Polynomial selection for the number-field sieve, part 2: polynomial merit

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF DMS-0140542

Alfred P. Sloan Foundation

"Degree 1 + 5 monic" NFS tries to factor n using an auxiliary polynomial $(x-m)(x^5+f_4x^4+\cdots+f_0)$ with $n = m^5 + f_4 m^4 + \cdots + f_0$.

(Various generalizations: $m_1 x - m_0; f_5 x^5;$ et al.)

NFS succeeds for practically all choices of polynomials. NFS speed depends heavily on choice of polynomial.

on

ld sieve,

l merit

is at Chicago 12

undation

"Degree 1 + 5 monic" NFS tries to factor nusing an auxiliary polynomial $(x - m)(x^5 + f_4x^4 + \dots + f_0)$ with $n = m^5 + f_4m^4 + \dots + f_0$.

(Various generalizations: $m_1x - m_0$; f_5x^5 ; et al.)

NFS succeeds for practically all choices of polynomials. NFS speed depends heavily on choice of polynomial. How NFS uses a p

Given m, f_4, \ldots, f_4 For each small irre consider image of $\mathsf{Z}[x]/(x-m)\simeq\mathsf{Z}$ and image of g in $Z[x]/(x^5 + f_4x^4 +$ Factor some of the e.g., the 2⁴⁰-smoo

Use factorizations interesting multipl

"Degree 1 + 5 monic" NFS tries to factor n using an auxiliary polynomial $(x-m)(x^5+f_4x^4+\cdots+f_0)$ with $n=m^5+f_4m^4+\cdots+f_0$.

(Various generalizations: $m_1 x - m_0; f_5 x^5;$ et al.)

NFS succeeds for practically all choices of polynomials. NFS speed depends heavily on choice of polynomial.

How NFS uses a polynomial

Given $m, f_4, ..., f_0$: For each small irred $g \in \mathbf{Z}[x]$, consider image of q in $\mathsf{Z}[x]/(x-m)\simeq \mathsf{Z}$, and image of g in $Z[x]/(x^5 + f_4x^4 + \cdots + f_0).$

Factor some of these images: e.g., the 2^{40} -smooth images.

Use factorizations to find interesting multiplicative relations.

nic" NFS

 $polynomial <math>^4+\cdots+f_0) m^4+\cdots+f_0.$

ations:

et al.)

practically

nomials.

ls heavily

omial.

How NFS uses a polynomial

Given $m, f_4, ..., f_0$:

For each small irred $g \in \mathbf{Z}[x]$, consider image of g in $\mathbf{Z}[x]/(x-m) \simeq \mathbf{Z}$, and image of g in $\mathbf{Z}[x]/(x^5 + f_4x^4 + \cdots + f_0)$.

Factor some of these images: e.g., the 2^{40} -smooth images.

Use factorizations to find interesting multiplicative relations.

How NFS uses a polynomial

Given $m, f_4, ..., f_0$:

For each small irred $g \in \mathbf{Z}[x]$, consider image of q in $\mathsf{Z}[x]/(x-m)\simeq \mathsf{Z}$, and image of q in $Z[x]/(x^5 + f_4x^4 + \cdots + f_0).$

Factor some of these images: e.g., the 2^{40} -smooth images.

Use factorizations to find interesting multiplicative relations.

What is a "small" q? Traditional definition: e.g., Much better definition: e.g., Smaller product of *q* images, as measured by norm $(a - bm)(a^{5} + \cdots + f_{0}b^{5}),$ is more likely to be factored. Is $a - bx + cx^2$ useful? Maybe! But this talk will focus on a - bx.

- a bx with $1 < a < 2^{30}$, $|b| < 2^{30}$.
- a bx with $1 \le a \le 2^{40}$, $|b| \le 2^{40}$, $|(a - bm)(a^5 + \cdots + f_0b^5)| \le 2^{300}.$

<u>olynomial</u>

.0:

ed $g \in \mathbf{Z}[x]$, g in \mathbf{Z}_{i} ,

 $-\cdots+f_0).$

ese images: th images.

to find icative relations. What is a "small" g?

Traditional definition: e.g., a - bx with $1 \le a \le 2^{30}$, $|b| \le 2^{30}$.

Much better definition: e.g., a - bx with $1 \le a \le 2^{40}$, $|b| \le 2^{40}$, $|(a - bm)(a^5 + \dots + f_0b^5)| \le 2^{300}$.

Smaller product of g images, as measured by norm $(a - bm)(a^5 + \cdots + f_0b^5)$, is more likely to be factored.

Is $a - bx + cx^2$ useful? Maybe! But this talk will focus on a - bx.

Polynomial merit

Given m, f_4, \ldots, f_4 How many irreds a $|(a-bm)(a^5+\cdots$ How many $\leq H$ as Want fast, accurat Analytic number t crude asymptotic

Want something n

What is a "small" q?

Traditional definition: e.g., a - bx with $1 < a < 2^{30}$, $|b| < 2^{30}$.

Much better definition: e.g., a - bx with $1 \le a \le 2^{40}$, $|b| < 2^{40}$, $|(a - bm)(a^5 + \cdots + f_0b^5)| \le 2^{300}.$

Smaller product of *q* images, as measured by norm $(a - bm)(a^5 + \cdots + f_0b^5),$ is more likely to be factored.

Is $a - bx + cx^2$ useful? Maybe! But this talk will focus on a - bx. Polynomial merit

Given $m, f_4, ..., f_0, H, y$:

 $\left|(a-bm)(a^5+\cdots+f_0b^5)\right| \leq H?$ How many $\leq H$ and *y*-smooth?

Want fast, accurate estimates.

Analytic number theory gives crude asymptotic conjectures. Want something more explicit.

How many irreds $a - bx \in Z[x]$ have

g?

on: e.g., $\leq 2^{30}$, $|b| \leq 2^{30}$.

ition: e.g., $\leq 2^{40}$, $|b| \leq 2^{40}$, $\cdot + f_0 b^5) | \leq 2^{300}$.

f g images,

orm

 $+ f_0 b^5)$,

e factored.

eful? Maybe! focus on a - bx.

Polynomial merit

Given $m, f_4, ..., f_0, H, y$:

How many irreds $a - bx \in \mathbb{Z}[x]$ have $|(a - bm)(a^5 + \cdots + f_0b^5)| \leq H$? How many $\leq H$ and y-smooth?

Want fast, accurate estimates.

Analytic number theory gives crude asymptotic conjectures. Want something more explicit.

Use answers to est total time for NFS

Given *n*,

consider many pol and select polynor smallest (estimate

Trying all possible

becomes a bottlen

as *n* increases.

Use faster estimat

"want small coefficients of the second secon

Polynomial merit

Given
$$m, f_4, ..., f_0, H, y$$
:

How many irreds $a - bx \in Z[x]$ have $\left|(a-bm)(a^5+\cdots+f_0b^5)\right| \leq H?$ How many < H and y-smooth?

Want fast, accurate estimates.

Analytic number theory gives crude asymptotic conjectures. Want something more explicit. Use answers to estimate total time for NFS. Given *n*, consider many polynomials and select polynomial with smallest (estimated) NFS time. Trying all possible polynomials becomes a bottleneck as *n* increases. Use faster estimates (e.g., "want small coefficient sum") as preliminary filters.

*f*₀, *H*, *y*:

- $egin{array}{l} m{x} \in m{Z}[m{x}] & ext{have} \ m{\cdot} + f_0 b^5) ig| \leq H? \ m{nd} & m{y} ext{-smooth}? \end{array}$
- te estimates.
- heory gives
- conjectures.
- nore explicit.

Use answers to estimate total time for NFS. Given *n*, consider many polynomials and select polynomial with smallest (estimated) NFS time. Trying all possible polynomials becomes a bottleneck as *n* increases. Use faster estimates (e.g., "want small coefficient sum") as preliminary filters.

Number of a - bxwith a > 0, $gcd{a$ $(a-bm)(a^5+\cdots)$ is extremely close $(3/\pi^2)H^{2/6}\int_{-\infty}^{\infty}a$ where f(x) = (x - m)(x)Evaluate superellip by standard techni partition, use serie Not much slower t

Use answers to estimate total time for NFS.

Given *n*, consider many polynomials and select polynomial with smallest (estimated) NFS time.

Trying all possible polynomials becomes a bottleneck as *n* increases.

Use faster estimates (e.g., "want small coefficient sum")

as preliminary filters.

Number of $a - bx \in Z[x]$ with a > 0, $gcd\{a, b\} = 1$, is extremely close to $(3/\pi^2)H^{2/6}\int_{-\infty}^{\infty}dx/(f(x)^2)^{1/6}$ where

 $f(x) = (x-m)(x^5 + \cdots + f_0).$

Evaluate superelliptic integral by standard techniques: partition, use series expansions. Not much slower than AGM etc.

$(a-bm)(a^{5}+\cdots+f_{0}b^{5}) \in [-H, H]$

imate

,) _

- ynomials
- nial with
- d) NFS time.
- polynomials eck

es (e.g., cient sum")

rs.

Number of $a - bx \in \mathbf{Z}[x]$ with a > 0, $gcd\{a, b\} = 1$, $(a - bm)(a^5 + \dots + f_0b^5) \in [-H, H]$ is extremely close to $(3/\pi^2)H^{2/6}\int_{-\infty}^{\infty} dx/(f(x)^2)^{1/6}$ where $f(x) = (x - m)(x^5 + \dots + f_0).$

Evaluate superelliptic integral by standard techniques: partition, use series expansions. Not much slower than AGM etc.

What is smoothne $(a-bm)(a^5+\cdots$ Can estimate accu by sampling rando but this takes time comparable to 1/cFaster: Image of r $\mathsf{Z}[x]/(x-m) imes\mathsf{Z}$ has similar smooth random ideal with distribution at ∞ .

Number of $a - bx \in Z[x]$ with a > 0, $gcd\{a, b\} = 1$, $(a-bm)(a^5+\cdots+f_0b^5) \in [-H, H]$ is extremely close to $(3/\pi^2)H^{2/6}\int_{-\infty}^{\infty}dx/(f(x)^2)^{1/6}$ where

$$f(x)=(x-m)(x^5+\cdots+f_0).$$

Evaluate superelliptic integral by standard techniques: partition, use series expansions. Not much slower than AGM etc.

What is smoothness chance of $(a - bm)(a^5 + \cdots + f_0 b^5)?$

Can estimate accurately by sampling random a - bx, but this takes time comparable to 1/chance.

 $\mathsf{Z}[x]/(x-m) imes \mathsf{Z}[x]/(x^5+\cdots)$ has similar smoothness chance to random ideal with same distribution at ∞ .

- Faster: Image of random a bx in

 $\in {f Z}[x]$, $b\} = 1$, $+ f_0 b^5) \in [-H, H]$ to $dx/(f(x)^2)^{1/6}$

 $f^5+\cdots+f_0).$

otic integral

ques:

s expansions.

han AGM etc.

What is smoothness chance of $(a - bm)(a^5 + \cdots + f_0b^5)$?

Can estimate accurately by sampling random a - bx, but this takes time comparable to 1/chance.

Faster: Image of random a - bx in $Z[x]/(x - m) \times Z[x]/(x^5 + \cdots)$ has similar smoothness chance to random ideal with same distribution at ∞ .

Enumerate small p write down Dirichl for smooth ideals. Replace 2, 3, 5, 7, 1 slightly larger real $\overline{2} = 1.1^8$, $\overline{3} = 1.1^1$ to convert Dirichle into power series. Compute $(\log H)/$ of this power serie to see pprox distributi

smooth ideals.

What is smoothness chance of $(a - bm)(a^5 + \cdots + f_0b^5)?$

Can estimate accurately by sampling random a - bx, but this takes time comparable to 1/chance.

Faster: Image of random a - bx in $\mathsf{Z}[x]/(x-m) imes \mathsf{Z}[x]/(x^5+\cdots)$ has similar smoothness chance to random ideal with same distribution at ∞ .

Enumerate small prime ideals to write down Dirichlet series for smooth ideals. Replace 2, 3, 5, 7, 11, . . . with slightly larger real numbers $\overline{2} = 1.1^8$, $\overline{3} = 1.1^{12}$, $\overline{5} = 1.1^{17}$, ... to convert Dirichlet series into power series. Compute $(\log H)/(\log 1.1)$ coeffs of this power series to see \approx distribution of smooth ideals.

ss chance of $+ f_0 b^5$)?

rately m *a – bx*,

hance.

andom a - bx in $\mathbb{Z}[x]/(x^5 + \cdots)$ nness chance to

same

Enumerate small prime ideals to write down Dirichlet series for smooth ideals.

Replace 2, 3, 5, 7, 11, ... with slightly larger real numbers $\overline{2} = 1.1^8$, $\overline{3} = 1.1^{12}$, $\overline{5} = 1.1^{17}$, ... to convert Dirichlet series into power series.

Compute $(\log H)/(\log 1.1)$ coeffs of this power series to see \approx distribution of smooth ideals.

Can adapt method e.g., 2³⁰-smooth b times one prime ir Can work with ser **Z**[class group] to separate ideal c but not worthwhile all classes end up same distribution.

Enumerate small prime ideals to write down Dirichlet series for smooth ideals.

Replace 2, 3, 5, 7, 11, . . . with slightly larger real numbers $\overline{2} = 1.1^8$, $\overline{3} = 1.1^{12}$, $\overline{5} = 1.1^{17}$, ... to convert Dirichlet series into power series.

Compute $(\log H)/(\log 1.1)$ coeffs of this power series to see pprox distribution of smooth ideals.

Can adapt method to handle, e.g., 2^{30} -smooth below 2^{300} times one prime in $[2^{30}, 2^{40}]$. Can work with series over **Z**[class group] to separate ideal classes, but not worthwhile: all classes end up with same distribution.