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Factor some of these images:

e.g., the 240-smooth images.

Use factorizations to find

interesting multiplicative relations.
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What is a “small” ?

Traditional definition: e.g.,
� � � with 1 � 230,

� �
230.

Much better definition: e.g.,
� � � with 1 � 240,

� �
240,

�
� ( � � )( � 5 + � � � + 0

5)
�
� 2300.

Smaller product of images,

as measured by norm

( � � )( � 5 + � � � + 0
5),

is more likely to be factored.

Is � � � + � � 2 useful? Maybe!

But this talk will focus on � � � .
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� ?

How many and -smooth?

Want fast, accurate estimates.

Analytic number theory gives

crude asymptotic conjectures.

Want something more explicit.
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as preliminary filters.
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where
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Evaluate superelliptic integral

by standard techniques:

partition, use series expansions.

Not much slower than AGM etc.
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What is smoothness chance of

( � � )( � 5 + � � � + 0
5)?

Can estimate accurately

by sampling random � � � ,

but this takes time

comparable to 1 chance.

Faster: Image of random � � � in

Z[ � ] ( � � ) � Z[ � ] ( � 5 + � � � )

has similar smoothness chance to

random ideal with same

distribution at .
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write down Dirichlet series

for smooth ideals.

Replace 2 � 3 � 5 � 7 � 11 � � � � with

slightly larger real numbers

2 = 1 � 18, 3 = 1 � 112, 5 = 1 � 117, � � �

to convert Dirichlet series

into power series.

Compute (log ) (log 1 � 1) coeffs

of this power series

to see distribution of

smooth ideals.
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e.g., 230-smooth below 2300

times one prime in [230
� 240].

Can work with series over

Z[class group]

to separate ideal classes,

but not worthwhile:

all classes end up with

same distribution.
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