Integer factorization:
a progress report
D. J. Bernstein

Thanks to:
University of Illinois at Chicago NSF DMS-0140542
Alfred P. Sloan Foundation

Exercise for the reader:
Find a nontrivial factor of 6366223796340423057152171586.

nn:	Exercise for the reader:

Find a nontrivial factor of 6366223796340423057152171586.

Exercise for the re Find a nontrivial f 636622379634042

Small prime factor are easy to find.

Larger primes are
"Elliptic-curve me scales surprisingly (1987 Lenstra)

ECM has found a (2005 Dodson; rat $\approx 3 \cdot 10^{12}$ Opteror

Exercise for the reader:
Find a nontrivial factor of 6366223796340423057152171586.

Exercise for the reader:
Find a nontrivial factor of 6366223796340423057152171586.

Small prime factors
are easy to find.
Larger primes are harder.
"Elliptic-curve method" (ECM)
scales surprisingly well.
(1987 Lenstra)
ECM has found a prime $\approx 2^{219}$. (2005 Dodson; rather lucky; $\approx 3 \cdot 10^{12}$ Opteron cycles)
www.loria.fr/~zimmerma/records/p66
ader:
actor of
3057152171586.

Exercise for the reader:
Find a nontrivial factor of 6366223796340423057152171586.

Small prime factors are easy to find.

Larger primes are harder.
"Elliptic-curve method" (ECM)
scales surprisingly well.
(1987 Lenstra)
ECM has found a prime $\approx 2^{219}$. (2005 Dodson; rather lucky;
$\approx 3 \cdot 10^{12}$ Opteron cycles)

For worst-case int two very large prin ECM does not sca "number-field siev (1988 Pollard, et Latest record: NF two prime factors of "RSA-200" cha Bahr Boehm Fran $\approx 5 \cdot 10^{18}$ Opteror

How much more d is it to find prime of an integer $n \approx$

Exercise for the reader:
Find a nontrivial factor of 6366223796340423057152171586.

Small prime factors
are easy to find.
Larger primes are harder.
"Elliptic-curve method" (ECM)
scales surprisingly well.
(1987 Lenstra)
ECM has found a prime $\approx 2^{219}$. (2005 Dodson; rather lucky; $\approx 3 \cdot 10^{12}$ Opteron cycles)

For worst-case integers with two very large prime factors, ECM does not scale as well as "number-field sieve" (NFS). (1988 Pollard, et al.)

Latest record: NFS has found two prime factors $\approx 2^{332}$ of "RSA-200" challenge. (2005 Bahr Boehm Franke Kleinjung; $\approx 5 \cdot 10^{18}$ Opteron cycles)

How much more difficult is it to find prime factors $\approx 2^{512}$ of an integer $n \approx 2^{1024}$?
ader:

actor of

3057152171586.
s
harder.
thod" (ECM)
well.
prime $\approx 2^{219}$.
her lucky;
(cycles)

For worst-case integers with two very large prime factors, ECM does not scale as well as "number-field sieve" (NFS). (1988 Pollard, et al.)

Latest record: NFS has found two prime factors $\approx 2^{332}$ of "RSA-200" challenge. (2005 Bahr Boehm Franke Kleinjung; $\approx 5 \cdot 10^{18}$ Opteron cycles)

How much more difficult
is it to find prime factors $\approx 2^{512}$ of an integer $n \approx 2^{1024}$?

NFS step 1: find

NFS tries to facto inspecting values

Select integer m find integers f_{5}, f_{2} with $n=f_{5} m^{5}+$ for various integer $(a-b m)\left(f_{5} a^{5}+f\right.$

Practically every c will succeed in fac Better speed from $(a-b m)\left(f_{5} a^{5}+f\right.$

For worst-case integers with two very large prime factors, ECM does not scale as well as "number-field sieve" (NFS). (1988 Pollard, et al.)

Latest record: NFS has found two prime factors $\approx 2^{332}$ of "RSA-200" challenge. (2005 Bahr Boehm Franke Kleinjung; $\approx 5 \cdot 10^{18}$ Opteron cycles)

How much more difficult is it to find prime factors $\approx 2^{512}$ of an integer $n \approx 2^{1024}$?

NFS step 1: find attractive m's

NFS tries to factor n by inspecting values of a polynomial.

Select integer $m \in\left[n^{1 / 6}, n^{1 / 5}\right]$; find integers $f_{5}, f_{4}, \ldots, f_{0}$
with $n=f_{5} m^{5}+f_{4} m^{4}+\cdots+f_{0}$; for various integers a, b inspect $(a-b m)\left(f_{5} a^{5}+f_{4} a^{4} b+\cdots+f_{0} b^{5}\right)$.

Practically every choice of m will succeed in factoring n.
Better speed from smaller values $(a-b m)\left(f_{5} a^{5}+f_{4} a^{4} b+\cdots+f_{0} b^{5}\right)$.
egers with
ne factors,
le as well as
e" (NFS).
I.)
S has found
$\approx 2^{332}$
Ilenge. (2005
ke Kleinjung; cycles)
ifficult
factors $\approx 2^{512}$ 2^{1024} ?

NFS step 1: find attractive m's

NFS tries to factor n by inspecting values of a polynomial.

Select integer $m \in\left[n^{1 / 6}, n^{1 / 5}\right]$; find integers $f_{5}, f_{4}, \ldots, f_{0}$
with $n=f_{5} m^{5}+f_{4} m^{4}+\cdots+f_{0}$; for various integers a, b inspect $(a-b m)\left(f_{5} a^{5}+f_{4} a^{4} b+\cdots+f_{0} b^{5}\right)$.

Practically every choice of m will succeed in factoring n.
Better speed from smaller values $(a-b m)\left(f_{5} a^{5}+f_{4} a^{4} b+\cdots+f_{0} b^{5}\right)$.
e.g. $n=3141592$

Can choose $m=$ $f_{5}=314, f_{4}=15$ $f_{2}=358, f_{1}=97$

NFS succeeds in f by inspecting valu $(a-1000 b)\left(314 a^{2}\right.$ for various integer

But NFS succeeds using $m=1370$, $(a-1370 b)\left(65 a^{5}\right.$ $38 a^{3} b^{2}+377 a^{2} b^{3}$

NFS step 1: find attractive m 's

NFS tries to factor n by inspecting values of a polynomial.

Select integer $m \in\left[n^{1 / 6}, n^{1 / 5}\right]$; find integers $f_{5}, f_{4}, \ldots, f_{0}$
with $n=f_{5} m^{5}+f_{4} m^{4}+\cdots+f_{0}$;
for various integers a, b inspect $(a-b m)\left(f_{5} a^{5}+f_{4} a^{4} b+\cdots+f_{0} b^{5}\right)$.

Practically every choice of m will succeed in factoring n.
Better speed from smaller values $(a-b m)\left(f_{5} a^{5}+f_{4} a^{4} b+\cdots+f_{0} b^{5}\right)$.
e.g. $n=314159265358979323$:

Can choose $m=1000$,
$f_{5}=314, f_{4}=159, f_{3}=265$,
$f_{2}=358, f_{1}=979, f_{0}=323$.
NFS succeeds in factoring n by inspecting values
$(a-1000 b)\left(314 a^{5}+\cdots+323 b^{5}\right)$
for various integer pairs (a, b).
But NFS succeeds more quickly using $m=1370$, inspecting $(a-1370 b)\left(65 a^{5}+130 a^{4} b+\right.$ $\left.38 a^{3} b^{2}+377 a^{2} b^{3}+127 a b^{4}+33 b^{5}\right)$.

ttractive m's

n by
f a polynomial.
$\left[n^{1 / 6}, n^{1 / 5}\right] ;$
, f_{0}
$f_{4} m^{4}+\cdots+f_{0}$
$s a, b$ inspect
$\left.4 a^{4} b+\cdots+f_{0} b^{5}\right)$.
hoice of m
toring n.
smaller values $\left.4 a^{4} b+\cdots+f_{0} b^{5}\right)$.
e.g. $n=314159265358979323$:

Can choose $m=1000$,
$f_{5}=314, f_{4}=159, f_{3}=265$,
$f_{2}=358, f_{1}=979, f_{0}=323$.
NFS succeeds in factoring n
by inspecting values
$(a-1000 b)\left(314 a^{5}+\cdots+323 b^{5}\right)$
for various integer pairs (a, b).
But NFS succeeds more quickly using $m=1370$, inspecting
$(a-1370 b)\left(65 a^{5}+130 a^{4} b+\right.$
$\left.38 a^{3} b^{2}+377 a^{2} b^{3}+127 a b^{4}+33 b^{5}\right)$.

NFS step 1: Cons 2^{45} possible choic Quickly identify, e 2^{25} attractive can

Will choose one m
If $|a| \leq S R$ and $\mid b$ $\mid(a-b m)\left(f_{5} a^{5}+\right.$ $\mu(m, S) R^{6}$ where $\left(m S^{-1}+S\right)\left(\mid f_{5} S^{5}\right.$

Attractive m, S : (1999 Murphy)
e.g. $n=314159265358979323$:

Can choose $m=1000$,
$f_{5}=314, f_{4}=159, f_{3}=265$,
$f_{2}=358, f_{1}=979, f_{0}=323$.
NFS succeeds in factoring n
by inspecting values
$(a-1000 b)\left(314 a^{5}+\cdots+323 b^{5}\right)$
for various integer pairs (a, b).
But NFS succeeds more quickly using $m=1370$, inspecting $(a-1370 b)\left(65 a^{5}+130 a^{4} b+\right.$ $\left.38 a^{3} b^{2}+377 a^{2} b^{3}+127 a b^{4}+33 b^{5}\right)$.

NFS step 1: Consider, e.g., 2^{45} possible choices of m.
Quickly identify, e.g., 2^{25} attractive candidates.

Will choose one m in step 2 .
If $|a| \leq S R$ and $|b| \leq S^{-1} R$ then
$\left|(a-b m)\left(f_{5} a^{5}+\cdots+f_{0} b^{5}\right)\right| \leq$
$\mu(m, S) R^{6}$ where $\mu(m, S)=$ $\left(m S^{-1}+S\right)\left(\left|f_{5} S^{5}\right|+\cdots+\left|f_{0} S^{-5}\right|\right)$.

Attractive m, S : small $\mu(m, S)$. (1999 Murphy)
$65358979323:$
L000,
$9, f_{3}=265$,
$9, f_{0}=323$.
actoring n
es
$\left.+\cdots+323 b^{5}\right)$
pairs (a, b).
more quickly
nspecting
$+130 a^{4} b+$
$\left.+127 a b^{4}+33 b^{5}\right)$.

NFS step 1: Consider, e.g., 2^{45} possible choices of m.
Quickly identify, e.g.,
2^{25} attractive candidates.
Will choose one m in step 2.
If $|a| \leq S R$ and $|b| \leq S^{-1} R$ then $\left|(a-b m)\left(f_{5} a^{5}+\cdots+f_{0} b^{5}\right)\right| \leq$ $\mu(m, S) R^{6}$ where $\mu(m, S)=$ $\left(m S^{-1}+S\right)\left(\left|f_{5} S^{5}\right|+\cdots+\left|f_{0} S^{-5}\right|\right)$.

Attractive m, S : small $\mu(m, S)$. (1999 Murphy)

Choosing one typi produces $\mu(m, 1)$

Question: How m need to save facto m, S with $\mu(m, S$

This has as much chopping $\approx 3 \lg B$

Searching for gooc takes noticeable fr total time of optin (If not, consider m
End up with rathe

NFS step 1: Consider, e.g., 2^{45} possible choices of m. Quickly identify, e.g., 2^{25} attractive candidates.

Will choose one m in step 2 .
If $|a| \leq S R$ and $|b| \leq S^{-1} R$ then $\left|(a-b m)\left(f_{5} a^{5}+\cdots+f_{0} b^{5}\right)\right| \leq$ $\mu(m, S) R^{6}$ where $\mu(m, S)=$ $\left(m S^{-1}+S\right)\left(\left|f_{5} S^{5}\right|+\cdots+\left|f_{0} S^{-5}\right|\right)$.

Attractive m, S : small $\mu(m, S)$. (1999 Murphy)

Choosing one typical $m \approx n^{1 / 6}$ produces $\mu(m, 1) \approx n^{2 / 6}$.

Question: How much time do we need to save factor of B-to find m, S with $\mu(m, S) \approx B^{-1} n^{2 / 6}$?

This has as much impact as chopping $\approx 3 \lg B$ bits out of n.

Searching for good values of m takes noticeable fraction of total time of optimized NFS. (If not, consider more m 's!) End up with rather large B.
ider, e.g., es of m.
g., didates.

2 in step 2.
$\mid \leq S^{-1} R$ then
$\left.\cdots+f_{0} b^{5}\right) \mid \leq$
$\mu(m, S)=$ $\left|+\cdots+\left|f_{0} S^{-5}\right|\right)$.
mall $\mu(m, S)$.

Choosing one typical $m \approx n^{1 / 6}$ produces $\mu(m, 1) \approx n^{2 / 6}$.

Question: How much time do we need to save factor of B-to find m, S with $\mu(m, S) \approx B^{-1} n^{2 / 6}$?

This has as much impact as chopping $\approx 3 \lg B$ bits out of n.

Searching for good values of m takes noticeable fraction of total time of optimized NFS. (If not, consider more m 's!)
End up with rather large B.

Four answers:

Time $B^{7.5+o(1)}$ to $m \approx B^{0.25} n^{1 / 6}$ with $\mu(m, 1) \approx B$ by searching conse

Time $B^{6+o(1)}$ by s through m 's with Time $B^{4.5+o(1)}$ to with $\mu\left(m, B^{0.75}\right)$ (1999 Murphy)

Time $B^{3.5+o(1)}$ by controlling f_{3}. (2

Choosing one typical $m \approx n^{1 / 6}$ produces $\mu(m, 1) \approx n^{2 / 6}$.

Question: How much time do we need to save factor of B-to find m, S with $\mu(m, S) \approx B^{-1} n^{2 / 6}$?

This has as much impact as chopping $\approx 3 \lg B$ bits out of n.

Searching for good values of m takes noticeable fraction of total time of optimized NFS. (If not, consider more m 's!) End up with rather large B.

Four answers:

Time $B^{7.5+o(1)}$ to find $m \approx B^{0.25} n^{1 / 6}$ with $\mu(m, 1) \approx B^{-1} n^{2 / 6}$ by searching consecutive m 's.

Time $B^{6+o(1)}$ by skipping through m 's with small f_{5}, f_{4}.

Time $B^{4.5+o(1)}$ to find $m \approx B^{1} n^{1 / 6}$ with $\mu\left(m, B^{0.75}\right) \approx B^{-1} n^{2 / 6}$. (1999 Murphy)

Time $B^{3.5+o(1)}$ by partly controlling f_{3}. (2004 Bernstein)
cal $m \approx n^{1 / 6}$
$\approx n^{2 / 6}$.
uch time do we r of B-to find
$\approx B^{-1} n^{2 / 6}$?
impact as bits out of n.
values of m
action of
nized NFS.
ore m's!)
r large B.

Four answers:

Time $B^{7.5+o(1)}$ to find $m \approx B^{0.25} n^{1 / 6}$
with $\mu(m, 1) \approx B^{-1} n^{2 / 6}$ by searching consecutive m 's.

Time $B^{6+o(1)}$ by skipping through m 's with small f_{5}, f_{4}.

Time $B^{4.5+o(1)}$ to find $m \approx B^{1} n^{1 / 6}$ with $\mu\left(m, B^{0.75}\right) \approx B^{-1} n^{2 / 6}$. (1999 Murphy)

Time $B^{3.5+o(1)}$ by partly controlling f_{3}. (2004 Bernstein)

New method uses lattice-basis reduc specifically integer

Many lower-level effectively choppin a few more bits ol approximate reduc (e.g., 2004 Schnor "PSLQ" (1999 Ba "geometric" ideas (2004 Nguyen Ste

Four answers:
Time $B^{7.5+o(1)}$ to find $m \approx B^{0.25} n^{1 / 6}$
with $\mu(m, 1) \approx B^{-1} n^{2 / 6}$
by searching consecutive m 's.
Time $B^{6+o(1)}$ by skipping through m 's with small f_{5}, f_{4}.
Time $B^{4.5+o(1)}$ to find $m \approx B^{1} n^{1 / 6}$ with $\mu\left(m, B^{0.75}\right) \approx B^{-1} n^{2 / 6}$. (1999 Murphy)
Time $B^{3.5+o(1)}$ by partly controlling f_{3}. (2004 Bernstein)

New method uses 4-dimensional lattice-basis reduction, specifically integer-relation finding.

Many lower-level speedups, effectively chopping
a few more bits out of n :
approximate reduction
(e.g., 2004 Schnorr),
"PSLQ" (1999 Bailey Ferguson),
"geometric" ideas
(2004 Nguyen Stehlé).
www.loria.fr/~stehle/LOWDIM.html www.loria.fr/~stehle/FPLLL.html
find
${ }^{-1} n^{2 / 6}$
cutive m 's.
kipping
small f_{5}, f_{4}.
find $m \approx B^{1} n^{1 / 6}$
$\approx B^{-1} n^{2 / 6}$.
partly
04 Bernstein)

New method uses 4-dimensional lattice-basis reduction, specifically integer-relation finding.

Many lower-level speedups, effectively chopping a few more bits out of n :
approximate reduction
(e.g., 2004 Schnorr),
"PSLQ" (1999 Bailey Ferguson),
"geometric" ideas
(2004 Nguyen Stehlé).
www.loria.fr/~stehle/LOWDIM.html
www.loria.fr/~stehle/FPLLL.html

NFS step 2: choo

Previous step insp Kept the attractiv as measured by μ

NFS step 2: Evalu of each attractive Choose highest-m for factoring n.

Merit evaluation but is applied to f More accurate tha so selects better n

New method uses 4-dimensional lattice-basis reduction, specifically integer-relation finding.

Many lower-level speedups, effectively chopping
a few more bits out of n :
approximate reduction
(e.g., 2004 Schnorr),
"PSLQ" (1999 Bailey Ferguson),
"geometric" ideas
(2004 Nguyen Stehlé).

NFS step 2: choose one m

Previous step inspected many m 's. Kept the attractive m 's, as measured by μ values.

NFS step 2: Evaluate merit of each attractive m.
Choose highest-merit m for factoring n.

Merit evaluation is slower than μ but is applied to fewer m 's. More accurate than μ so selects better m.

4-dimensional

 tion, -relation finding. peedups,r)
iley Ferguson),
hlé).

NFS step 2: choose one m

Previous step inspected many m 's.
Kept the attractive m's, as measured by μ values.

NFS step 2: Evaluate merit of each attractive m.
Choose highest-merit m for factoring n.

Merit evaluation is slower than μ but is applied to fewer m 's.
More accurate than μ
so selects better m.

Given H, m, f_{5}, \ldots Consider integer p with $b>0$ and gc How many values $(a-b m)\left(f_{5} a^{5}+\right.$ are in $[-H, H]$?
μ bound is quite c Instead enumerate count a 's for each (Silverman, Contir

NFS step 2: choose one m

Previous step inspected many m 's.
Kept the attractive m's,
as measured by μ values.
NFS step 2: Evaluate merit of each attractive m.
Choose highest-merit m for factoring n.

Merit evaluation is slower than μ but is applied to fewer m 's.
More accurate than μ
so selects better m.

Given $H, m, f_{5}, \ldots, f_{0}$:
Consider integer pairs (a, b) with $b>0$ and $\operatorname{gcd}\{a, b\}=1$. How many values
$(a-b m)\left(f_{5} a^{5}+\cdots+f_{0} b^{5}\right)$ are in $[-H, H]$?
μ bound is quite crude. Instead enumerate b 's, count a 's for each b.
(Silverman, Contini, Lenstra)

se one m

ected many m 's.
e m's,
values.
rate merit
m.
erit m
; slower than μ ewer m's.
n μ
2 .

Given $H, m, f_{5}, \ldots, f_{0}$:
Consider integer pairs (a, b) with $b>0$ and $\operatorname{gcd}\{a, b\}=1$.
How many values
$(a-b m)\left(f_{5} a^{5}+\cdots+f_{0} b^{5}\right)$
are in $[-H, H]$?
μ bound is quite crude.
Instead enumerate b 's, count a 's for each b.
(Silverman, Contini, Lenstra)

Faster (2004 Bern

 Numerically appro the area of $\{(a, b) \in \mathbf{R} \times \mathbf{R}$:Number of qualify is extremely close $\left(3 / \pi^{2}\right) H^{2 / 6} \int_{-\infty}^{\infty} a$ where
$f(x)=(x-m)(f$
Evaluate superellip by standard techni partition, use serie

Given $H, m, f_{5}, \ldots, f_{0}$:
Consider integer pairs (a, b) with $b>0$ and $\operatorname{gcd}\{a, b\}=1$. How many values
$(a-b m)\left(f_{5} a^{5}+\cdots+f_{0} b^{5}\right)$ are in $[-H, H]$?
μ bound is quite crude.
Instead enumerate b 's,
count a 's for each b.
(Silverman, Contini, Lenstra)

Faster (2004 Bernstein):
Numerically approximate the area of
$\{(a, b) \in \mathbf{R} \times \mathbf{R}: \cdots \in[-H, H]\}$.
Number of qualifying pairs is extremely close to $\left(3 / \pi^{2}\right) H^{2 / 6} \int_{-\infty}^{\infty} d x /\left(f(x)^{2}\right)^{1 / 6}$ where
$f(x)=(x-m)\left(f_{5} x^{5}+\cdots+f_{0}\right)$.
Evaluate superelliptic integral by standard techniques:
partition, use series expansions.
, f_{0} :
airs (a, b)
$d\{a, b\}=1$.
$\left.\cdots+f_{0} b^{5}\right)$
rude.
b's,
b.
ii, Lenstra)

Faster (2004 Bernstein):

Numerically approximate the area of

$$
\{(a, b) \in \mathbf{R} \times \mathbf{R}: \cdots \in[-H, H]\} .
$$

Number of qualifying pairs
is extremely close to

$$
\left(3 / \pi^{2}\right) H^{2 / 6} \int_{-\infty}^{\infty} d x /\left(f(x)^{2}\right)^{1 / 6}
$$

where

$$
f(x)=(x-m)\left(f_{5} x^{5}+\cdots+f_{0}\right)
$$

Evaluate superelliptic integral by standard techniques:
partition, use series expansions.

Will see that NFS fully factored valu $(a-b m)\left(f_{5} a^{5}+\right.$

Won't be able to with unknown prin

Merit of $m \approx$ cha $(a-b m)\left(f_{5} a^{5}+\right.$ will be fully factor

Simplified definitic "fully factored":
i.e., no prime divis

Faster (2004 Bernstein):
Numerically approximate the area of
$\{(a, b) \in \mathbf{R} \times \mathbf{R}: \cdots \in[-H, H]\}$.
Number of qualifying pairs is extremely close to $\left(3 / \pi^{2}\right) H^{2 / 6} \int_{-\infty}^{\infty} d x /\left(f(x)^{2}\right)^{1 / 6}$ where
$f(x)=(x-m)\left(f_{5} x^{5}+\cdots+f_{0}\right)$.
Evaluate superelliptic integral by standard techniques:
partition, use series expansions.

Will see that NFS needs fully factored values

$$
(a-b m)\left(f_{5} a^{5}+\cdots+f_{0} b^{5}\right)
$$

Won't be able to use values with unknown prime divisors.

Merit of $m \approx$ chance that $(a-b m)\left(f_{5} a^{5}+\cdots+f_{0} b^{5}\right)$ will be fully factored.

Simplified definition of "fully factored": " 2^{40}-smooth," i.e., no prime divisors $>2^{40}$.
stein):
$\cdot \cdot \in[-H, H]\}$.
ing pairs
to
$x /\left(f(x)^{2}\right)^{1 / 6}$
$\left.5 x^{5}+\cdots+f_{0}\right)$.
tic integral
ques:
s expansions.

Will see that NFS needs
fully factored values

$$
(a-b m)\left(f_{5} a^{5}+\cdots+f_{0} b^{5}\right) .
$$

Won't be able to use values with unknown prime divisors.

Merit of $m \approx$ chance that $(a-b m)\left(f_{5} a^{5}+\cdots+f_{0} b^{5}\right)$ will be fully factored.

Simplified definition of
"fully factored": " 2^{40}-smooth,"
i.e., no prime divisors $>2^{40}$.

What is chance th $(a-b m)\left(f_{5} a^{5}+\right.$ will be fully factor given that it is in

Try to account for roots modulo sma (Schroeppel, Murf

Can do this accur (2002 Bernstein)

Will see that NFS needs
fully factored values
$(a-b m)\left(f_{5} a^{5}+\cdots+f_{0} b^{5}\right)$.
Won't be able to use values with unknown prime divisors.

Merit of $m \approx$ chance that $(a-b m)\left(f_{5} a^{5}+\cdots+f_{0} b^{5}\right)$ will be fully factored.

Simplified definition of "fully factored": " $2{ }^{40}$-smooth," i.e., no prime divisors $>2^{40}$.

What is chance that
$(a-b m)\left(f_{5} a^{5}+\cdots+f_{0} b^{5}\right)$ will be fully factored, given that it is in $[-H, H]$?

Try to account for roots modulo small primes.
(Schroeppel, Murphy, et al.)
Can do this accurately. (2002 Bernstein)

```
cr.yp.to/papers.html#psi
```

cr.yp.to/psibound.html

needs

es

$\left.\cdots+f_{0} b^{5}\right)$
use values ne divisors.
nce that
$\left.\cdots+f_{0} b^{5}\right)$
ed.
n of
' 2^{40}-smooth,"
ors $>2^{40}$

What is chance that
$(a-b m)\left(f_{5} a^{5}+\cdots+f_{0} b^{5}\right)$
will be fully factored, given that it is in $[-H, H]$?

Try to account for roots modulo small primes.
(Schroeppel, Murphy, et al.)
Can do this accurately. (2002 Bernstein)

NFS step 3: find

Have integer m, p $f(x)=(x-m)(f$

Consider values b^{6} $(a-b m)\left(f_{5} a^{5}+\right.$ NFS step 3: Choo For each pair (a, b with $b^{6} f(a / b) \in[-$ find small prime d of $b^{6} f(a / b)$.

What is chance that
$(a-b m)\left(f_{5} a^{5}+\cdots+f_{0} b^{5}\right)$
will be fully factored, given that it is in $[-H, H]$?

Try to account for roots modulo small primes.
(Schroeppel, Murphy, et al.)
Can do this accurately. (2002 Bernstein)

NFS step 3: find small primes

Have integer m, polynomial $f(x)=(x-m)\left(f_{5} x^{5}+\cdots+f_{0}\right)$.

Consider values $b^{6} f(a / b)=$ $(a-b m)\left(f_{5} a^{5}+\cdots+f_{0} b^{5}\right)$.

NFS step 3: Choose H.
For each pair (a, b)
with $b^{6} f(a / b) \in[-H, H]$, find small prime divisors of $b^{6} f(a / b)$.
ed,
$[-H, H] ?$

Il primes.
phy, et al.)
ately.

NFS step 3: find small primes

Have integer m, polynomial

$$
f(x)=(x-m)\left(f_{5} x^{5}+\cdots+f_{0}\right)
$$

Consider values $b^{6} f(a / b)=$ $(a-b m)\left(f_{5} a^{5}+\cdots+f_{0} b^{5}\right)$.

NFS step 3: Choose H.
For each pair (a, b)
with $b^{6} f(a / b) \in[-H, H]$,
find small prime divisors of $b^{6} f(a / b)$.

Simplified definitic $\leq 2^{12}$.
(Serious misconce
"Sieving": Consid array of 2^{15} conse For each small pri Mark a 's with $b^{6} f(a / b)$ divisible

Can jump quickly these a 's: they lie arithmetic progres

NFS step 3: find small primes

Have integer m, polynomial $f(x)=(x-m)\left(f_{5} x^{5}+\cdots+f_{0}\right)$.

Consider values $b^{6} f(a / b)=$ $(a-b m)\left(f_{5} a^{5}+\cdots+f_{0} b^{5}\right)$.

NFS step 3: Choose H.
For each pair (a, b)
with $b^{6} f(a / b) \in[-H, H]$, find small prime divisors of $b^{6} f(a / b)$.

Simplified definition of "small":
$\leq 2^{12}$.
(Serious misconception: $\leq 2^{40}$.)
"Sieving" : Consider one b, array of 2^{15} consecutive a 's. For each small prime p :
Mark a 's with $b^{6} f(a / b)$ divisible by p.

Can jump quickly through these a 's: they lie in a few arithmetic progressions mod p.

mall primes

olynomial
$\left.5 x^{5}+\cdots+f_{0}\right)$.
$f(a / b)=$
$\left.\cdots+f_{0} b^{5}\right)$.
se H.
$-H, H]$,
ivisors

Simplified definition of "small":
$\leq 2^{12}$.
(Serious misconception: $\leq 2^{40}$.)
"Sieving": Consider one b, array of 2^{15} consecutive a 's.
For each small prime p :
Mark a 's with
$b^{6} f(a / b)$ divisible by p.
Can jump quickly through these a 's: they lie in a few arithmetic progressions mod p.

Dramatically impr adapting to CPU

Example:

For primes $p \in\left[2^{1}\right.$ each progression h 8 or 9 array entrie Always mark 9 ent often overflowing to eliminate branc

Simplified definition of "small":
$\leq 2^{12}$.
(Serious misconception: $\leq 2^{40}$.)
"Sieving": Consider one b, array of 2^{15} consecutive a 's.
For each small prime p :
Mark a 's with
$b^{6} f(a / b)$ divisible by p.
Can jump quickly through these a 's: they lie in a few arithmetic progressions mod p.

Dramatically improve speed by adapting to CPU architecture.

Example:
For primes $p \in\left[2^{15} / 9,2^{15} / 8\right]$,
each progression has
8 or 9 array entries.
Always mark 9 entries, often overflowing array, to eliminate branch mispredictions.
n of "small":
otion: $\leq 2^{40}$.)
er one b, cutive a 's.
ne p :
by p.
through
in a few
sions $\bmod p$.

Dramatically improve speed by adapting to CPU architecture.

Example:

For primes $p \in\left[2^{15} / 9,2^{15} / 8\right]$,
each progression has
8 or 9 array entries.
Always mark 9 entries, often overflowing array, to eliminate branch mispredictions.

Generalize $b^{6} f(a /$ NFS can use $b^{6} f($ for (a, b) in a dete (1984 Davis Holdr 1993 Pollard)
Number of $b^{6} f(a)$ is proportional to Can choose surpris and compensate b (1995 Bernstein)

Dramatically improve speed by adapting to CPU architecture.

Example:
For primes $p \in\left[2^{15} / 9,2^{15} / 8\right]$,
each progression has
8 or 9 array entries.
Always mark 9 entries,
often overflowing array,
to eliminate branch mispredictions.

Generalize $b^{6} f(a / b)$:
NFS can use $b^{6} f(a / b) / q$ for (a, b) in a determinant- q lattice. (1984 Davis Holdridge, 1993 Pollard)

Number of $b^{6} f(a / b) / q$ in $[-H, H]$ is proportional to $q^{-2 / 3}$.
Can choose surprisingly small H and compensate by using many q 's. (1995 Bernstein)
ove speed by architecture.

```
5/9, 2 15/8],
```

as
S.
ries,
array,
h mispredictions.

Generalize $b^{6} f(a / b)$:
NFS can use $b^{6} f(a / b) / q$ for (a, b) in a determinant- q lattice.
(1984 Davis Holdridge, 1993 Pollard)

Number of $b^{6} f(a / b) / q$ in $[-H, H]$ is proportional to $q^{-2 / 3}$.
Can choose surprisingly small H and compensate by using many q 's. (1995 Bernstein)

NFS step 4: early
Have many pairs For each $b^{6} f(a / b)$ small prime diviso and not-yet-factor

NFS step 4: Choo Discard all values not-yet-factored p

How to choose L? Balance time for s with time for step

Generalize $b^{6} f(a / b)$:
NFS can use $b^{6} f(a / b) / q$ for (a, b) in a determinant- q lattice. (1984 Davis Holdridge, 1993 Pollard)

Number of $b^{6} f(a / b) / q$ in $[-H, H]$ is proportional to $q^{-2 / 3}$.
Can choose surprisingly small H and compensate by using many q 's. (1995 Bernstein)

NFS step 4: early abort

Have many pairs (a, b). For each $b^{6} f(a / b)$, know small prime divisors and not-yet-factored part.

NFS step 4: Choose L.
Discard all values $b^{6} f(a / b)$ with not-yet-factored parts above L.

How to choose L? Answer:
Balance time for step 5 with time for step 3.
$a / b) / q$
rminant- q lattice. idge,
b) $/ q$ in $[-H, H]$ $q^{-2 / 3}$.
ingly small H
y using many q 's.

NFS step 4: early abort

NFS step 5: fully

Have many pairs (a, b).
For each $b^{6} f(a / b)$, know
small prime divisors
and not-yet-factored part.
NFS step 4: Choose L.
Discard all values $b^{6} f(a / b)$ with not-yet-factored parts above L.

How to choose L? Answer:
Balance time for step 5 with time for step 3.

Have some pairs For each value b^{6}. know small prime not-yet-factored p

NFS step 5: Ident $b^{6} f(a / b)$ that are

Should replace " 2 with slightly differ not discussed in th (e.g. 1993 Copper

NFS step 4: early abort

Have many pairs (a, b).
For each $b^{6} f(a / b)$, know
small prime divisors
and not-yet-factored part.
NFS step 4: Choose L.
Discard all values $b^{6} f(a / b)$ with not-yet-factored parts above L.

How to choose L? Answer:
Balance time for step 5 with time for step 3.

NFS step 5: fully factor

Have some pairs (a, b).
For each value $b^{6} f(a / b)$:
know small prime divisors; not-yet-factored part $\leq L$.

NFS step 5: Identify values $b^{6} f(a / b)$ that are 2^{40}-smooth.

Should replace " $2{ }^{40}$-smooth" with slightly different notions, not discussed in this talk.
(e.g. 1993 Coppersmith)
abort
$a, b)$. know
ed part.
se L.
$b^{6} f(a / b)$ with arts above L.

Answer:
tep 5
3.

NFS step 5: fully factor

Have some pairs (a, b).
For each value $b^{6} f(a / b)$:
know small prime divisors; not-yet-factored part $\leq L$.

NFS step 5: Identify values $b^{6} f(a / b)$ that are 2^{40}-smooth.

Should replace " $2{ }^{40}$-smooth" with slightly different notions, not discussed in this talk.
(e.g. 1993 Coppersmith)

Assume that origir are smooth with p step 3 spends tim step 5 spends tim

With proper balan time roughly $R T$ (. to find one smoot (1982 Pomerance)

Want 12 as large to move from $R T$ But want 12 belov and want 15 small sieving fits into L1

NFS step 5: fully factor

Have some pairs (a, b).
For each value $b^{6} f(a / b)$:
know small prime divisors; not-yet-factored part $\leq L$.

NFS step 5: Identify values $b^{6} f(a / b)$ that are 2^{40}-smooth.

Should replace " $2{ }^{40}$-smooth" with slightly different notions, not discussed in this talk. (e.g. 1993 Coppersmith)

Assume that original values are smooth with probability $1 / R$; step 3 spends time S per value; step 5 spends time T per value.

With proper balance, time roughly $R T(S / T)^{12 / 40}$ to find one smooth value. (1982 Pomerance)

Want 12 as large as possible to move from $R T$ towards $R S$.
But want 12 below 15 , and want 15 small so that sieving fits into L1 cache.
divisors;
$\operatorname{art} \leq L$
ify values
2^{40}-smooth.

40_smooth"

ent notions, is talk.
smith)

Assume that original values are smooth with probability $1 / R$; step 3 spends time S per value; step 5 spends time T per value.

With proper balance, time roughly $R T(S / T)^{12 / 40}$ to find one smooth value. (1982 Pomerance)

Want 12 as large as possible to move from $R T$ towards $R S$.
But want 12 below 15 , and want 15 small so that sieving fits into L1 cache.

Traditional algorit For each pair (a, b use ECM to find dividing $b^{6} f(a / b)$. Complications sav "rho," more abort

Much faster to ha a big batch of pai (2000 Bernstein)

Save even more ti smoothness witho primes. (2004 Fra Morain Wirth)

Assume that original values are smooth with probability $1 / R$; step 3 spends time S per value; step 5 spends time T per value.

With proper balance, time roughly $R T(S / T)^{12 / 40}$ to find one smooth value. (1982 Pomerance)

Want 12 as large as possible to move from $R T$ towards $R S$.

But want 12 below 15 , and want 15 small so that sieving fits into L1 cache.

Traditional algorithm for step 5: For each pair (a, b) separately, use ECM to find primes $\leq 2^{40}$ dividing $b^{6} f(a / b)$.
Complications save time: "rho," more aborts, et al.

Much faster to handle a big batch of pairs (a, b). (2000 Bernstein)

Save even more time by checking smoothness without first finding primes. (2004 Franke Kleinjung Morain Wirth)
nal values robability $1 / R$;
S per value;
T per value.
ce,
$S / T)^{12 / 40}$
1 value.
as possible towards $R S$.
v 15,
so that
cache.

Traditional algorithm for step 5:
For each pair (a, b) separately, use ECM to find primes $\leq 2^{40}$ dividing $b^{6} f(a / b)$.
Complications save time: "rho," more aborts, et al.

Much faster to handle a big batch of pairs (a, b). (2000 Bernstein)

Save even more time by checking smoothness without first finding primes. (2004 Franke Kleinjung Morain Wirth)

Streamlined batch (2004 Bernstein):

Multiply primes \leq in pairs, pairs of p to obtain their pro Relies on fast disk multiplication of h

Compute P mod \imath Relies on fast divis

Now a value v is s $(P \bmod v)^{2^{\lceil\lg \lg v\rceil}}$

Traditional algorithm for step 5:
For each pair (a, b) separately, use ECM to find primes $\leq 2^{40}$ dividing $b^{6} f(a / b)$.
Complications save time: "rho," more aborts, et al.

Much faster to handle
a big batch of pairs (a, b).
(2000 Bernstein)
Save even more time by checking smoothness without first finding primes. (2004 Franke Kleinjung Morain Wirth)

Streamlined batch algorithm (2004 Bernstein):
Multiply primes $\leq 2^{40}$
in pairs, pairs of pairs, etc., to obtain their product P.
Relies on fast disk-based multiplication of huge integers.

Compute $P \bmod v$ for each value v. Relies on fast division.

Now a value v is smooth iff $(P \bmod v)^{2^{\lceil\lg \lg v\rceil}} \bmod v=0$.
mom for step 5:
) separately, rimes $\leq 2^{40}$
e time:
s, et al.
ndle
s (a, b).
ne by checking ut first finding nke Kleinjung

Streamlined batch algorithm (2004 Bernstein):

Multiply primes $\leq 2^{40}$
in pairs, pairs of pairs, etc.,
to obtain their product P.
Relies on fast disk-based
multiplication of huge integers.
Compute $P \bmod v$ for each value v. Relies on fast division.

Now a value v is smooth iff $(P \bmod v)^{2^{\lceil\lg \lg v\rceil}} \bmod v=0$.

Many lower-level s
Compute P with
≈ 1.5 times faster
Compute $P \bmod \imath$ "scaled remainder
≈ 2.6 times faster
(2004 Bernstein, a 2003 Bostan Lece

Reduce communic (2004-2005 Berns

Streamlined batch algorithm (2004 Bernstein):

Multiply primes $\leq 2^{40}$
in pairs, pairs of pairs, etc., to obtain their product P.
Relies on fast disk-based multiplication of huge integers.

Compute $P \bmod v$ for each value v. Relies on fast division.

Now a value v is smooth iff $(P \bmod v)^{2^{\lceil\lg \lg v\rceil}} \bmod v=0$.

Many lower-level speedups.
Compute P with "FFT doubling":
≈ 1.5 times faster. (2004 Kramer)
Compute $P \bmod v$ with "scaled remainder tree":
≈ 2.6 times faster.
(2004 Bernstein, adapting 2003 Bostan Lecerf Schost)

Reduce communication costs.
(2004-2005 Bernstein)

[^0]algorithm
mooth iff
$\bmod v=0$.

Many lower-level speedups.
Compute P with "FFT doubling":
≈ 1.5 times faster. (2004 Kramer)
Compute $P \bmod v$ with "scaled remainder tree":
≈ 2.6 times faster.
(2004 Bernstein, adapting
2003 Bostan Lecerf Schost)
Reduce communication costs.
(2004-2005 Bernstein)
cr.yp.to/papers.html\#multapps
cr.yp.to/papers.html\#scaledmod

Contrary to popul properly designed computers can dra price-performance

Huge improvemen (2001 Bernstein)

The batch algorith on today's badly (Pentium, PowerP but will eventually http://www.shal cryptanalytic-hard
cr.yp.to/talks.html\#2
cr.yp.to/papers.html\#

Many lower-level speedups.
Compute P with "FFT doubling":
≈ 1.5 times faster. (2004 Kramer)
Compute $P \bmod v$ with "scaled remainder tree":
≈ 2.6 times faster.
(2004 Bernstein, adapting
2003 Bostan Lecerf Schost)
Reduce communication costs.
(2004-2005 Bernstein)
cr.yp.to/papers.html\#multapps
cr.yp.to/papers.html\#scaledmod

Contrary to popular myth, properly designed parallel computers can dramatically improve price-performance ratio.

Huge improvement for ECM etc. (2001 Bernstein)

The batch algorithms are better on today's badly designed CPUs (Pentium, PowerPC, Athlon, etc.) but will eventually be obsolete.
http://www.sharcs.org: new cryptanalytic-hardware workshop.

[^1]
peedups.

'FFT doubling":
(2004 Kramer)
with tree" :
dapting
f Schost)
ation costs.
tein)

Contrary to popular myth, properly designed parallel computers can dramatically improve price-performance ratio.

Huge improvement for ECM etc. (2001 Bernstein)

The batch algorithms are better on today's badly designed CPUs (Pentium, PowerPC, Athlon, etc.) but will eventually be obsolete.
http://www.sharcs.org: new cryptanalytic-hardware workshop.

cr.yp.to/talks.html\#2005.06.11-1
cr.yp.to/papers.html\#nfscircuit

NFS step 6: linear

Have some pairs (with complete fact of the values $b^{6} f($

NFS step 6: Find of pairs (a, b) for $a-b \alpha$ both have Here $\alpha \neq m$ is a

Do this by finding dependency amon Guaranteed to suc if there are enough

Contrary to popular myth, properly designed parallel computers can dramatically improve price-performance ratio.

Huge improvement for ECM etc. (2001 Bernstein)

The batch algorithms are better on today's badly designed CPUs (Pentium, PowerPC, Athlon, etc.) but will eventually be obsolete.
http://www.sharcs.org: new cryptanalytic-hardware workshop.

NFS step 6: linear algebra

Have some pairs (a, b) with complete factorizations of the values $b^{6} f(a / b)$.

NFS step 6: Find nonempty subset of pairs (a, b) for which $a-b m$ and $a-b \alpha$ both have square product. Here $\alpha \neq m$ is a root of f.

Do this by finding a linear dependency among vectors mod 2. Guaranteed to succeed if there are enough vectors.

```
cr.yp.to/talks.html#2005.06.11-1
cr.yp.to/papers.html\#nfscircuit
```

ar myth,
parallel
matically improve ratio.
t for ECM etc.
ims are better
esigned CPUs
C, Athlon, etc.)
be obsolete.
ccs.org: new
ware workshop.

NFS step 6: linear algebra

Have some pairs (a, b)
with complete factorizations
of the values $b^{6} f(a / b)$.
NFS step 6: Find nonempty subset of pairs (a, b) for which $a-b m$ and $a-b \alpha$ both have square product. Here $\alpha \neq m$ is a root of f.

Do this by finding a linear dependency among vectors mod 2 . Guaranteed to succeed if there are enough vectors.

Choose prime bou to minimize total linear algebra and

Larger bound wou of previous steps, algebra would be Reduce bound to algebra with previ

This balancing me somewhat less imf speedups in partic

NFS step 6: linear algebra

Have some pairs (a, b)
with complete factorizations
of the values $b^{6} f(a / b)$.
NFS step 6: Find nonempty subset of pairs (a, b) for which $a-b m$ and $a-b \alpha$ both have square product.
Here $\alpha \neq m$ is a root of f.
Do this by finding a linear dependency among vectors mod 2 . Guaranteed to succeed if there are enough vectors.

Choose prime bound 2^{40} to minimize total time of linear algebra and previous steps.

Larger bound would minimize time of previous steps, but then linear algebra would be a bottleneck.
Reduce bound to balance linear algebra with previous steps.

This balancing means somewhat less impact of speedups in particular steps.

algebra

$a, b)$
zorizations
$a / b)$.
nonempty subset
which $a-b m$ and square product.
oot of f.
a linear
g vectors mod 2.
ceed
vectors.

Choose prime bound 2^{40} to minimize total time of linear algebra and previous steps.

Larger bound would minimize time of previous steps, but then linear algebra would be a bottleneck.
Reduce bound to balance linear algebra with previous steps.

This balancing means
somewhat less impact of
speedups in particular steps.

NFS step 7: squar

Have some pairs
Product of $a-b r$
Product of $a-b \alpha$
NFS step 7: Use factor n, maybe n

Simplest method, $\sqrt{\prod(a-b \alpha)}$, is n Other methods in waste of programn

Choose prime bound 2^{40} to minimize total time of linear algebra and previous steps.

Larger bound would minimize time of previous steps, but then linear algebra would be a bottleneck. Reduce bound to balance linear algebra with previous steps.

This balancing means somewhat less impact of speedups in particular steps.

NFS step 7: square roots

Have some pairs (a, b).
Product of $a-b m$ is square.
Product of $a-b \alpha$ is square.
NFS step 7: Use pairs to
factor n, maybe nontrivially.
Simplest method, computing
$\sqrt{\prod(a-b \alpha)}$, is not a bottleneck.
Other methods in literature are a waste of programmer time.

[^0]: cr.yp.to/papers.html\#multapps
 cr.yp.to/papers.html\#scaledmod

[^1]: cr.yp.to/talks.html\#2005.06.11-1
 cr.yp.to/papers.html\#nfscircuit

