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Sieving � and 611 + � for small � :

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

612 2 2 3 3
613
614 2
615 3 5
616 2 2 2 7
617
618 2 3
619
620 2 2 5
621 3 3 3
622 2
623 7
624 2 2 2 2 3
625 5 5 5 5
626 2
627 3
628 2 2
629
630 2 3 3 5 7
631

etc.
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Have complete factorization of
� (611 + � ) for some � ’s.

14 � 625 = 21305471.

64 � 675 = 26335270.

75 � 686 = 21315273.

14 � 64 � 75 � 625 � 675 � 686

= 28345874 = (24325472)2.

gcd 14 � 64 � 75 � 24325472
� 611

= 47.

611 = 47 � 13.
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Given � and parameter :

1. Use powers of primes to

sieve � and � + � for 1 � 2.

2. Look for nonempty set of � ’s

with � ( � + � ) completely factored
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Square-finding speed

Start from factored � ( � + � )’s:
�

1(
� + �

1) = �
�
1( � ),

�

2(
� + �

2) = �
�
2( � ),

etc.

Want to find 1 � 2 � � � �

such that

( �

1(
� + �

1)) 1( �

2(
� + �

2)) 2 � � �

is a square.

In other words:

� 1
�
1( � )+ 2

�
2( � )+ �����

has even exponents.
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1(1 � 0 � 4 � 1) + 2(6 � 3 � 2 � 0)

+ 3(1 � 1 � 2 � 3) is even.
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This is linear algebra mod 2:

finding kernel of a matrix.
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using Gaussian elimination.

2+ � (1) seconds

using Wiedemann’s method.

Again exploit parallelism:
1 � 5+ � (1) seconds

on a 2-dimensional mesh

costing 1+ � (1) dollars.
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have � �
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of completely factoring

into primes ,

where � = (log � ) log .

Very crude approximation

but in right ballpark.

(Try numerical experiments;

count products of primes;

use fancy analytic theorems.)
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2( � + 2)

have complete factorizations;

thus produce a square;

often factor � .
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