
Integer factorization:

a progress report

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF DMS–0140542

Alfred P. Sloan Foundation

Exercise for the reader:

Find a nontrivial factor of

6366223796340423057152171586.

Integer factorization:

a progress report

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF DMS–0140542

Alfred P. Sloan Foundation

Exercise for the reader:

Find a nontrivial factor of

6366223796340423057152171586.

Exercise for the reader:

Find a nontrivial factor of

6366223796340423057152171586.

Small prime factors

are easy to find.

Larger primes are harder.

“Elliptic-curve method” (ECM)

scales surprisingly well.

(1987 Lenstra)

ECM has found a prime 2219.

(2005 Dodson; rather lucky;

3 � 1012 Opteron cycles)

www.loria.fr/~zimmerma/records/p66

Exercise for the reader:

Find a nontrivial factor of

6366223796340423057152171586.

Exercise for the reader:

Find a nontrivial factor of

6366223796340423057152171586.

Small prime factors

are easy to find.

Larger primes are harder.

“Elliptic-curve method” (ECM)

scales surprisingly well.

(1987 Lenstra)

ECM has found a prime 2219.

(2005 Dodson; rather lucky;

3 � 1012 Opteron cycles)

www.loria.fr/~zimmerma/records/p66

Exercise for the reader:

Find a nontrivial factor of

6366223796340423057152171586.

Exercise for the reader:

Find a nontrivial factor of

6366223796340423057152171586.

Small prime factors

are easy to find.

Larger primes are harder.

“Elliptic-curve method” (ECM)

scales surprisingly well.

(1987 Lenstra)

ECM has found a prime 2219.

(2005 Dodson; rather lucky;

3 � 1012 Opteron cycles)

www.loria.fr/~zimmerma/records/p66

For worst-case integers with

two very large prime factors,

ECM does not scale as well as

“number-field sieve” (NFS).

(1988 Pollard, et al.)

Latest record: NFS has found

two prime factors 2332

of “RSA-200” challenge. (2005

Bahr Boehm Franke Kleinjung;

5 � 1018 Opteron cycles)

How much more difficult

is it to find prime factors 2512

of an integer � 21024?

www.loria.fr/~zimmerma/records/rsa200

Exercise for the reader:

Find a nontrivial factor of

6366223796340423057152171586.

Small prime factors

are easy to find.

Larger primes are harder.

“Elliptic-curve method” (ECM)

scales surprisingly well.

(1987 Lenstra)

ECM has found a prime 2219.

(2005 Dodson; rather lucky;

3 � 1012 Opteron cycles)

www.loria.fr/~zimmerma/records/p66

For worst-case integers with

two very large prime factors,

ECM does not scale as well as

“number-field sieve” (NFS).

(1988 Pollard, et al.)

Latest record: NFS has found

two prime factors 2332

of “RSA-200” challenge. (2005

Bahr Boehm Franke Kleinjung;

5 � 1018 Opteron cycles)

How much more difficult

is it to find prime factors 2512

of an integer � 21024?

www.loria.fr/~zimmerma/records/rsa200

Exercise for the reader:

Find a nontrivial factor of

6366223796340423057152171586.

Small prime factors

are easy to find.

Larger primes are harder.

“Elliptic-curve method” (ECM)

scales surprisingly well.

(1987 Lenstra)

ECM has found a prime 2219.

(2005 Dodson; rather lucky;

3 � 1012 Opteron cycles)

www.loria.fr/~zimmerma/records/p66

For worst-case integers with

two very large prime factors,

ECM does not scale as well as

“number-field sieve” (NFS).

(1988 Pollard, et al.)

Latest record: NFS has found

two prime factors 2332

of “RSA-200” challenge. (2005

Bahr Boehm Franke Kleinjung;

5 � 1018 Opteron cycles)

How much more difficult

is it to find prime factors 2512

of an integer � 21024?

www.loria.fr/~zimmerma/records/rsa200

NFS step 1: find attractive ’s

NFS tries to factor � by

inspecting values of a polynomial.

Select integer [� 1
�
6 � � 1

�
5];

find integers 5
�

4
� � � � �

0

with � = 5
5 + 4

4 + � � � + 0;

for various integers � � inspect

(� �)(5 � 5 + 4 � 4 + � � � + 0
5).

Practically every choice of

will succeed in factoring � .

Better speed from smaller values

(� �)(5 � 5 + 4 � 4 + � � � + 0
5).

For worst-case integers with

two very large prime factors,

ECM does not scale as well as

“number-field sieve” (NFS).

(1988 Pollard, et al.)

Latest record: NFS has found

two prime factors 2332

of “RSA-200” challenge. (2005

Bahr Boehm Franke Kleinjung;

5 � 1018 Opteron cycles)

How much more difficult

is it to find prime factors 2512

of an integer � 21024?

www.loria.fr/~zimmerma/records/rsa200

NFS step 1: find attractive ’s

NFS tries to factor � by

inspecting values of a polynomial.

Select integer [� 1
�
6 � � 1

�
5];

find integers 5
�

4
� � � � �

0

with � = 5
5 + 4

4 + � � � + 0;

for various integers � � inspect

(� �)(5 � 5 + 4 � 4 + � � � + 0
5).

Practically every choice of

will succeed in factoring � .

Better speed from smaller values

(� �)(5 � 5 + 4 � 4 + � � � + 0
5).

For worst-case integers with

two very large prime factors,

ECM does not scale as well as

“number-field sieve” (NFS).

(1988 Pollard, et al.)

Latest record: NFS has found

two prime factors 2332

of “RSA-200” challenge. (2005

Bahr Boehm Franke Kleinjung;

5 � 1018 Opteron cycles)

How much more difficult

is it to find prime factors 2512

of an integer � 21024?

www.loria.fr/~zimmerma/records/rsa200

NFS step 1: find attractive ’s

NFS tries to factor � by

inspecting values of a polynomial.

Select integer [� 1
�
6 � � 1

�
5];

find integers 5
�

4
� � � � �

0

with � = 5
5 + 4

4 + � � � + 0;

for various integers � � inspect

(� �)(5 � 5 + 4 � 4 + � � � + 0
5).

Practically every choice of

will succeed in factoring � .

Better speed from smaller values

(� �)(5 � 5 + 4 � 4 + � � � + 0
5).

e.g. � = 314159265358979323:

Can choose = 1000,

5 = 314, 4 = 159, 3 = 265,

2 = 358, 1 = 979, 0 = 323.

NFS succeeds in factoring �

by inspecting values

(� � 1000)(314 � 5 + � � � + 323 5)

for various integer pairs (� �).

But NFS succeeds more quickly

using = 1370, inspecting

(� � 1370)(65 � 5 + 130 � 4 +

38 � 3 2 + 377 � 2 3 + 127 � 4 + 33 5).

NFS step 1: find attractive ’s

NFS tries to factor � by

inspecting values of a polynomial.

Select integer [� 1
�
6 � � 1

�
5];

find integers 5
�

4
� � � � �

0

with � = 5
5 + 4

4 + � � � + 0;

for various integers � � inspect

(� �)(5 � 5 + 4 � 4 + � � � + 0
5).

Practically every choice of

will succeed in factoring � .

Better speed from smaller values

(� �)(5 � 5 + 4 � 4 + � � � + 0
5).

e.g. � = 314159265358979323:

Can choose = 1000,

5 = 314, 4 = 159, 3 = 265,

2 = 358, 1 = 979, 0 = 323.

NFS succeeds in factoring �

by inspecting values

(� � 1000)(314 � 5 + � � � + 323 5)

for various integer pairs (� �).

But NFS succeeds more quickly

using = 1370, inspecting

(� � 1370)(65 � 5 + 130 � 4 +

38 � 3 2 + 377 � 2 3 + 127 � 4 + 33 5).

NFS step 1: find attractive ’s

NFS tries to factor � by

inspecting values of a polynomial.

Select integer [� 1
�
6 � � 1

�
5];

find integers 5
�

4
� � � � �

0

with � = 5
5 + 4

4 + � � � + 0;

for various integers � � inspect

(� �)(5 � 5 + 4 � 4 + � � � + 0
5).

Practically every choice of

will succeed in factoring � .

Better speed from smaller values

(� �)(5 � 5 + 4 � 4 + � � � + 0
5).

e.g. � = 314159265358979323:

Can choose = 1000,

5 = 314, 4 = 159, 3 = 265,

2 = 358, 1 = 979, 0 = 323.

NFS succeeds in factoring �

by inspecting values

(� � 1000)(314 � 5 + � � � + 323 5)

for various integer pairs (� �).

But NFS succeeds more quickly

using = 1370, inspecting

(� � 1370)(65 � 5 + 130 � 4 +

38 � 3 2 + 377 � 2 3 + 127 � 4 + 33 5).

NFS step 1: Consider, e.g.,

245 possible choices of .

Quickly identify, e.g.,

225 attractive candidates.

Will choose one in step 2.

If � � � and � � � 1 then�� (� �)(5 � 5 + � � � + 0
5)

��
(�) 6 where (�) =

(� 1+)(
��

5
5

�� + � � � +
��

0 � 5
��).

Attractive � : small (�).

(1999 Murphy)

e.g. � = 314159265358979323:

Can choose = 1000,

5 = 314, 4 = 159, 3 = 265,

2 = 358, 1 = 979, 0 = 323.

NFS succeeds in factoring �

by inspecting values

(� � 1000)(314 � 5 + � � � + 323 5)

for various integer pairs (� �).

But NFS succeeds more quickly

using = 1370, inspecting

(� � 1370)(65 � 5 + 130 � 4 +

38 � 3 2 + 377 � 2 3 + 127 � 4 + 33 5).

NFS step 1: Consider, e.g.,

245 possible choices of .

Quickly identify, e.g.,

225 attractive candidates.

Will choose one in step 2.

If � � � and � � � 1 then�� (� �)(5 � 5 + � � � + 0
5)

��
(�) 6 where (�) =

(� 1+)(
��

5
5

�� + � � � +
��

0 � 5
��).

Attractive � : small (�).

(1999 Murphy)

e.g. � = 314159265358979323:

Can choose = 1000,

5 = 314, 4 = 159, 3 = 265,

2 = 358, 1 = 979, 0 = 323.

NFS succeeds in factoring �

by inspecting values

(� � 1000)(314 � 5 + � � � + 323 5)

for various integer pairs (� �).

But NFS succeeds more quickly

using = 1370, inspecting

(� � 1370)(65 � 5 + 130 � 4 +

38 � 3 2 + 377 � 2 3 + 127 � 4 + 33 5).

NFS step 1: Consider, e.g.,

245 possible choices of .

Quickly identify, e.g.,

225 attractive candidates.

Will choose one in step 2.

If � � � and � � � 1 then�� (� �)(5 � 5 + � � � + 0
5)

��
(�) 6 where (�) =

(� 1+)(
��

5
5

�� + � � � +
��

0 � 5
��).

Attractive � : small (�).

(1999 Murphy)

Choosing one typical � 1
�
6

produces (� 1) � 2
�
6.

Question: How much time do we

need to save factor of —to find
� with (�) � 1 � 2

�
6?

This has as much impact as

chopping 3 lg bits out of � .

Searching for good values of

takes noticeable fraction of

total time of optimized NFS.

(If not, consider more ’s!)

End up with rather large .

NFS step 1: Consider, e.g.,

245 possible choices of .

Quickly identify, e.g.,

225 attractive candidates.

Will choose one in step 2.

If � � � and � � � 1 then�� (� �)(5 � 5 + � � � + 0
5)

��
(�) 6 where (�) =

(� 1+)(
��

5
5

�� + � � � +
��

0 � 5
��).

Attractive � : small (�).

(1999 Murphy)

Choosing one typical � 1
�
6

produces (� 1) � 2
�
6.

Question: How much time do we

need to save factor of —to find
� with (�) � 1 � 2

�
6?

This has as much impact as

chopping 3 lg bits out of � .

Searching for good values of

takes noticeable fraction of

total time of optimized NFS.

(If not, consider more ’s!)

End up with rather large .

NFS step 1: Consider, e.g.,

245 possible choices of .

Quickly identify, e.g.,

225 attractive candidates.

Will choose one in step 2.

If � � � and � � � 1 then�� (� �)(5 � 5 + � � � + 0
5)

��
(�) 6 where (�) =

(� 1+)(
��

5
5

�� + � � � +
��

0 � 5
��).

Attractive � : small (�).

(1999 Murphy)

Choosing one typical � 1
�
6

produces (� 1) � 2
�
6.

Question: How much time do we

need to save factor of —to find
� with (�) � 1 � 2

�
6?

This has as much impact as

chopping 3 lg bits out of � .

Searching for good values of

takes noticeable fraction of

total time of optimized NFS.

(If not, consider more ’s!)

End up with rather large .

Four answers:

Time 7 � 5+ � (1) to find
0 � 25 � 1

�
6

with (� 1) � 1 � 2
�
6

by searching consecutive ’s.

Time 6+ � (1) by skipping

through ’s with small 5
�

4.

Time 4 � 5+ � (1) to find 1 � 1
�
6

with (� 0 � 75) � 1 � 2
�
6.

(1999 Murphy)

Time 3 � 5+ � (1) by partly

controlling 3. (2004 Bernstein)

cr.yp.to/talks.html#2004.11.15

Choosing one typical � 1
�
6

produces (� 1) � 2
�
6.

Question: How much time do we

need to save factor of —to find
� with (�) � 1 � 2

�
6?

This has as much impact as

chopping 3 lg bits out of � .

Searching for good values of

takes noticeable fraction of

total time of optimized NFS.

(If not, consider more ’s!)

End up with rather large .

Four answers:

Time 7 � 5+ � (1) to find
0 � 25 � 1

�
6

with (� 1) � 1 � 2
�
6

by searching consecutive ’s.

Time 6+ � (1) by skipping

through ’s with small 5
�

4.

Time 4 � 5+ � (1) to find 1 � 1
�
6

with (� 0 � 75) � 1 � 2
�
6.

(1999 Murphy)

Time 3 � 5+ � (1) by partly

controlling 3. (2004 Bernstein)

cr.yp.to/talks.html#2004.11.15

Choosing one typical � 1
�
6

produces (� 1) � 2
�
6.

Question: How much time do we

need to save factor of —to find
� with (�) � 1 � 2

�
6?

This has as much impact as

chopping 3 lg bits out of � .

Searching for good values of

takes noticeable fraction of

total time of optimized NFS.

(If not, consider more ’s!)

End up with rather large .

Four answers:

Time 7 � 5+ � (1) to find
0 � 25 � 1

�
6

with (� 1) � 1 � 2
�
6

by searching consecutive ’s.

Time 6+ � (1) by skipping

through ’s with small 5
�

4.

Time 4 � 5+ � (1) to find 1 � 1
�
6

with (� 0 � 75) � 1 � 2
�
6.

(1999 Murphy)

Time 3 � 5+ � (1) by partly

controlling 3. (2004 Bernstein)

cr.yp.to/talks.html#2004.11.15

New method uses 4-dimensional

lattice-basis reduction,

specifically integer-relation finding.

Many lower-level speedups,

effectively chopping

a few more bits out of � :

approximate reduction

(e.g., 2004 Schnorr),

“PSLQ” (1999 Bailey Ferguson),

“geometric” ideas

(2004 Nguyen Stehlé).

www.loria.fr/~stehle/LOWDIM.html
www.loria.fr/~stehle/FPLLL.html

Four answers:

Time 7 � 5+ � (1) to find
0 � 25 � 1

�
6

with (� 1) � 1 � 2
�
6

by searching consecutive ’s.

Time 6+ � (1) by skipping

through ’s with small 5
�

4.

Time 4 � 5+ � (1) to find 1 � 1
�
6

with (� 0 � 75) � 1 � 2
�
6.

(1999 Murphy)

Time 3 � 5+ � (1) by partly

controlling 3. (2004 Bernstein)

cr.yp.to/talks.html#2004.11.15

New method uses 4-dimensional

lattice-basis reduction,

specifically integer-relation finding.

Many lower-level speedups,

effectively chopping

a few more bits out of � :

approximate reduction

(e.g., 2004 Schnorr),

“PSLQ” (1999 Bailey Ferguson),

“geometric” ideas

(2004 Nguyen Stehlé).

www.loria.fr/~stehle/LOWDIM.html
www.loria.fr/~stehle/FPLLL.html

Four answers:

Time 7 � 5+ � (1) to find
0 � 25 � 1

�
6

with (� 1) � 1 � 2
�
6

by searching consecutive ’s.

Time 6+ � (1) by skipping

through ’s with small 5
�

4.

Time 4 � 5+ � (1) to find 1 � 1
�
6

with (� 0 � 75) � 1 � 2
�
6.

(1999 Murphy)

Time 3 � 5+ � (1) by partly

controlling 3. (2004 Bernstein)

cr.yp.to/talks.html#2004.11.15

New method uses 4-dimensional

lattice-basis reduction,

specifically integer-relation finding.

Many lower-level speedups,

effectively chopping

a few more bits out of � :

approximate reduction

(e.g., 2004 Schnorr),

“PSLQ” (1999 Bailey Ferguson),

“geometric” ideas

(2004 Nguyen Stehlé).

www.loria.fr/~stehle/LOWDIM.html
www.loria.fr/~stehle/FPLLL.html

NFS step 2: choose one

Previous step inspected many ’s.

Kept the attractive ’s,

as measured by values.

NFS step 2: Evaluate merit

of each attractive .

Choose highest-merit

for factoring � .

Merit evaluation is slower than

but is applied to fewer ’s.

More accurate than

so selects better .

New method uses 4-dimensional

lattice-basis reduction,

specifically integer-relation finding.

Many lower-level speedups,

effectively chopping

a few more bits out of � :

approximate reduction

(e.g., 2004 Schnorr),

“PSLQ” (1999 Bailey Ferguson),

“geometric” ideas

(2004 Nguyen Stehlé).

www.loria.fr/~stehle/LOWDIM.html
www.loria.fr/~stehle/FPLLL.html

NFS step 2: choose one

Previous step inspected many ’s.

Kept the attractive ’s,

as measured by values.

NFS step 2: Evaluate merit

of each attractive .

Choose highest-merit

for factoring � .

Merit evaluation is slower than

but is applied to fewer ’s.

More accurate than

so selects better .

New method uses 4-dimensional

lattice-basis reduction,

specifically integer-relation finding.

Many lower-level speedups,

effectively chopping

a few more bits out of � :

approximate reduction

(e.g., 2004 Schnorr),

“PSLQ” (1999 Bailey Ferguson),

“geometric” ideas

(2004 Nguyen Stehlé).

www.loria.fr/~stehle/LOWDIM.html
www.loria.fr/~stehle/FPLLL.html

NFS step 2: choose one

Previous step inspected many ’s.

Kept the attractive ’s,

as measured by values.

NFS step 2: Evaluate merit

of each attractive .

Choose highest-merit

for factoring � .

Merit evaluation is slower than

but is applied to fewer ’s.

More accurate than

so selects better .

Given � �
5

� � � � �
0:

Consider integer pairs (� �)

with 0 and gcd � � = 1.

How many values

(� �)(5 � 5 + � � � + 0
5)

are in [� �]?

bound is quite crude.

Instead enumerate ’s,

count � ’s for each .

(Silverman, Contini, Lenstra)

NFS step 2: choose one

Previous step inspected many ’s.

Kept the attractive ’s,

as measured by values.

NFS step 2: Evaluate merit

of each attractive .

Choose highest-merit

for factoring � .

Merit evaluation is slower than

but is applied to fewer ’s.

More accurate than

so selects better .

Given � �
5

� � � � �
0:

Consider integer pairs (� �)

with 0 and gcd � � = 1.

How many values

(� �)(5 � 5 + � � � + 0
5)

are in [� �]?

bound is quite crude.

Instead enumerate ’s,

count � ’s for each .

(Silverman, Contini, Lenstra)

NFS step 2: choose one

Previous step inspected many ’s.

Kept the attractive ’s,

as measured by values.

NFS step 2: Evaluate merit

of each attractive .

Choose highest-merit

for factoring � .

Merit evaluation is slower than

but is applied to fewer ’s.

More accurate than

so selects better .

Given � �
5

� � � � �
0:

Consider integer pairs (� �)

with 0 and gcd � � = 1.

How many values

(� �)(5 � 5 + � � � + 0
5)

are in [� �]?

bound is quite crude.

Instead enumerate ’s,

count � ’s for each .

(Silverman, Contini, Lenstra)

Faster (2004 Bernstein):

Numerically approximate

the area of

(� �) R
�

R : � � � [� �] .

Number of qualifying pairs

is extremely close to

(3 � 2) 2
�
6 �

� �
� ((�)2)1

�
6

where

(�) = (� �)(5
� 5 + � � � + 0).

Evaluate superelliptic integral

by standard techniques:

partition, use series expansions.

cr.yp.to/talks.html#2004.11.15

Given � �
5

� � � � �
0:

Consider integer pairs (� �)

with 0 and gcd � � = 1.

How many values

(� �)(5 � 5 + � � � + 0
5)

are in [� �]?

bound is quite crude.

Instead enumerate ’s,

count � ’s for each .

(Silverman, Contini, Lenstra)

Faster (2004 Bernstein):

Numerically approximate

the area of

(� �) R
�

R : � � � [� �] .

Number of qualifying pairs

is extremely close to

(3 � 2) 2
�
6 �

� �
� ((�)2)1

�
6

where

(�) = (� �)(5
� 5 + � � � + 0).

Evaluate superelliptic integral

by standard techniques:

partition, use series expansions.

cr.yp.to/talks.html#2004.11.15

Given � �
5

� � � � �
0:

Consider integer pairs (� �)

with 0 and gcd � � = 1.

How many values

(� �)(5 � 5 + � � � + 0
5)

are in [� �]?

bound is quite crude.

Instead enumerate ’s,

count � ’s for each .

(Silverman, Contini, Lenstra)

Faster (2004 Bernstein):

Numerically approximate

the area of

(� �) R
�

R : � � � [� �] .

Number of qualifying pairs

is extremely close to

(3 � 2) 2
�
6 �

� �
� ((�)2)1

�
6

where

(�) = (� �)(5
� 5 + � � � + 0).

Evaluate superelliptic integral

by standard techniques:

partition, use series expansions.

cr.yp.to/talks.html#2004.11.15

Will see that NFS needs

fully factored values

(� �)(5 � 5 + � � � + 0
5).

Won’t be able to use values

with unknown prime divisors.

Merit of chance that

(� �)(5 � 5 + � � � + 0
5)

will be fully factored.

Simplified definition of

“fully factored”: “240-smooth,”

i.e., no prime divisors 240.

Faster (2004 Bernstein):

Numerically approximate

the area of

(� �) R
�

R : � � � [� �] .

Number of qualifying pairs

is extremely close to

(3 � 2) 2
�
6 �

� �
� ((�)2)1

�
6

where

(�) = (� �)(5
� 5 + � � � + 0).

Evaluate superelliptic integral

by standard techniques:

partition, use series expansions.

cr.yp.to/talks.html#2004.11.15

Will see that NFS needs

fully factored values

(� �)(5 � 5 + � � � + 0
5).

Won’t be able to use values

with unknown prime divisors.

Merit of chance that

(� �)(5 � 5 + � � � + 0
5)

will be fully factored.

Simplified definition of

“fully factored”: “240-smooth,”

i.e., no prime divisors 240.

Faster (2004 Bernstein):

Numerically approximate

the area of

(� �) R
�

R : � � � [� �] .

Number of qualifying pairs

is extremely close to

(3 � 2) 2
�
6 �

� �
� ((�)2)1

�
6

where

(�) = (� �)(5
� 5 + � � � + 0).

Evaluate superelliptic integral

by standard techniques:

partition, use series expansions.

cr.yp.to/talks.html#2004.11.15

Will see that NFS needs

fully factored values

(� �)(5 � 5 + � � � + 0
5).

Won’t be able to use values

with unknown prime divisors.

Merit of chance that

(� �)(5 � 5 + � � � + 0
5)

will be fully factored.

Simplified definition of

“fully factored”: “240-smooth,”

i.e., no prime divisors 240.

What is chance that

(� �)(5 � 5 + � � � + 0
5)

will be fully factored,

given that it is in [� �]?

Try to account for

roots modulo small primes.

(Schroeppel, Murphy, et al.)

Can do this accurately.

(2002 Bernstein)

cr.yp.to/papers.html#psi
cr.yp.to/psibound.html

Will see that NFS needs

fully factored values

(� �)(5 � 5 + � � � + 0
5).

Won’t be able to use values

with unknown prime divisors.

Merit of chance that

(� �)(5 � 5 + � � � + 0
5)

will be fully factored.

Simplified definition of

“fully factored”: “240-smooth,”

i.e., no prime divisors 240.

What is chance that

(� �)(5 � 5 + � � � + 0
5)

will be fully factored,

given that it is in [� �]?

Try to account for

roots modulo small primes.

(Schroeppel, Murphy, et al.)

Can do this accurately.

(2002 Bernstein)

cr.yp.to/papers.html#psi
cr.yp.to/psibound.html

Will see that NFS needs

fully factored values

(� �)(5 � 5 + � � � + 0
5).

Won’t be able to use values

with unknown prime divisors.

Merit of chance that

(� �)(5 � 5 + � � � + 0
5)

will be fully factored.

Simplified definition of

“fully factored”: “240-smooth,”

i.e., no prime divisors 240.

What is chance that

(� �)(5 � 5 + � � � + 0
5)

will be fully factored,

given that it is in [� �]?

Try to account for

roots modulo small primes.

(Schroeppel, Murphy, et al.)

Can do this accurately.

(2002 Bernstein)

cr.yp.to/papers.html#psi
cr.yp.to/psibound.html

NFS step 3: find small primes

Have integer , polynomial

(�) = (� �)(5
� 5 + � � � + 0).

Consider values 6 (�) =

(� �)(5 � 5 + � � � + 0
5).

NFS step 3: Choose .

For each pair (� �)

with 6 (�) [� �],

find small prime divisors

of 6 (�).

What is chance that

(� �)(5 � 5 + � � � + 0
5)

will be fully factored,

given that it is in [� �]?

Try to account for

roots modulo small primes.

(Schroeppel, Murphy, et al.)

Can do this accurately.

(2002 Bernstein)

cr.yp.to/papers.html#psi
cr.yp.to/psibound.html

NFS step 3: find small primes

Have integer , polynomial

(�) = (� �)(5
� 5 + � � � + 0).

Consider values 6 (�) =

(� �)(5 � 5 + � � � + 0
5).

NFS step 3: Choose .

For each pair (� �)

with 6 (�) [� �],

find small prime divisors

of 6 (�).

What is chance that

(� �)(5 � 5 + � � � + 0
5)

will be fully factored,

given that it is in [� �]?

Try to account for

roots modulo small primes.

(Schroeppel, Murphy, et al.)

Can do this accurately.

(2002 Bernstein)

cr.yp.to/papers.html#psi
cr.yp.to/psibound.html

NFS step 3: find small primes

Have integer , polynomial

(�) = (� �)(5
� 5 + � � � + 0).

Consider values 6 (�) =

(� �)(5 � 5 + � � � + 0
5).

NFS step 3: Choose .

For each pair (� �)

with 6 (�) [� �],

find small prime divisors

of 6 (�).

Simplified definition of “small”:

212.

(Serious misconception: 240.)

“Sieving”: Consider one ,

array of 215 consecutive � ’s.

For each small prime :

Mark � ’s with
6 (�) divisible by .

Can jump quickly through

these � ’s: they lie in a few

arithmetic progressions mod .

NFS step 3: find small primes

Have integer , polynomial

(�) = (� �)(5
� 5 + � � � + 0).

Consider values 6 (�) =

(� �)(5 � 5 + � � � + 0
5).

NFS step 3: Choose .

For each pair (� �)

with 6 (�) [� �],

find small prime divisors

of 6 (�).

Simplified definition of “small”:

212.

(Serious misconception: 240.)

“Sieving”: Consider one ,

array of 215 consecutive � ’s.

For each small prime :

Mark � ’s with
6 (�) divisible by .

Can jump quickly through

these � ’s: they lie in a few

arithmetic progressions mod .

NFS step 3: find small primes

Have integer , polynomial

(�) = (� �)(5
� 5 + � � � + 0).

Consider values 6 (�) =

(� �)(5 � 5 + � � � + 0
5).

NFS step 3: Choose .

For each pair (� �)

with 6 (�) [� �],

find small prime divisors

of 6 (�).

Simplified definition of “small”:

212.

(Serious misconception: 240.)

“Sieving”: Consider one ,

array of 215 consecutive � ’s.

For each small prime :

Mark � ’s with
6 (�) divisible by .

Can jump quickly through

these � ’s: they lie in a few

arithmetic progressions mod .

Dramatically improve speed by

adapting to CPU architecture.

Example:

For primes [215 9 � 215 8],

each progression has

8 or 9 array entries.

Always mark 9 entries,

often overflowing array,

to eliminate branch mispredictions.

Simplified definition of “small”:

212.

(Serious misconception: 240.)

“Sieving”: Consider one ,

array of 215 consecutive � ’s.

For each small prime :

Mark � ’s with
6 (�) divisible by .

Can jump quickly through

these � ’s: they lie in a few

arithmetic progressions mod .

Dramatically improve speed by

adapting to CPU architecture.

Example:

For primes [215 9 � 215 8],

each progression has

8 or 9 array entries.

Always mark 9 entries,

often overflowing array,

to eliminate branch mispredictions.

Simplified definition of “small”:

212.

(Serious misconception: 240.)

“Sieving”: Consider one ,

array of 215 consecutive � ’s.

For each small prime :

Mark � ’s with
6 (�) divisible by .

Can jump quickly through

these � ’s: they lie in a few

arithmetic progressions mod .

Dramatically improve speed by

adapting to CPU architecture.

Example:

For primes [215 9 � 215 8],

each progression has

8 or 9 array entries.

Always mark 9 entries,

often overflowing array,

to eliminate branch mispredictions.

Generalize 6 (�):

NFS can use 6 (�) �

for (� �) in a determinant- � lattice.

(1984 Davis Holdridge,

1993 Pollard)

Number of 6 (�) � in [� �]

is proportional to � � 2
�
3.

Can choose surprisingly small

and compensate by using many � ’s.

(1995 Bernstein)

cr.yp.to/papers.html#mlnfs

Dramatically improve speed by

adapting to CPU architecture.

Example:

For primes [215 9 � 215 8],

each progression has

8 or 9 array entries.

Always mark 9 entries,

often overflowing array,

to eliminate branch mispredictions.

Generalize 6 (�):

NFS can use 6 (�) �

for (� �) in a determinant- � lattice.

(1984 Davis Holdridge,

1993 Pollard)

Number of 6 (�) � in [� �]

is proportional to � � 2
�
3.

Can choose surprisingly small

and compensate by using many � ’s.

(1995 Bernstein)

cr.yp.to/papers.html#mlnfs

Dramatically improve speed by

adapting to CPU architecture.

Example:

For primes [215 9 � 215 8],

each progression has

8 or 9 array entries.

Always mark 9 entries,

often overflowing array,

to eliminate branch mispredictions.

Generalize 6 (�):

NFS can use 6 (�) �

for (� �) in a determinant- � lattice.

(1984 Davis Holdridge,

1993 Pollard)

Number of 6 (�) � in [� �]

is proportional to � � 2
�
3.

Can choose surprisingly small

and compensate by using many � ’s.

(1995 Bernstein)

cr.yp.to/papers.html#mlnfs

NFS step 4: early abort

Have many pairs (� �).

For each 6 (�), know

small prime divisors

and not-yet-factored part.

NFS step 4: Choose � .

Discard all values 6 (�) with

not-yet-factored parts above � .

How to choose � ? Answer:

Balance time for step 5

with time for step 3.

Generalize 6 (�):

NFS can use 6 (�) �

for (� �) in a determinant- � lattice.

(1984 Davis Holdridge,

1993 Pollard)

Number of 6 (�) � in [� �]

is proportional to � � 2
�
3.

Can choose surprisingly small

and compensate by using many � ’s.

(1995 Bernstein)

cr.yp.to/papers.html#mlnfs

NFS step 4: early abort

Have many pairs (� �).

For each 6 (�), know

small prime divisors

and not-yet-factored part.

NFS step 4: Choose � .

Discard all values 6 (�) with

not-yet-factored parts above � .

How to choose � ? Answer:

Balance time for step 5

with time for step 3.

Generalize 6 (�):

NFS can use 6 (�) �

for (� �) in a determinant- � lattice.

(1984 Davis Holdridge,

1993 Pollard)

Number of 6 (�) � in [� �]

is proportional to � � 2
�
3.

Can choose surprisingly small

and compensate by using many � ’s.

(1995 Bernstein)

cr.yp.to/papers.html#mlnfs

NFS step 4: early abort

Have many pairs (� �).

For each 6 (�), know

small prime divisors

and not-yet-factored part.

NFS step 4: Choose � .

Discard all values 6 (�) with

not-yet-factored parts above � .

How to choose � ? Answer:

Balance time for step 5

with time for step 3.

NFS step 5: fully factor

Have some pairs (� �).

For each value 6 (�):

know small prime divisors;

not-yet-factored part � .

NFS step 5: Identify values
6 (�) that are 240-smooth.

Should replace “240-smooth”

with slightly different notions,

not discussed in this talk.

(e.g. 1993 Coppersmith)

NFS step 4: early abort

Have many pairs (� �).

For each 6 (�), know

small prime divisors

and not-yet-factored part.

NFS step 4: Choose � .

Discard all values 6 (�) with

not-yet-factored parts above � .

How to choose � ? Answer:

Balance time for step 5

with time for step 3.

NFS step 5: fully factor

Have some pairs (� �).

For each value 6 (�):

know small prime divisors;

not-yet-factored part � .

NFS step 5: Identify values
6 (�) that are 240-smooth.

Should replace “240-smooth”

with slightly different notions,

not discussed in this talk.

(e.g. 1993 Coppersmith)

NFS step 4: early abort

Have many pairs (� �).

For each 6 (�), know

small prime divisors

and not-yet-factored part.

NFS step 4: Choose � .

Discard all values 6 (�) with

not-yet-factored parts above � .

How to choose � ? Answer:

Balance time for step 5

with time for step 3.

NFS step 5: fully factor

Have some pairs (� �).

For each value 6 (�):

know small prime divisors;

not-yet-factored part � .

NFS step 5: Identify values
6 (�) that are 240-smooth.

Should replace “240-smooth”

with slightly different notions,

not discussed in this talk.

(e.g. 1993 Coppersmith)

Assume that original values

are smooth with probability 1 ;

step 3 spends time per value;

step 5 spends time per value.

With proper balance,

time roughly ()12
�
40

to find one smooth value.

(1982 Pomerance)

Want 12 as large as possible

to move from towards .

But want 12 below 15,

and want 15 small so that

sieving fits into L1 cache.

cr.yp.to/bib/entries.html#1982/pomerance

NFS step 5: fully factor

Have some pairs (� �).

For each value 6 (�):

know small prime divisors;

not-yet-factored part � .

NFS step 5: Identify values
6 (�) that are 240-smooth.

Should replace “240-smooth”

with slightly different notions,

not discussed in this talk.

(e.g. 1993 Coppersmith)

Assume that original values

are smooth with probability 1 ;

step 3 spends time per value;

step 5 spends time per value.

With proper balance,

time roughly ()12
�
40

to find one smooth value.

(1982 Pomerance)

Want 12 as large as possible

to move from towards .

But want 12 below 15,

and want 15 small so that

sieving fits into L1 cache.

cr.yp.to/bib/entries.html#1982/pomerance

NFS step 5: fully factor

Have some pairs (� �).

For each value 6 (�):

know small prime divisors;

not-yet-factored part � .

NFS step 5: Identify values
6 (�) that are 240-smooth.

Should replace “240-smooth”

with slightly different notions,

not discussed in this talk.

(e.g. 1993 Coppersmith)

Assume that original values

are smooth with probability 1 ;

step 3 spends time per value;

step 5 spends time per value.

With proper balance,

time roughly ()12
�
40

to find one smooth value.

(1982 Pomerance)

Want 12 as large as possible

to move from towards .

But want 12 below 15,

and want 15 small so that

sieving fits into L1 cache.

cr.yp.to/bib/entries.html#1982/pomerance

Traditional algorithm for step 5:

For each pair (� �) separately,

use ECM to find primes 240

dividing 6 (�).

Complications save time:

“rho,” more aborts, et al.

Much faster to handle

a big batch of pairs (� �).

(2000 Bernstein)

Save even more time by checking

smoothness without first finding

primes. (2004 Franke Kleinjung

Morain Wirth)

Assume that original values

are smooth with probability 1 ;

step 3 spends time per value;

step 5 spends time per value.

With proper balance,

time roughly ()12
�
40

to find one smooth value.

(1982 Pomerance)

Want 12 as large as possible

to move from towards .

But want 12 below 15,

and want 15 small so that

sieving fits into L1 cache.

cr.yp.to/bib/entries.html#1982/pomerance

Traditional algorithm for step 5:

For each pair (� �) separately,

use ECM to find primes 240

dividing 6 (�).

Complications save time:

“rho,” more aborts, et al.

Much faster to handle

a big batch of pairs (� �).

(2000 Bernstein)

Save even more time by checking

smoothness without first finding

primes. (2004 Franke Kleinjung

Morain Wirth)

Assume that original values

are smooth with probability 1 ;

step 3 spends time per value;

step 5 spends time per value.

With proper balance,

time roughly ()12
�
40

to find one smooth value.

(1982 Pomerance)

Want 12 as large as possible

to move from towards .

But want 12 below 15,

and want 15 small so that

sieving fits into L1 cache.

cr.yp.to/bib/entries.html#1982/pomerance

Traditional algorithm for step 5:

For each pair (� �) separately,

use ECM to find primes 240

dividing 6 (�).

Complications save time:

“rho,” more aborts, et al.

Much faster to handle

a big batch of pairs (� �).

(2000 Bernstein)

Save even more time by checking

smoothness without first finding

primes. (2004 Franke Kleinjung

Morain Wirth)

Streamlined batch algorithm

(2004 Bernstein):

Multiply primes 240

in pairs, pairs of pairs, etc.,

to obtain their product .

Relies on fast disk-based

multiplication of huge integers.

Compute mod � for each value � .

Relies on fast division.

Now a value � is smooth iff

(mod �)2
�
lg lg ���

mod � = 0.

cr.yp.to/papers.html#smoothparts

Traditional algorithm for step 5:

For each pair (� �) separately,

use ECM to find primes 240

dividing 6 (�).

Complications save time:

“rho,” more aborts, et al.

Much faster to handle

a big batch of pairs (� �).

(2000 Bernstein)

Save even more time by checking

smoothness without first finding

primes. (2004 Franke Kleinjung

Morain Wirth)

Streamlined batch algorithm

(2004 Bernstein):

Multiply primes 240

in pairs, pairs of pairs, etc.,

to obtain their product .

Relies on fast disk-based

multiplication of huge integers.

Compute mod � for each value � .

Relies on fast division.

Now a value � is smooth iff

(mod �)2
�
lg lg ���

mod � = 0.

cr.yp.to/papers.html#smoothparts

Traditional algorithm for step 5:

For each pair (� �) separately,

use ECM to find primes 240

dividing 6 (�).

Complications save time:

“rho,” more aborts, et al.

Much faster to handle

a big batch of pairs (� �).

(2000 Bernstein)

Save even more time by checking

smoothness without first finding

primes. (2004 Franke Kleinjung

Morain Wirth)

Streamlined batch algorithm

(2004 Bernstein):

Multiply primes 240

in pairs, pairs of pairs, etc.,

to obtain their product .

Relies on fast disk-based

multiplication of huge integers.

Compute mod � for each value � .

Relies on fast division.

Now a value � is smooth iff

(mod �)2
�
lg lg ���

mod � = 0.

cr.yp.to/papers.html#smoothparts

Many lower-level speedups.

Compute with “FFT doubling”:

1 � 5 times faster. (2004 Kramer)

Compute mod � with

“scaled remainder tree”:

2 � 6 times faster.

(2004 Bernstein, adapting

2003 Bostan Lecerf Schost)

Reduce communication costs.

(2004–2005 Bernstein)

cr.yp.to/papers.html#multapps
cr.yp.to/papers.html#scaledmod

Streamlined batch algorithm

(2004 Bernstein):

Multiply primes 240

in pairs, pairs of pairs, etc.,

to obtain their product .

Relies on fast disk-based

multiplication of huge integers.

Compute mod � for each value � .

Relies on fast division.

Now a value � is smooth iff

(mod �)2
�
lg lg ���

mod � = 0.

cr.yp.to/papers.html#smoothparts

Many lower-level speedups.

Compute with “FFT doubling”:

1 � 5 times faster. (2004 Kramer)

Compute mod � with

“scaled remainder tree”:

2 � 6 times faster.

(2004 Bernstein, adapting

2003 Bostan Lecerf Schost)

Reduce communication costs.

(2004–2005 Bernstein)

cr.yp.to/papers.html#multapps
cr.yp.to/papers.html#scaledmod

Streamlined batch algorithm

(2004 Bernstein):

Multiply primes 240

in pairs, pairs of pairs, etc.,

to obtain their product .

Relies on fast disk-based

multiplication of huge integers.

Compute mod � for each value � .

Relies on fast division.

Now a value � is smooth iff

(mod �)2
�
lg lg ���

mod � = 0.

cr.yp.to/papers.html#smoothparts

Many lower-level speedups.

Compute with “FFT doubling”:

1 � 5 times faster. (2004 Kramer)

Compute mod � with

“scaled remainder tree”:

2 � 6 times faster.

(2004 Bernstein, adapting

2003 Bostan Lecerf Schost)

Reduce communication costs.

(2004–2005 Bernstein)

cr.yp.to/papers.html#multapps
cr.yp.to/papers.html#scaledmod

Contrary to popular myth,

properly designed parallel

computers can dramatically improve

price-performance ratio.

Huge improvement for ECM etc.

(2001 Bernstein)

The batch algorithms are better

on today’s badly designed CPUs

(Pentium, PowerPC, Athlon, etc.)

but will eventually be obsolete.

http://www.sharcs.org: new

cryptanalytic-hardware workshop.

cr.yp.to/talks.html#2005.06.11-1
cr.yp.to/papers.html#nfscircuit

Many lower-level speedups.

Compute with “FFT doubling”:

1 � 5 times faster. (2004 Kramer)

Compute mod � with

“scaled remainder tree”:

2 � 6 times faster.

(2004 Bernstein, adapting

2003 Bostan Lecerf Schost)

Reduce communication costs.

(2004–2005 Bernstein)

cr.yp.to/papers.html#multapps
cr.yp.to/papers.html#scaledmod

Contrary to popular myth,

properly designed parallel

computers can dramatically improve

price-performance ratio.

Huge improvement for ECM etc.

(2001 Bernstein)

The batch algorithms are better

on today’s badly designed CPUs

(Pentium, PowerPC, Athlon, etc.)

but will eventually be obsolete.

http://www.sharcs.org: new

cryptanalytic-hardware workshop.

cr.yp.to/talks.html#2005.06.11-1
cr.yp.to/papers.html#nfscircuit

Many lower-level speedups.

Compute with “FFT doubling”:

1 � 5 times faster. (2004 Kramer)

Compute mod � with

“scaled remainder tree”:

2 � 6 times faster.

(2004 Bernstein, adapting

2003 Bostan Lecerf Schost)

Reduce communication costs.

(2004–2005 Bernstein)

cr.yp.to/papers.html#multapps
cr.yp.to/papers.html#scaledmod

Contrary to popular myth,

properly designed parallel

computers can dramatically improve

price-performance ratio.

Huge improvement for ECM etc.

(2001 Bernstein)

The batch algorithms are better

on today’s badly designed CPUs

(Pentium, PowerPC, Athlon, etc.)

but will eventually be obsolete.

http://www.sharcs.org: new

cryptanalytic-hardware workshop.

cr.yp.to/talks.html#2005.06.11-1
cr.yp.to/papers.html#nfscircuit

NFS step 6: linear algebra

Have some pairs (� �)

with complete factorizations

of the values 6 (�).

NFS step 6: Find nonempty subset

of pairs (� �) for which � � and

� � � both have square product.

Here � = is a root of .

Do this by finding a linear

dependency among vectors mod 2.

Guaranteed to succeed

if there are enough vectors.

Contrary to popular myth,

properly designed parallel

computers can dramatically improve

price-performance ratio.

Huge improvement for ECM etc.

(2001 Bernstein)

The batch algorithms are better

on today’s badly designed CPUs

(Pentium, PowerPC, Athlon, etc.)

but will eventually be obsolete.

http://www.sharcs.org: new

cryptanalytic-hardware workshop.

cr.yp.to/talks.html#2005.06.11-1
cr.yp.to/papers.html#nfscircuit

NFS step 6: linear algebra

Have some pairs (� �)

with complete factorizations

of the values 6 (�).

NFS step 6: Find nonempty subset

of pairs (� �) for which � � and

� � � both have square product.

Here � = is a root of .

Do this by finding a linear

dependency among vectors mod 2.

Guaranteed to succeed

if there are enough vectors.

Contrary to popular myth,

properly designed parallel

computers can dramatically improve

price-performance ratio.

Huge improvement for ECM etc.

(2001 Bernstein)

The batch algorithms are better

on today’s badly designed CPUs

(Pentium, PowerPC, Athlon, etc.)

but will eventually be obsolete.

http://www.sharcs.org: new

cryptanalytic-hardware workshop.

cr.yp.to/talks.html#2005.06.11-1
cr.yp.to/papers.html#nfscircuit

NFS step 6: linear algebra

Have some pairs (� �)

with complete factorizations

of the values 6 (�).

NFS step 6: Find nonempty subset

of pairs (� �) for which � � and

� � � both have square product.

Here � = is a root of .

Do this by finding a linear

dependency among vectors mod 2.

Guaranteed to succeed

if there are enough vectors.

Choose prime bound 240

to minimize total time of

linear algebra and previous steps.

Larger bound would minimize time

of previous steps, but then linear

algebra would be a bottleneck.

Reduce bound to balance linear

algebra with previous steps.

This balancing means

somewhat less impact of

speedups in particular steps.

NFS step 6: linear algebra

Have some pairs (� �)

with complete factorizations

of the values 6 (�).

NFS step 6: Find nonempty subset

of pairs (� �) for which � � and

� � � both have square product.

Here � = is a root of .

Do this by finding a linear

dependency among vectors mod 2.

Guaranteed to succeed

if there are enough vectors.

Choose prime bound 240

to minimize total time of

linear algebra and previous steps.

Larger bound would minimize time

of previous steps, but then linear

algebra would be a bottleneck.

Reduce bound to balance linear

algebra with previous steps.

This balancing means

somewhat less impact of

speedups in particular steps.

NFS step 6: linear algebra

Have some pairs (� �)

with complete factorizations

of the values 6 (�).

NFS step 6: Find nonempty subset

of pairs (� �) for which � � and

� � � both have square product.

Here � = is a root of .

Do this by finding a linear

dependency among vectors mod 2.

Guaranteed to succeed

if there are enough vectors.

Choose prime bound 240

to minimize total time of

linear algebra and previous steps.

Larger bound would minimize time

of previous steps, but then linear

algebra would be a bottleneck.

Reduce bound to balance linear

algebra with previous steps.

This balancing means

somewhat less impact of

speedups in particular steps.

NFS step 7: square roots

Have some pairs (� �).

Product of � � is square.

Product of � � � is square.

NFS step 7: Use pairs to

factor � , maybe nontrivially.

Simplest method, computing

(� � �), is not a bottleneck.

Other methods in literature are a

waste of programmer time.

Choose prime bound 240

to minimize total time of

linear algebra and previous steps.

Larger bound would minimize time

of previous steps, but then linear

algebra would be a bottleneck.

Reduce bound to balance linear

algebra with previous steps.

This balancing means

somewhat less impact of

speedups in particular steps.

NFS step 7: square roots

Have some pairs (� �).

Product of � � is square.

Product of � � � is square.

NFS step 7: Use pairs to

factor � , maybe nontrivially.

Simplest method, computing

(� � �), is not a bottleneck.

Other methods in literature are a

waste of programmer time.

