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NFS step 1: find attractive ’s

NFS tries to factor � by

inspecting values of a polynomial.

Select integer [ � 1
�
6 � � 1

�
5];

find integers 5
�

4
� � � � �

0

with � = 5
5 + 4

4 + � � � + 0;

for various integers � � inspect

( � � )( 5 � 5 + 4 � 4 + � � � + 0
5).

Practically every choice of

will succeed in factoring � .

Better speed from smaller values

( � � )( 5 � 5 + 4 � 4 + � � � + 0
5).
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www.loria.fr/~stehle/LOWDIM.html
www.loria.fr/~stehle/FPLLL.html



Four answers:

Time 7 � 5+ � (1) to find
0 � 25 � 1

�
6

with ( � 1) � 1 � 2
�
6

by searching consecutive ’s.

Time 6+ � (1) by skipping

through ’s with small 5
�

4.

Time 4 � 5+ � (1) to find 1 � 1
�
6

with ( � 0 � 75) � 1 � 2
�
6.

(1999 Murphy)

Time 3 � 5+ � (1) by partly

controlling 3. (2004 Bernstein)

cr.yp.to/talks.html#2004.11.15

New method uses 4-dimensional

lattice-basis reduction,

specifically integer-relation finding.

Many lower-level speedups,

effectively chopping

a few more bits out of � :

approximate reduction

(e.g., 2004 Schnorr),

“PSLQ” (1999 Bailey Ferguson),

“geometric” ideas

(2004 Nguyen Stehlé).
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More accurate than
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How many values
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Will see that NFS needs

fully factored values

( � � )( 5 � 5 + � � � + 0
5).

Won’t be able to use values

with unknown prime divisors.

Merit of chance that
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(2001 Bernstein)

The batch algorithms are better

on today’s badly designed CPUs

(Pentium, PowerPC, Athlon, etc.)

but will eventually be obsolete.

http://www.sharcs.org: new

cryptanalytic-hardware workshop.

cr.yp.to/talks.html#2005.06.11-1
cr.yp.to/papers.html#nfscircuit

NFS step 6: linear algebra

Have some pairs ( � � )

with complete factorizations

of the values 6 ( � ).

NFS step 6: Find nonempty subset

of pairs ( � � ) for which � � and

� � � both have square product.

Here � = is a root of .

Do this by finding a linear

dependency among vectors mod 2.

Guaranteed to succeed

if there are enough vectors.

Choose prime bound 240

to minimize total time of

linear algebra and previous steps.

Larger bound would minimize time

of previous steps, but then linear

algebra would be a bottleneck.

Reduce bound to balance linear

algebra with previous steps.

This balancing means

somewhat less impact of

speedups in particular steps.
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NFS step 7: square roots

Have some pairs ( � � ).

Product of � � is square.

Product of � � � is square.

NFS step 7: Use pairs to

factor � , maybe nontrivially.

Simplest method, computing

( � � � ), is not a bottleneck.

Other methods in literature are a

waste of programmer time.
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