ( � � � � ) on Curve25519,

given 0 � 1 � � � � � 2256 � 1 and
� 2254 + 8 0 � 1 � � � � � 2251 � 1 .

Curve25519 is the elliptic curve
2 = � 3 + 486662 � 2 + �

mod the prime 2255 � 19.

624786 Athlon (622) cycles;

832457 Pentium III (686) cycles;

957904 Pentium 4 (f12) cycles.

I anticipate similar cycle counts

for UltraSPARC, PowerPC, etc.

Immune to timing attacks,

including cache-timing attacks,

including hyperthreading attacks.

No data-dependent branches;

no data-dependent indexing.

Software is in public domain.

16 kilobytes when compiled.

cr.yp.to/ecdh.html

No known patent problems.

For comparison, Brown et al.:

much smaller prime, 2192 � 264 � 1;

780000 PII cycles; given;
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Avoiding all time variability
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1. For 0 � 1 , compute � [ ]

as � [1] + (1 � ) � [0] or similar.

Avoids data-dependent indexing.

Costs 36210 fp ops (6%).

2. Compute final reciprocal

by Fermat, not extended Euclid.

Avoids data-dependent branching.

3. Don’t branch for remainders.

Allow non-least remainders.

No cost—this saves time!
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represented in radix 225 � 5

as a sum of 10 fp numbers

in specified ranges.

Add/sub: 10 fp adds/subs.

Delay reductions and carries!

Mult: poly mult using

102 fp mults, 92 fp adds;

reduce using 9 fp mults, 9 fp adds;

carry 11 times, each 4 fp adds;

overall 2 � 102 + 4 � 10 + 3 fp ops.

Squaring: start with 9 fp doublings;

then eliminate 92 + 9 fp ops;

overall 1 � 102 + 6 � 10 + 2 fp ops.
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Understand and eliminate

non-fp-op cycles.

(I have more work to do here for
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Lets me write desired code

with much less human time than

traditional asm and C compiler.

Have also used for fast AES,

fast Poly1305, fast Salsa20, etc.
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Half-size prime: e.g., 2127 � 1.

Select curve to make some

mults easier, like choosing .

Should count fp ops instead.

Prediction: this will beat genus 1.
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