Polynomial selection for the number-field sieve, part 2: polynomial merit
D. J. Bernstein

Thanks to:
University of Illinois at Chicago NSF DMS-0140542
Alfred P. Sloan Foundation
"Degree $1+5$ monic" NFS tries to factor n using an auxiliary polynomial $(x-m)\left(x^{5}+f_{4} x^{4}+\cdots+f_{0}\right)$ with $n=m^{5}+f_{4} m^{4}+\cdots+f_{0}$.
(Various generalizations:
$m_{1} x-m_{0} ; f_{5} x^{5} ;$ et al.)
NFS succeeds for practically all choices of polynomials.
NFS speed depends heavily on choice of polynomial.

Id sieve, merit
is at Chicago
undation

"Degree $1+5$ monic" NFS

 tries to factor n using an auxiliary polynomial $(x-m)\left(x^{5}+f_{4} x^{4}+\cdots+f_{0}\right)$ with $n=m^{5}+f_{4} m^{4}+\cdots+f_{0}$.(Various generalizations:
$m_{1} x-m_{0} ; f_{5} x^{5} ;$ et al.)
NFS succeeds for practically all choices of polynomials. NFS speed depends heavily on choice of polynomial.

How NFS uses a

Given m, f_{4}, \ldots, f
For each small irre consider image of
$\mathbf{Z}[x] /(x-m) \simeq \mathbf{Z}$ and image of g in $\mathbf{Z}[x] /\left(x^{5}+f_{4} x^{4}\right.$

Factor some of th e.g., the 2^{40}-smoo

Use factorizations interesting multipl
"Degree $1+5$ monic" NFS tries to factor n
using an auxiliary polynomial
$(x-m)\left(x^{5}+f_{4} x^{4}+\cdots+f_{0}\right)$ with $n=m^{5}+f_{4} m^{4}+\cdots+f_{0}$.
(Various generalizations:
$m_{1} x-m_{0} ; f_{5} x^{5} ;$ et al.)
NFS succeeds for practically all choices of polynomials. NFS speed depends heavily on choice of polynomial.

How NFS uses a polynomial

Given m, f_{4}, \ldots, f_{0} :
For each small irred $g \in \mathbf{Z}[x]$, consider image of g in
$\mathbf{Z}[x] /(x-m) \simeq \mathbf{Z}$,
and image of g in
$\mathbf{Z}[x] /\left(x^{5}+f_{4} x^{4}+\cdots+f_{0}\right)$.
Factor some of these images:
e.g., the 2^{40}-smooth images.

Use factorizations to find interesting multiplicative relations.

nic" NFS

polynomial
$\left.{ }^{4}+\cdots+f_{0}\right)$
$m^{4}+\cdots+f_{0}$.
ations:
et al.)
practically
nomials.
s heavily
omial.

How NFS uses a polynomial

Given m, f_{4}, \ldots, f_{0} :
For each small irred $g \in \mathbf{Z}[x]$, consider image of g in
$\mathbf{Z}[x] /(x-m) \simeq \mathbf{Z}$,
and image of g in
$\mathbf{Z}[x] /\left(x^{5}+f_{4} x^{4}+\cdots+f_{0}\right)$.
Factor some of these images:
e.g., the 2^{40}-smooth images.

Use factorizations to find interesting multiplicative relations.

What is a "small"
Traditional definiti $a-b x$ with $1 \leq a$

Much better defin $a-b x$ with $1 \leq a$ $\mid(a-b m)\left(a^{5}+\cdot \cdot\right.$ Smaller product o as measured by no $(a-b m)\left(a^{5}+\cdots\right.$ is more likely to b

Is $a-b x+c x^{2}$ us But this talk will f

How NFS uses a polynomial

Given m, f_{4}, \ldots, f_{0} :
For each small irred $g \in \mathbf{Z}[x]$, consider image of g in
$\mathbf{Z}[x] /(x-m) \simeq \mathbf{Z}$,
and image of g in
$\mathbf{Z}[x] /\left(x^{5}+f_{4} x^{4}+\cdots+f_{0}\right)$.
Factor some of these images:
e.g., the 2^{40}-smooth images.

Use factorizations to find interesting multiplicative relations.

What is a "small" g ?

Traditional definition: e.g., $a-b x$ with $1 \leq a \leq 2^{30},|b| \leq 2^{30}$.

Much better definition: e.g.,
$a-b x$ with $1 \leq a \leq 2^{40},|b| \leq 2^{40}$,
$\left|(a-b m)\left(a^{5}+\cdots+f_{0} b^{5}\right)\right| \leq 2^{300}$.
Smaller product of g images, as measured by norm $(a-b m)\left(a^{5}+\cdots+f_{0} b^{5}\right)$,
is more likely to be factored.
Is $a-b x+c x^{2}$ useful? Maybe!
But this talk will focus on $a-b x$.

olynomial

$0:$
$\mathrm{d} g \in \mathbf{Z}[x]$,
g in
$\left.+f_{0}\right)$.
ese images:
th images.
to find
icative relations.

What is a "small" g ?

Traditional definition: e.g., $a-b x$ with $1 \leq a \leq 2^{30},|b| \leq 2^{30}$.

Much better definition: e.g., $a-b x$ with $1 \leq a \leq 2^{40},|b| \leq 2^{40}$, $\left|(a-b m)\left(a^{5}+\cdots+f_{0} b^{5}\right)\right| \leq 2^{300}$.

Smaller product of g images, as measured by norm

$$
(a-b m)\left(a^{5}+\cdots+f_{0} b^{5}\right)
$$

is more likely to be factored.
Is $a-b x+c x^{2}$ useful? Maybe!
But this talk will focus on $a-b x$.

Polynomial merit

Given m, f_{4}, \ldots, f
How many irreds $\mid(a-b m)\left(a^{5}+\cdot \cdot\right.$ How many $\leq H$ a

Want fast, accura
Analytic number t crude asymptotic Want something n

What is a "small" g ?
Traditional definition: e.g., $a-b x$ with $1 \leq a \leq 2^{30},|b| \leq 2^{30}$.

Much better definition: e.g., $a-b x$ with $1 \leq a \leq 2^{40},|b| \leq 2^{40}$, $\left|(a-b m)\left(a^{5}+\cdots+f_{0} b^{5}\right)\right| \leq 2^{300}$.

Smaller product of g images, as measured by norm $(a-b m)\left(a^{5}+\cdots+f_{0} b^{5}\right)$, is more likely to be factored.

Is $a-b x+c x^{2}$ useful? Maybe!
But this talk will focus on $a-b x$.

Polynomial merit

Given $m, f_{4}, \ldots, f_{0}, H, y$:
How many irreds $a-b x \in \mathbf{Z}[x]$ have $\left|(a-b m)\left(a^{5}+\cdots+f_{0} b^{5}\right)\right| \leq H$?
How many $\leq H$ and y-smooth?
Want fast, accurate estimates.
Analytic number theory gives
crude asymptotic conjectures.
Want something more explicit.
on: e.g.,
$\leq 2^{30},|b| \leq 2^{30}$.
ition: e.g.,
$\leq 2^{40},|b| \leq 2^{40}$,
$\left.\cdot+f_{0} b^{5}\right) \mid \leq 2^{300}$.
g images,
rm
$\left.+f_{0} b^{5}\right)$,
e factored.
eful? Maybe!
ocus on $a-b x$.

Polynomial merit

Given $m, f_{4}, \ldots, f_{0}, H, y$:
How many irreds $a-b x \in \mathbf{Z}[x]$ have $\left|(a-b m)\left(a^{5}+\cdots+f_{0} b^{5}\right)\right| \leq H$?
How many $\leq H$ and y-smooth?
Want fast, accurate estimates.
Analytic number theory gives crude asymptotic conjectures. Want something more explicit.

Use answers to est total time for NFS

Given n, consider many pol and select polynor smallest (estimate

Trying all possible becomes a bottlen as n increases.
Use faster estimat "want small coeffi as preliminary filte

Polynomial merit

Given $m, f_{4}, \ldots, f_{0}, H, y$:
How many irreds $a-b x \in \mathbf{Z}[x]$ have $\left|(a-b m)\left(a^{5}+\cdots+f_{0} b^{5}\right)\right| \leq H$?
How many $\leq H$ and y-smooth?
Want fast, accurate estimates.
Analytic number theory gives crude asymptotic conjectures.
Want something more explicit.

Use answers to estimate total time for NFS.

Given n, consider many polynomials and select polynomial with smallest (estimated) NFS time.

Trying all possible polynomials becomes a bottleneck as n increases.
Use faster estimates (e.g., "want small coefficient sum") as preliminary filters.
$0, H, y:$
$x-b x \in \mathbf{Z}[x]$ have $\left.\cdot+f_{0} b^{5}\right) \mid \leq H ?$
nd y-smooth?
e estimates.
heory gives
conjectures.
nore explicit.

Use answers to estimate total time for NFS.

Given n,
consider many polynomials
and select polynomial with smallest (estimated) NFS time.

Trying all possible polynomials becomes a bottleneck as n increases.
Use faster estimates (e.g., "want small coefficient sum") as preliminary filters.

Number of $a-b x$ with $a>0, \operatorname{gcd}\{a$ $(a-b m)\left(a^{5}+\cdots\right.$
is extremely close $\left(3 / \pi^{2}\right) H^{2 / 6} \int_{-\infty}^{\infty} a$ where

$$
f(x)=(x-m)(x
$$

Evaluate superellif by standard techn partition, use serie Not much slower

Use answers to estimate total time for NFS.

Given n,
consider many polynomials
and select polynomial with smallest (estimated) NFS time.

Trying all possible polynomials becomes a bottleneck as n increases. Use faster estimates (e.g., "want small coefficient sum") as preliminary filters.

Number of $a-b x \in \mathbf{Z}[x]$ with $a>0, \operatorname{gcd}\{a, b\}=1$, $(a-b m)\left(a^{5}+\cdots+f_{0} b^{5}\right) \in[-H, H]$
is extremely close to
$\left(3 / \pi^{2}\right) H^{2 / 6} \int_{-\infty}^{\infty} d x /\left(f(x)^{2}\right)^{1 / 6}$
where

$$
f(x)=(x-m)\left(x^{5}+\cdots+f_{0}\right) .
$$

Evaluate superelliptic integral by standard techniques:
partition, use series expansions.
Not much slower than AGM etc.

:imate

ynomials
nial with
d) NFS time. polynomials eck
es (e.g., cient sum") rs.

Number of $a-b x \in \mathbf{Z}[x]$ with $a>0, \operatorname{gcd}\{a, b\}=1$, $(a-b m)\left(a^{5}+\cdots+f_{0} b^{5}\right) \in[-H, H]$
is extremely close to

$$
\left(3 / \pi^{2}\right) H^{2 / 6} \int_{-\infty}^{\infty} d x /\left(f(x)^{2}\right)^{1 / 6}
$$

where

$$
f(x)=(x-m)\left(x^{5}+\cdots+f_{0}\right) .
$$

Evaluate superelliptic integral by standard techniques:
partition, use series expansions.
Not much slower than AGM etc.

What is smoothne $(a-b m)\left(a^{5}+\cdots\right.$

Can estimate accu by sampling rando but this takes tim comparable to $1 / \mathrm{c}$

Faster: Image of r $\mathbf{Z}[x] /(x-m) \times \mathbf{Z}$ has similar smooth random ideal with distribution at ∞.

Number of $a-b x \in \mathbf{Z}[x]$ with $a>0, \operatorname{gcd}\{a, b\}=1$, $(a-b m)\left(a^{5}+\cdots+f_{0} b^{5}\right) \in[-H, H]$ is extremely close to $\left(3 / \pi^{2}\right) H^{2 / 6} \int_{-\infty}^{\infty} d x /\left(f(x)^{2}\right)^{1 / 6}$ where

$$
f(x)=(x-m)\left(x^{5}+\cdots+f_{0}\right) .
$$

Evaluate superelliptic integral by standard techniques: partition, use series expansions. Not much slower than AGM etc.

What is smoothness chance of $(a-b m)\left(a^{5}+\cdots+f_{0} b^{5}\right) ?$

Can estimate accurately by sampling random $a-b x$, but this takes time comparable to 1 /chance.

Faster: Image of random $a-b x$ in $\mathbf{Z}[x] /(x-m) \times \mathbf{Z}[x] /\left(x^{5}+\cdots\right)$
has similar smoothness chance to random ideal with same distribution at ∞.
$\in \mathbf{Z}[x]$

$$
, b\}=1
$$

$$
\left.+f_{0} b^{5}\right) \in[-H, H]
$$

to
$x /\left(f(x)^{2}\right)^{1 / 6}$
$\left.{ }^{5}+\cdots+f_{0}\right)$.
tic integral ques:
s expansions.
han AGM etc.

What is smoothness chance of $(a-b m)\left(a^{5}+\cdots+f_{0} b^{5}\right) ?$

Can estimate accurately by sampling random $a-b x$, but this takes time comparable to 1 /chance.

Faster: Image of random $a-b x$ in $\mathbf{Z}[x] /(x-m) \times \mathbf{Z}[x] /\left(x^{5}+\cdots\right)$ has similar smoothness chance to random ideal with same distribution at ∞.

Enumerate small write down Dirichl for smooth ideals.

Replace $2,3,5,7$, 1 slightly larger real
$\overline{2}=1.1^{8}, \overline{3}=1.1^{1}$ to convert Dirichle into power series.

Compute $(\log H) /$ of this power serie to see \approx distributi smooth ideals.

What is smoothness chance of $(a-b m)\left(a^{5}+\cdots+f_{0} b^{5}\right) ?$

Can estimate accurately
by sampling random $a-b x$,
but this takes time comparable to 1 /chance.

Faster: Image of random $a-b x$ in $\mathbf{Z}[x] /(x-m) \times \mathbf{Z}[x] /\left(x^{5}+\cdots\right)$ has similar smoothness chance to random ideal with same distribution at ∞.

Enumerate small prime ideals to write down Dirichlet series for smooth ideals.

Replace $2,3,5,7,11, \ldots$ with slightly larger real numbers $\overline{2}=1.1^{8}, \overline{3}=1.1^{12}, \overline{5}=1.1^{17}, \ldots$ to convert Dirichlet series into power series.

Compute $(\log H) /(\log 1.1)$ coeffs of this power series to see \approx distribution of smooth ideals.
ss chance of
$\left.+f_{0} b^{5}\right) ?$
rately
m $a-b x$,
hance.
andom $a-b x$ in $[x] /\left(x^{5}+\cdots\right)$
iness chance to same

Enumerate small prime ideals to write down Dirichlet series for smooth ideals.

Replace $2,3,5,7,11, \ldots$ with slightly larger real numbers $\overline{2}=1.1^{8}, \overline{3}=1.1^{12}, \overline{5}=1.1^{17}, \ldots$ to convert Dirichlet series into power series.

Compute $(\log H) /(\log 1.1)$ coeffs of this power series to see \approx distribution of smooth ideals.

Can adapt methoc e.g., 2^{30}-smooth b times one prime in

Can work with ser
Z[class group]
to separate ideal c but not worthwhil all classes end up same distribution.

Enumerate small prime ideals to write down Dirichlet series for smooth ideals.

Replace $2,3,5,7,11, \ldots$ with slightly larger real numbers $\overline{2}=1.1^{8}, \overline{3}=1.1^{12}, \overline{5}=1.1^{17}, \ldots$ to convert Dirichlet series into power series.

Compute $(\log H) /(\log 1.1)$ coeffs of this power series to see \approx distribution of smooth ideals.

Can adapt method to handle, e.g., 2^{30}-smooth below 2^{300} times one prime in $\left[2^{30}, 2^{40}\right]$.

Can work with series over Z[class group]
to separate ideal classes, but not worthwhile: all classes end up with same distribution.

