New speed records for point multiplication
D. J. Bernstein

Thanks to:
University of Illinois at Chicago
NSF CCR-9983950
Alfred P. Sloan Foundation

640838 Pentium M cycles to compute a 32-byte secret shared by Dan and Tanja, given Dan's 32-byte secret key n and Tanja's 32-byte public key K. All known attacks: $>2^{128}$ cycles.

This is the new speed record for high-security Diffie-Hellman.

Encrypt and authenticate messages using hash of shared secret as key. Diffie-Hellman is the bottleneck if total message length is short.
ation

is at Chicago

undation

640838 Pentium M cycles
to compute a 32-byte secret shared by Dan and Tanja, given Dan's 32-byte secret key n and Tanja's 32-byte public key K.

All known attacks: $>2^{128}$ cycles.
This is the new speed record for high-security Diffie-Hellman.

Encrypt and authenticate messages using hash of shared secret as key. Diffie-Hellman is the bottleneck if total message length is short.

640838 Pentium N to compute x-coo multiple of $(K, \ldots$ given $K \in\{0,1$, .
$n \in 2^{254}+8\{0,1$,
Curve25519 is the $y^{2}=x^{3}+486662$ mod the prime 2^{25}

624786 Athlon (62 832457 Pentium II 957904 Pentium 4 I anticipate similar for UltraSPARC,

640838 Pentium M cycles to compute a 32-byte secret shared by Dan and Tanja, given Dan's 32-byte secret key n and Tanja's 32-byte public key K.

All known attacks: $>2^{128}$ cycles.
This is the new speed record for high-security Diffie-Hellman.

Encrypt and authenticate messages using hash of shared secret as key. Diffie-Hellman is the bottleneck if total message length is short.

640838 Pentium M (695) cycles to compute x-coordinate of nth multiple of (K, \ldots) on Curve25519, given $K \in\left\{0,1, \ldots, 2^{256}-1\right\}$ and $n \in 2^{254}+8\left\{0,1, \ldots, 2^{251}-1\right\}$.

Curve25519 is the elliptic curve $y^{2}=x^{3}+486662 x^{2}+x$ \bmod the prime $2^{255}-19$.

624786 Athlon (622) cycles; 832457 Pentium III (686) cycles; 957904 Pentium 4 (f12) cycles. I anticipate similar cycle counts for UltraSPARC, PowerPC, etc.

1 cycles

yte secret
Tanja, te secret key n te public key K.
$>2^{128}$ cycles.
eed record iffie-Hellman.
nticate messages
ed secret as key.
he bottleneck ngth is short.

640838 Pentium M (695) cycles to compute x-coordinate of nth multiple of (K, \ldots) on Curve25519, given $K \in\left\{0,1, \ldots, 2^{256}-1\right\}$ and $n \in 2^{254}+8\left\{0,1, \ldots, 2^{251}-1\right\}$.

Curve25519 is the elliptic curve $y^{2}=x^{3}+486662 x^{2}+x$ \bmod the prime $2^{255}-19$.

624786 Athlon (622) cycles; 832457 Pentium III (686) cycles; 957904 Pentium 4 (f12) cycles. I anticipate similar cycle counts for UltraSPARC, PowerPC, etc.

Immune to timing including cache-tir including hyperthr No data-dependen no data-dependen

Software is in pub 16 kilobytes when cr.yp.to/ecdh.

No known patent
For comparison, B much smaller prim 780000 PII cycles; no timing-attack

640838 Pentium M (695) cycles to compute x-coordinate of nth multiple of (K, \ldots) on Curve25519, given $K \in\left\{0,1, \ldots, 2^{256}-1\right\}$ and $n \in 2^{254}+8\left\{0,1, \ldots, 2^{251}-1\right\}$.

Curve25519 is the elliptic curve $y^{2}=x^{3}+486662 x^{2}+x$ mod the prime $2^{255}-19$.

624786 Athlon (622) cycles; 832457 Pentium III (686) cycles; 957904 Pentium 4 (f12) cycles. I anticipate similar cycle counts for UltraSPARC, PowerPC, etc.

Immune to timing attacks, including cache-timing attacks, including hyperthreading attacks.
No data-dependent branches; no data-dependent indexing.

Software is in public domain. 16 kilobytes when compiled. cr.yp.to/ecdh.html

No known patent problems.
For comparison, Brown et al.:
much smaller prime, $2^{192}-2^{64}-1$;
780000 PII cycles; y given;
no timing-attack protection.

1 (695) cycles dinate of nth) on Curve25519,
., $\left.2^{256}-1\right\}$ and
$\left.\ldots, 2^{251}-1\right\}$.
elliptic curve
$x^{2}+x$
$5-19$.
2) cycles;

I (686) cycles; (f12) cycles.
cycle counts owerPC, etc.

Immune to timing attacks, including cache-timing attacks, including hyperthreading attacks.
No data-dependent branches; no data-dependent indexing.

Software is in public domain.
16 kilobytes when compiled.
cr.yp.to/ecdh.html
No known patent problems.
For comparison, Brown et al.:
much smaller prime, $2^{192}-2^{64}-1$; 780000 PII cycles; y given; no timing-attack protection.

Where are the cyc
Focus today on P
Fastest arithmetic uses floating-point fp adds, fp subs, f

Each Pentium M $\leq 1 \mathrm{fp}$ op.

Point multiplicatic 589825 fp ops; \approx

Understand cycle by simply counting

Immune to timing attacks, including cache-timing attacks, including hyperthreading attacks.
No data-dependent branches; no data-dependent indexing.

Software is in public domain.
16 kilobytes when compiled.
cr.yp.to/ecdh.html
No known patent problems.
For comparison, Brown et al.:
much smaller prime, $2^{192}-2^{64}-1$;
780000 PII cycles; y given;
no timing-attack protection.

Where are the cycles going?

Focus today on Pentium M.
Fastest arithmetic on Pentium M uses floating-point operations: $f p$ adds, $f p$ subs, $f p$ mults.

Each Pentium M cycle does $\leq 1 \mathrm{fp}$ op.

Point multiplication: 640838 cycles. 589825 fp ops; ≈ 0.92 per cycle.

Understand cycle counts fairly well by simply counting fp ops.

attacks,

 ning attacks, eading attacks.t branches; indexing.
lic domain.
compiled.
ntml
problems.
rown et al.:
e, $2^{192}-2^{64}-1$;
y given;
rotection.

Where are the cycles going?

Focus today on Pentium M.
Fastest arithmetic on Pentium M uses floating-point operations: $f p$ adds, $f p$ subs, $f p$ mults.

Each Pentium M cycle does
$\leq 1 \mathrm{fp}$ op.
Point multiplication: 640838 cycles. 589825 fp ops; ≈ 0.92 per cycle.

Understand cycle counts fairly well by simply counting fp ops.

Avoiding all time to stop timing att

1. For $b \in\{0,1\}$, as $b x[1]+(1-b)$: Avoids data-depen Costs 36210 fp op
2. Compute final by Fermat, not ex Avoids data-depen
3. Don't branch f Allow non-least re No cost-this save

Where are the cycles going?

Focus today on Pentium M.
Fastest arithmetic on Pentium M uses floating-point operations: $f p$ adds, fp subs, fp mults.

Each Pentium M cycle does
$\leq 1 \mathrm{fp}$ op.
Point multiplication: 640838 cycles. 589825 fp ops; ≈ 0.92 per cycle.

Understand cycle counts fairly well by simply counting fp ops.

Avoiding all time variability to stop timing attacks:

1. For $b \in\{0,1\}$, compute $x[b]$
as $b x[1]+(1-b) x[0]$ or similar.
Avoids data-dependent indexing.
Costs 36210 fp ops (6\%).
2. Compute final reciprocal
by Fermat, not extended Euclid.
Avoids data-dependent branching.
3. Don't branch for remainders. Allow non-least remainders.
No cost-this saves time!

les going?

entium M.
on Pentium M operations:
p mults.
cycle does
n: 640838 cycles.
0.92 per cycle.
counts fairly well
fp ops.

Avoiding all time variability to stop timing attacks:

1. For $b \in\{0,1\}$, compute $x[b]$ as $b x[1]+(1-b) x[0]$ or similar.
Avoids data-dependent indexing.
Costs 36210 fp ops (6\%).
2. Compute final reciprocal
by Fermat, not extended Euclid. Avoids data-dependent branching.
3. Don't branch for remainders. Allow non-least remainders.
No cost-this saves time!

Main loop: 54570 2140 times 255 it

Reciprocal: 43821 $41148=254 \cdot 162$ $2673=11 \cdot 243 \mathrm{fo}$

Additional work:
Inside one main-lo $80=8 \cdot 10$ for 8 a 55 for mult by 121 $648=4 \cdot 162$ for $1215=5 \cdot 243$ for 142 for $b x[1]+(1$

Avoiding all time variability to stop timing attacks:

1. For $b \in\{0,1\}$, compute $x[b]$
as $b x[1]+(1-b) x[0]$ or similar.
Avoids data-dependent indexing.
Costs 36210 fp ops (6\%).
2. Compute final reciprocal
by Fermat, not extended Euclid.
Avoids data-dependent branching.
3. Don't branch for remainders.

Allow non-least remainders.
No cost-this saves time!

Main loop: 545700 fp ops (92.5\%). 2140 times 255 iterations.

Reciprocal: 43821 fp ops (7.4\%).
$41148=254 \cdot 162$ for 254 squarings;
$2673=11 \cdot 243$ for 11 more mults.
Additional work: 304 fp ops.
Inside one main-loop iteration:
$80=8 \cdot 10$ for 8 adds/subs;
55 for mult by 121665 ;
$648=4 \cdot 162$ for 4 squarings;
$1215=5 \cdot 243$ for 5 more mults;
142 for $b x[1]+(1-b) x[0]$ etc.
variability acks:
compute $x[b]$ $x[0]$ or similar. dent indexing.
s (6\%). reciprocal tended Euclid. dent branching.
or remainders.
mainders.
es time!

Main loop: 545700 fp ops (92.5\%). 2140 times 255 iterations.

Reciprocal: 43821 fp ops (7.4\%).
$41148=254 \cdot 162$ for 254 squarings; $2673=11 \cdot 243$ for 11 more mults.

Additional work: 304 fp ops.
Inside one main-loop iteration:
$80=8 \cdot 10$ for 8 adds/subs;
55 for mult by 121665 ;
$648=4 \cdot 162$ for 4 squarings;
$1215=5 \cdot 243$ for 5 more mults;
142 for $b x[1]+(1-b) x[0]$ etc.

An integer $\bmod 2^{2}$ represented in rad as a sum of 10 fp in specified ranges

Add/sub: 10 fp ac Delay reductions a

Mult: poly mult u $10^{2} \mathrm{fp}$ mults, $9^{2} \mathrm{f}$ reduce using 9 fp carry 11 times, ea overall $2 \cdot 10^{2}+4$

Squaring: start wi then eliminate 9^{2} overall $1 \cdot 10^{2}+6$

Main loop: 545700 fp ops (92.5\%). 2140 times 255 iterations.

Reciprocal: 43821 fp ops (7.4\%).
$41148=254 \cdot 162$ for 254 squarings;
$2673=11 \cdot 243$ for 11 more mults.
Additional work: 304 fp ops.
Inside one main-loop iteration:
$80=8 \cdot 10$ for 8 adds/subs;
55 for mult by 121665 ;
$648=4 \cdot 162$ for 4 squarings;
$1215=5 \cdot 243$ for 5 more mults;
142 for $b x[1]+(1-b) x[0]$ etc.

An integer $\bmod 2^{255}-19$ is represented in radix $2^{25.5}$ as a sum of 10 fp numbers in specified ranges.

Add/sub: 10 fp adds/subs. Delay reductions and carries!

Mult: poly mult using $10^{2} \mathrm{fp}$ mults, $9^{2} \mathrm{fp}$ adds;
reduce using 9 fp mults, 9 fp adds;
carry 11 times, each 4 fp adds; overall $2 \cdot 10^{2}+4 \cdot 10+3 \mathrm{fp}$ ops.

Squaring: start with 9 fp doublings; then eliminate $9^{2}+9 \mathrm{fp}$ ops; overall $1 \cdot 10^{2}+6 \cdot 10+2 \mathrm{fp}$ ops.

0 fp ops (92.5\%). rations.
fp ops (7.4\%).
for 254 squarings;
r 11 more mults.
304 fp ops.
op iteration:
dds/subs;
665;
squarings;
5 more mults;
$-b) x[0]$ etc.

An integer $\bmod 2^{255}-19$ is represented in radix $2^{25.5}$
as a sum of 10 fp numbers in specified ranges.

Add/sub: 10 fp adds/subs. Delay reductions and carries!

Mult: poly mult using $10^{2} \mathrm{fp}$ mults, $9^{2} \mathrm{fp}$ adds; reduce using 9 fp mults, 9 fp adds; carry 11 times, each 4 fp adds; overall $2 \cdot 10^{2}+4 \cdot 10+3 \mathrm{fp}$ ops.

Squaring: start with 9 fp doublings; then eliminate $9^{2}+9 \mathrm{fp}$ ops; overall $1 \cdot 10^{2}+6 \cdot 10+2 \mathrm{fp}$ ops.

How was the prim
Use prime close to to save time in fie

Also reduces NFS so would need larg traditional discrete but doesn't seem

Use prime not far to avoid wasting b

Comfortable secur $2^{253}+39,2^{253}+$ $2^{255}-31,2^{255}-$

An integer $\bmod 2^{255}-19$ is
represented in radix $2^{25.5}$
as a sum of 10 fp numbers in specified ranges.

Add/sub: 10 fp adds/subs.
Delay reductions and carries!
Mult: poly mult using $10^{2} \mathrm{fp}$ mults, $9^{2} \mathrm{fp}$ adds;
reduce using 9 fp mults, 9 fp adds;
carry 11 times, each 4 fp adds; overall $2 \cdot 10^{2}+4 \cdot 10+3 \mathrm{fp}$ ops.

Squaring: start with 9 fp doublings; then eliminate $9^{2}+9 \mathrm{fp}$ ops; overall $1 \cdot 10^{2}+6 \cdot 10+2 \mathrm{fp}$ ops.

How was the prime chosen?

Use prime close to power of 2 to save time in field operations.

Also reduces NFS exponent, so would need larger prime for traditional discrete-log systems; but doesn't seem to affect ECDL.

Use prime not far below $2^{32 k}$ to avoid wasting bandwidth.

Comfortable security, $k=8$:
$2^{253}+39,2^{253}+51,2^{254}+79$,
$2^{255}-31,2^{255}-19,2^{255}+95$.
$55-19$ is
$\times 2^{25.5}$
numbers
dds/subs.
nd carries!
sing
o adds;
mults, 9 fp adds;
ch 4 fp adds;

- $10+3 \mathrm{fp}$ ops.
th 9 fp doublings;
+9 fp ops;
$10+2 \mathrm{fp}$ ops.

How was the prime chosen?

Use prime close to power of 2 to save time in field operations.

Also reduces NFS exponent, so would need larger prime for traditional discrete-log systems; but doesn't seem to affect ECDL.

Use prime not far below $2^{32 k}$ to avoid wasting bandwidth.

Comfortable security, $k=8$:
$2^{253}+39,2^{253}+51,2^{254}+79$,
$2^{255}-31,2^{255}-19,2^{255}+95$.

Bender, Castagnol
" $2^{127}+24933$ is p
... For this curve convenient in com we also give ..."

I use the prime 2^{2} convenient for the No trouble from patent 5159632 fil

How was the prime chosen?

Use prime close to power of 2 to save time in field operations.

Also reduces NFS exponent, so would need larger prime for traditional discrete-log systems; but doesn't seem to affect ECDL.

Use prime not far below $2^{32 k}$ to avoid wasting bandwidth.

Comfortable security, $k=8$:
$2^{253}+39,2^{253}+51,2^{254}+79$,
$2^{255}-31,2^{255}-19,2^{255}+95$.

Bender, Castagnoli, CRYPTO '89:
" $2^{127}+24933$ is prime.
... For this curve which is
convenient in computer arithmetic we also give ..."

I use the prime $2^{255}-19$, convenient for the same reasons. No trouble from "shift and add" patent 5159632 filed 1991.09.17.

e chosen?

power of 2 ld operations.
exponent,
er prime for -log systems; to affect ECDL.
below $2^{32 k}$
andwidth.
ity, $k=8$:
$51,2^{254}+79$
$19,2^{255}+95$.

Bender, Castagnoli, CRYPTO '89:

" $2^{127}+24933$ is prime.
... For this curve which is
convenient in computer arithmetic we also give ..."

I use the prime $2^{255}-19$, convenient for the same reasons. No trouble from "shift and add" patent 5159632 filed 1991.09.17.

How was the curv
Use Montgomery $y^{2}=x^{3}+A x^{2}+$ to save time in cu and to avoid squa

Choose $(A-2) / 4$ to save time in cu

Montgomery's rec

$$
\begin{aligned}
& z_{1}=1 ; x_{2 m}=\left(x^{2}\right. \\
& z_{2 m}=4 x_{m} z_{m}\left(x_{n}^{2}\right. \\
& x_{2 m+1}=4\left(x_{m} x_{m}\right. \\
& z_{2 m+1}=4\left(x_{m} z_{m}\right. \\
& \text { then } n(K, \ldots)=
\end{aligned}
$$

Bender, Castagnoli, CRYPTO '89:
" $2^{127}+24933$ is prime.
... For this curve which is
convenient in computer arithmetic we also give ..."

I use the prime $2^{255}-19$, convenient for the same reasons. No trouble from "shift and add" patent 5159632 filed 1991.09.17.

How was the curve chosen?

Use Montgomery shape
$y^{2}=x^{3}+A x^{2}+x$
to save time in curve operations and to avoid square roots.

Choose $(A-2) / 4$ as small integer to save time in curve operations.

Montgomery's recursion: $x_{1}=K$; $z_{1}=1 ; x_{2 m}=\left(x_{m}^{2}-z_{m}^{2}\right)^{2}$;
$z_{2 m}=4 x_{m} z_{m}\left(x_{m}^{2}+A x_{m} z_{m}+z_{m}^{2}\right)$;
$x_{2 m+1}=4\left(x_{m} x_{m+1}-z_{m} z_{m+1}\right)^{2}$;
$z_{2 m+1}=4\left(x_{m} z_{m+1}-z_{m} x_{m+1}\right)^{2} K$;
then $n(K, \ldots)=\left(x_{n} / z_{n}, \ldots\right)$.

CRYPTO '89:

rime.
which is
puter arithmetic
$55-19$
same reasons.
shift and add"
ed 1991.09.17.

How was the curve chosen?
Use Montgomery shape $y^{2}=x^{3}+A x^{2}+x$
to save time in curve operations and to avoid square roots.

Choose $(A-2) / 4$ as small integer to save time in curve operations.

Montgomery's recursion: $x_{1}=K$;
$z_{1}=1 ; x_{2 m}=\left(x_{m}^{2}-z_{m}^{2}\right)^{2}$;
$z_{2 m}=4 x_{m} z_{m}\left(x_{m}^{2}+A x_{m} z_{m}+z_{m}^{2}\right)$;
$x_{2 m+1}=4\left(x_{m} x_{m+1}-z_{m} z_{m+1}\right)^{2}$;
$z_{2 m+1}=4\left(x_{m} z_{m+1}-z_{m} x_{m+1}\right)^{2} K$; then $n(K, \ldots)=\left(x_{n} / z_{n}, \ldots\right)$.

How was the curve chosen?
Use Montgomery shape
$y^{2}=x^{3}+A x^{2}+x$
to save time in curve operations and to avoid square roots.

Choose $(A-2) / 4$ as small integer to save time in curve operations.

Montgomery's recursion: $x_{1}=K$; $z_{1}=1 ; x_{2 m}=\left(x_{m}^{2}-z_{m}^{2}\right)^{2}$; $z_{2 m}=4 x_{m} z_{m}\left(x_{m}^{2}+A x_{m} z_{m}+z_{m}^{2}\right)$; $x_{2 m+1}=4\left(x_{m} x_{m+1}-z_{m} z_{m+1}\right)^{2}$; $z_{2 m+1}=4\left(x_{m} z_{m+1}-z_{m} x_{m+1}\right)^{2} K$; then $n(K, \ldots)=\left(x_{n} / z_{n}, \ldots\right)$.

shape
x
rve operations e roots.
as small integer rve operations.
ursion: $x_{1}=K$
$\left.{ }_{n}-z_{m}^{2}\right)^{2}$
$\left.+A x_{m} z_{m}+z_{m}^{2}\right)$
$\left.+1-z_{m} z_{m+1}\right)^{2}$
$\left.+1-z_{m} x_{m+1}\right)^{2} K$;
$\left.x_{n} / z_{n}, \ldots\right)$.

Reject A unless cu orders are $\{4 \cdot$ prin Montgomery shap characteristic in 4

For $A=486662$: 8 times prime p_{1} The twist has ord 4 times prime $p_{2}=$

Reject A unless curve and twist orders are $\{4 \cdot$ prime, $8 \cdot$ prime $\}$. Montgomery shape forces 4; characteristic in $4 \mathbf{Z}+1$ forces 4,8 .

For $A=486662$: Curve has order 8 times prime $p_{1}=2^{252}+\cdots$. The twist has order 4 times prime $p_{2}=2^{253}-\cdots$.

Reject A unless curve and twist orders are $\{4 \cdot$ prime, $8 \cdot$ prime $\}$.
Montgomery shape forces 4 ; characteristic in $4 \mathbf{Z}+1$ forces 4,8 .

For $A=486662$: Curve has order 8 times prime $p_{1}=2^{252}+\cdots$.
The twist has order
4 times prime $p_{2}=2^{253}-\cdots$.

For $A=358990$:
One prime is 2^{252} so user's secret ke $n \in 2^{254}+8\{0,1$, could be 8 times t Extremely unlikely but annoys implen so reject this A.

Reject A unless curve and twist orders are $\{4 \cdot$ prime, $8 \cdot$ prime $\}$. Montgomery shape forces 4; characteristic in $4 \mathbf{Z}+1$ forces 4,8 .

For $A=486662$: Curve has order 8 times prime $p_{1}=2^{252}+\cdots$.
The twist has order
4 times prime $p_{2}=2^{253}-\cdots$.

For $A=358990$:
One prime is 2^{252} so user's secret key
$n \in 2^{254}+8\left\{0,1, \ldots, 2^{251}-1\right\}$
could be 8 times that prime.
Extremely unlikely,
but annoys implementors, so reject this A.
rve and twist
ne, $8 \cdot$ prime $\}$.
e forces 4 ;
$\mathbf{Z}+1$ forces 4,8 .
Curve has order
$=2^{252}+\cdots$.
$=2^{253}-\cdots$.

For $A=358990$:
One prime is $2^{252}-\cdots$,
so user's secret key
$n \in 2^{254}+8\left\{0,1, \ldots, 2^{251}-1\right\}$
could be 8 times that prime.
Extremely unlikely,
but annoys implementors, so reject this A.

Note on comparin and comparing co Count fp ops, not Otherwise you ma

Reality: mult by s is as expensive as

Reality: square-to is $2 / 3$ for this fielc

Reality: $a^{2}+b^{2}+$ faster than $\left(a^{2}, b^{2}\right.$

For $A=358990$:
One prime is 2^{252}

so user's secret key
$n \in 2^{254}+8\left\{0,1, \ldots, 2^{251}-1\right\}$
could be 8 times that prime.
Extremely unlikely,
but annoys implementors, so reject this A.

Note on comparing curves and comparing coordinate systems:
Count fp ops, not field ops! Otherwise you make bad choices.

Reality: mult by small constant is as expensive as several adds.

Reality: square-to-multiply ratio is $2 / 3$ for this field, not $4 / 5$.

Reality: $a^{2}+b^{2}+c^{2}$ is faster than $\left(a^{2}, b^{2}, c^{2}\right)$.

Note on comparing curves and comparing coordinate systems:
Count fp ops, not field ops!
Otherwise you make bad choices.
Reality: mult by small constant is as expensive as several adds.

Reality: square-to-multiply ratio is $2 / 3$ for this field, not $4 / 5$.

Reality: $a^{2}+b^{2}+c^{2}$ is faster than $\left(a^{2}, b^{2}, c^{2}\right)$.

How was the key

Public key for secr is x-coordinate of of standard base p

Base-point order i so uniform randon $2^{251}+\{0,1,2, \ldots$ produces almost e random public key among $\approx 2^{251}$ pos

The addition of 2^{2} and avoids timing

Note on comparing curves
and comparing coordinate systems:
Count fp ops, not field ops!
Otherwise you make bad choices.
Reality: mult by small constant is as expensive as several adds.

Reality: square-to-multiply ratio is $2 / 3$ for this field, not $4 / 5$.

Reality: $a^{2}+b^{2}+c^{2}$ is faster than $\left(a^{2}, b^{2}, c^{2}\right)$.

How was the key range chosen?

Public key for secret key n is x-coordinate of nth multiple of standard base point $(9, \ldots)$.

Base-point order is $p_{1} \approx 2^{252}$, so uniform random n in
$2^{251}+\left\{0,1,2, \ldots, 2^{251}-1\right\}$
produces almost exactly uniform random public key from among $\approx 2^{251}$ possibilities.

The addition of 2^{251} avoids ∞ and avoids timing attacks.

g curves

ordinate systems: field ops!
ke bad choices.
mall constant
several adds.
multiply ratio
, not 4/5.
c^{2} is
$\left.c^{2}\right)$

How was the key range chosen?

Public key for secret key n is x-coordinate of nth multiple of standard base point $(9, \ldots)$.

Base-point order is $p_{1} \approx 2^{252}$, so uniform random n in $2^{251}+\left\{0,1,2, \ldots, 2^{251}-1\right\}$ produces almost exactly uniform random public key from among $\approx 2^{251}$ possibilities.

The addition of 2^{251} avoids ∞ and avoids timing attacks.

Miller, CRYPTO
"For the key exch only the x-coordin transmitted. The multiples of a poir first section make x-coordinate of a only on the x-coor original point."

This is the compre use. No trouble fr compression" pate 1994.07.29.

How was the key range chosen?

Public key for secret key n is x-coordinate of nth multiple of standard base point $(9, \ldots)$.

Base-point order is $p_{1} \approx 2^{252}$,
so uniform random n in
$2^{251}+\left\{0,1,2, \ldots, 2^{251}-1\right\}$
produces almost exactly uniform random public key from among $\approx 2^{251}$ possibilities.

The addition of 2^{251} avoids ∞ and avoids timing attacks.

Miller, CRYPTO '85:

"For the key exchange... only the x-coordinate needs to be transmitted. The formulas for multiples of a point cited in the first section make it clear that the x-coordinate of a multiple depends only on the x-coordinate of the original point."

This is the compression method I use. No trouble from "point compression" patent 6141420 filed 1994.07.29.

ange chosen?

et key n
nth multiple oint $(9, \ldots)$.
$p_{1} \approx 2^{252}$
n in
, $\left.2^{251}-1\right\}$
xactly uniform
from
sibilities.
51 avoids ∞ attacks.

Miller, CRYPTO '85:
"For the key exchange... only the x-coordinate needs to be transmitted. The formulas for multiples of a point cited in the first section make it clear that the x-coordinate of a multiple depends only on the x-coordinate of the original point."

This is the compression method I use. No trouble from "point compression" patent 6141420 filed 1994.07.29.

Insert factor of 8 in case (K, \ldots) is in this group of or

Three possibilities ∞, output as 0 ; or a nontrivial poi in the desired prim or a nontrivial poi in the twist prime

Don't spend time "validating" K, i. ϵ checking it's in de

Miller, CRYPTO '85:

"For the key exchange...
only the x-coordinate needs to be transmitted. The formulas for multiples of a point cited in the first section make it clear that the x-coordinate of a multiple depends only on the x-coordinate of the original point."

This is the compression method I use. No trouble from "point compression" patent 6141420 filed 1994.07.29.

Insert factor of 8 into n in case (K, \ldots) is not actually in this group of order p_{1}.

Three possibilities for $8(K, \ldots)$:
∞, output as 0 ;
or a nontrivial point in the desired prime group;
or a nontrivial point in the twist prime group.

Don't spend time "validating" K, i.e., checking it's in desired group.
ange ...
ate needs to be formulas for
it cited in the
it clear that the
multiple depends dinate of the
ssion method I
om "point
nt 6141420 filed

Insert factor of 8 into n in case (K, \ldots) is not actually in this group of order p_{1}.

Three possibilities for $8(K, \ldots)$: ∞, output as 0 ;
or a nontrivial point
in the desired prime group;
or a nontrivial point
in the twist prime group.
Don't spend time "validating" K, i.e., checking it's in desired group.

Even if attacker w same n times poir would still need to hash-Diffie-Hellma of these two prime

For uniform rando provably requires at least one of the Curve and twist b

No known way to limited exponent r Often used in Diff for multiplicative

Insert factor of 8 into n
in case (K, \ldots) is not actually in this group of order p_{1}.

Three possibilities for $8(K, \ldots)$:
∞, output as 0 ;
or a nontrivial point
in the desired prime group;
or a nontrivial point
in the twist prime group.
Don't spend time
"validating" K, i.e., checking it's in desired group.

Even if attacker were given same n times point on twist, would still need to break hash-Diffie-Hellman for product of these two prime groups.

For uniform random exponent, provably requires breaking at least one of the prime groups.
Curve and twist both seem secure.
No known way to exploit limited exponent range.
Often used in Diffie-Hellman for multiplicative group.

nto n

not actually der p_{1}.
for $8(K, \ldots)$:

nt

e group;
group.
sired group.

Even if attacker were given same n times point on twist, would still need to break hash-Diffie-Hellman for product of these two prime groups.

For uniform random exponent, provably requires breaking at least one of the prime groups. Curve and twist both seem secure.

No known way to exploit limited exponent range.
Often used in Diffie-Hellman for multiplicative group.

Bernstein, sci.cryp
"You can happily transmission and In fact, if both the twist have nearly you can even skip

I use a curve of th No trouble from rı "public-key validat filed 2003.

Even if attacker were given same n times point on twist, would still need to break hash-Diffie-Hellman for product of these two prime groups.

For uniform random exponent, provably requires breaking at least one of the prime groups. Curve and twist both seem secure.

No known way to exploit limited exponent range.
Often used in Diffie-Hellman for multiplicative group.

Bernstein, sci.crypt, 2001.11.09:
"You can happily skip both the y transmission and the square root. In fact, if both the curve and its twist have nearly prime order, then you can even skip square testing."

I use a curve of this type.
No trouble from rumored new "public-key validation" patent filed 2003.

ere given

t on twist, break
n for product
groups.
m exponent, oreaking
prime groups.
th seem secure.
exploit
ange.
ie-Hellman
roup.

Bernstein, sci.crypt, 2001.11.09:
"You can happily skip both the y transmission and the square root. In fact, if both the curve and its twist have nearly prime order, then you can even skip square testing."

I use a curve of this type.
No trouble from rumored new "public-key validation" patent filed 2003.

How was the softv
Common phenom Write fp op seque Feed it to C comp to produce machir Observe that cycle is much larger tha sometimes 5 or m

Have faith. Don't Understand and el non-fp-op cycles.
(I have more work Athlon et al. Expe

Bernstein, sci.crypt, 2001.11.09:
"You can happily skip both the y transmission and the square root. In fact, if both the curve and its twist have nearly prime order, then you can even skip square testing."

I use a curve of this type.
No trouble from rumored new "public-key validation" patent filed 2003.

How was the software built?

Common phenomenon:
Write fp op sequence in C.
Feed it to C compiler
to produce machine language.
Observe that cycles/fp ops is much larger than 1 :
sometimes 5 or more!
Have faith. Don't accept >1.1.
Understand and eliminate non-fp-op cycles.
(I have more work to do here for Athlon et al. Expect speedups.)
t, 2001.11.09:
skip both the y he square root. curve and its orime order, then square testing."
is type.
umored new
ion" patent

How was the software built?

Common phenomenon:
Write fp op sequence in C .
Feed it to C compiler
to produce machine language.
Observe that cycles/fp ops
is much larger than 1 :
sometimes 5 or more!
Have faith. Don't accept >1.1.
Understand and eliminate non-fp-op cycles.
(I have more work to do here for Athlon et al. Expect speedups.)

Some important d

- 3-cycle "load" copying data fro "register" for ari Only 8 registers.
- 3-cycle fp add la
- 5-cycle fp mult

An op waits if its aren't ready. CPU ability to reorder c uses greedy algorit

How was the software built?

Common phenomenon:
Write fp op sequence in C.
Feed it to C compiler
to produce machine language.
Observe that cycles/fp ops
is much larger than 1 :
sometimes 5 or more!
Have faith. Don't accept >1.1.
Understand and eliminate non-fp-op cycles.
(I have more work to do here for Athlon et al. Expect speedups.)

Some important delays:

- 3-cycle "load" latency, copying data from "cache" to "register" for arithmetic.
Only 8 registers.
- 3-cycle fp add latency.
- 5-cycle fp mult latency.

An op waits if its inputs aren't ready. CPU has some ability to reorder ops, but uses greedy algorithm; suboptimal.

vare built?

non:
nce in C.
iler
e language.
/fp ops
n 1:
ore!
accept >1.1.
iminate
to do here for ct speedups.)

Some important delays:

- 3-cycle "load" latency, copying data from "cache" to "register" for arithmetic.
Only 8 registers.
- 3-cycle fp add latency.
- 5-cycle fp mult latency.

An op waits if its inputs aren't ready. CPU has some ability to reorder ops, but uses greedy algorithm; suboptimal.

Can't rely on C co to sensibly permut

Sometimes $r \leftarrow a$ $r \leftarrow r+c ; r \leftarrow r$ a sequence of exac best done as, e.g., $s \leftarrow a+c ; r \leftarrow r$

But sometimes r is a non-associativ deliberately round

The C language h to express this dis

Some important delays:

- 3-cycle "load" latency, copying data from "cache" to "register" for arithmetic.
Only 8 registers.
- 3-cycle fp add latency.
- 5-cycle fp mult latency.

An op waits if its inputs aren't ready. CPU has some ability to reorder ops, but uses greedy algorithm; suboptimal.

Can't rely on C compiler to sensibly permute fp ops.

Sometimes $r \leftarrow a+b$;
$r \leftarrow r+c ; r \leftarrow r+d$ is
a sequence of exact fp adds best done as, e.g., $r \leftarrow b+d$; $s \leftarrow a+c ; r \leftarrow r+s$.

But sometimes $r \leftarrow r+c$ is a non-associative deliberately rounded fp add!

The C language has no way to express this distinction.

elays:

tency,
m "cache" to
thmetic.
tency.
atency.
inputs
has some
ps, but
hm; suboptimal.

Can't rely on C compiler to sensibly permute fp ops.

Sometimes $r \leftarrow a+b$;
$r \leftarrow r+c ; r \leftarrow r+d$ is
a sequence of exact fp adds best done as, e.g., $r \leftarrow b+d$;
$s \leftarrow a+c ; r \leftarrow r+s$.
But sometimes $r \leftarrow r+c$
is a non-associative deliberately rounded fp add!

The C language has no way to express this distinction.

Curve25519 imple is actually in qhas new programming for high-speed con

Language allows d and propagation o guided register all

Lets me write desi with much less hu traditional asm an Have also used for fast Poly1305, fas

Can't rely on C compiler to sensibly permute fp ops.

Sometimes $r \leftarrow a+b$;
$r \leftarrow r+c ; r \leftarrow r+d$ is
a sequence of exact fp adds best done as, e.g., $r \leftarrow b+d$; $s \leftarrow a+c ; r \leftarrow r+s$.

But sometimes $r \leftarrow r+c$ is a non-associative deliberately rounded fp add!

The C language has no way to express this distinction.

Curve25519 implementation is actually in qhasm, new programming language for high-speed computations.

Language allows declaration and propagation of fp ranges; guided register allocation; et al.

Lets me write desired code with much less human time than traditional asm and C compiler. Have also used for fast AES, fast Poly1305, fast Salsa20, etc.
mpiler
e fp ops.
$+b$
$+d$ is
t fp adds
$r \leftarrow b+d$
$+s$.
$-r+c$
ed fp add!
as no way inction.

Curve25519 implementation is actually in qhasm, new programming language for high-speed computations.

Language allows declaration and propagation of fp ranges; guided register allocation; et al.

Lets me write desired code with much less human time than traditional asm and C compiler. Have also used for fast AES, fast Poly1305, fast Salsa20, etc.

What's next?

Culmination of ext on eliminating fiel genus-2 hyperellip 25 mults per bit. eprint.iacr.or Half-size prime: e. Select curve to ma mults easier, like c

Should count fpo Prediction: this w

Curve25519 implementation is actually in qhasm, new programming language for high-speed computations.

Language allows declaration and propagation of fp ranges; guided register allocation; et al.

Lets me write desired code with much less human time than traditional asm and C compiler. Have also used for fast AES, fast Poly1305, fast Salsa20, etc.

What's next?

Culmination of extensive work on eliminating field mults for genus-2 hyperelliptic curves: 25 mults per bit. Gaudry, eprint.iacr.org/2005/314 Half-size prime: e.g., $2^{127}-1$. Select curve to make some mults easier, like choosing A.

Should count fp ops instead.
Prediction: this will beat genus 1 .

