
Integer factorization

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF DMS–0140542

Alfred P. Sloan Foundation

Sieving � and 611 + � for small � :

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

612 2 2 3 3
613
614 2
615 3 5
616 2 2 2 7
617
618 2 3
619
620 2 2 5
621 3 3 3
622 2
623 7
624 2 2 2 2 3
625 5 5 5 5
626 2
627 3
628 2 2
629
630 2 3 3 5 7
631

etc.

Integer factorization

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF DMS–0140542

Alfred P. Sloan Foundation

Sieving � and 611 + � for small � :

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

612 2 2 3 3
613
614 2
615 3 5
616 2 2 2 7
617
618 2 3
619
620 2 2 5
621 3 3 3
622 2
623 7
624 2 2 2 2 3
625 5 5 5 5
626 2
627 3
628 2 2
629
630 2 3 3 5 7
631

etc.

Have complete factorization of
� (611 + �) for some � ’s.

14 � 625 = 21305471.

64 � 675 = 26335270.

75 � 686 = 21315273.

14 � 64 � 75 � 625 � 675 � 686

= 28345874 = (24325472)2.

gcd 14 � 64 � 75 � 24325472
� 611

= 47.

611 = 47 � 13.

Sieving � and 611 + � for small � :

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

612 2 2 3 3
613
614 2
615 3 5
616 2 2 2 7
617
618 2 3
619
620 2 2 5
621 3 3 3
622 2
623 7
624 2 2 2 2 3
625 5 5 5 5
626 2
627 3
628 2 2
629
630 2 3 3 5 7
631

etc.

Have complete factorization of
� (611 + �) for some � ’s.

14 � 625 = 21305471.

64 � 675 = 26335270.

75 � 686 = 21315273.

14 � 64 � 75 � 625 � 675 � 686

= 28345874 = (24325472)2.

gcd 14 � 64 � 75 � 24325472
� 611

= 47.

611 = 47 � 13.

Sieving � and 611 + � for small � :

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

612 2 2 3 3
613
614 2
615 3 5
616 2 2 2 7
617
618 2 3
619
620 2 2 5
621 3 3 3
622 2
623 7
624 2 2 2 2 3
625 5 5 5 5
626 2
627 3
628 2 2
629
630 2 3 3 5 7
631

etc.

Have complete factorization of
� (611 + �) for some � ’s.

14 � 625 = 21305471.

64 � 675 = 26335270.

75 � 686 = 21315273.

14 � 64 � 75 � 625 � 675 � 686

= 28345874 = (24325472)2.

gcd 14 � 64 � 75 � 24325472
� 611

= 47.

611 = 47 � 13.

Given � and parameter :

1. Use powers of primes to

sieve � and � + � for 1 � 2.

2. Look for nonempty set of � ’s

with � (� + �) completely factored

and with � � (� + �) square.

3. Compute gcd � �
�

where � = � � � � � (� + �).

Have complete factorization of
� (611 + �) for some � ’s.

14 � 625 = 21305471.

64 � 675 = 26335270.

75 � 686 = 21315273.

14 � 64 � 75 � 625 � 675 � 686

= 28345874 = (24325472)2.

gcd 14 � 64 � 75 � 24325472
� 611

= 47.

611 = 47 � 13.

Given � and parameter :

1. Use powers of primes to

sieve � and � + � for 1 � 2.

2. Look for nonempty set of � ’s

with � (� + �) completely factored

and with � � (� + �) square.

3. Compute gcd � �
�

where � = � � � � � (� + �).

Have complete factorization of
� (611 + �) for some � ’s.

14 � 625 = 21305471.

64 � 675 = 26335270.

75 � 686 = 21315273.

14 � 64 � 75 � 625 � 675 � 686

= 28345874 = (24325472)2.

gcd 14 � 64 � 75 � 24325472
� 611

= 47.

611 = 47 � 13.

Given � and parameter :

1. Use powers of primes to

sieve � and � + � for 1 � 2.

2. Look for nonempty set of � ’s

with � (� + �) completely factored

and with � � (� + �) square.

3. Compute gcd � �
�

where � = � � � � � (� + �).

This is the Q sieve.

Same principles:

Continued-fraction method

(Lehmer, Powers,

Brillhart, Morrison).

Linear sieve (Schroeppel).

Quadratic sieve (Pomerance).

Number-field sieve

(Pollard, Buhler, Lenstra,

Pomerance, Adleman).

Given � and parameter :

1. Use powers of primes to

sieve � and � + � for 1 � 2.

2. Look for nonempty set of � ’s

with � (� + �) completely factored

and with � � (� + �) square.

3. Compute gcd � �
�

where � = � � � � � (� + �).

This is the Q sieve.

Same principles:

Continued-fraction method

(Lehmer, Powers,

Brillhart, Morrison).

Linear sieve (Schroeppel).

Quadratic sieve (Pomerance).

Number-field sieve

(Pollard, Buhler, Lenstra,

Pomerance, Adleman).

Given � and parameter :

1. Use powers of primes to

sieve � and � + � for 1 � 2.

2. Look for nonempty set of � ’s

with � (� + �) completely factored

and with � � (� + �) square.

3. Compute gcd � �
�

where � = � � � � � (� + �).

This is the Q sieve.

Same principles:

Continued-fraction method

(Lehmer, Powers,

Brillhart, Morrison).

Linear sieve (Schroeppel).

Quadratic sieve (Pomerance).

Number-field sieve

(Pollard, Buhler, Lenstra,

Pomerance, Adleman).

Sieving speed

Handle sieving in pieces:

sieve � + 1 � � � � �
� + ;

sieve � + + 1 � � � � �
� + 2 ;

sieve � + 2 + 1 � � � � �
� + 3 ;

etc.

Sieving � + 1 �
� + 2 � � � � �

� +

using primes

means finding, for each
� � + 1 �

� + 2 � � � � �
� + ,

which ’s divide � + � .

This is the Q sieve.

Same principles:

Continued-fraction method

(Lehmer, Powers,

Brillhart, Morrison).

Linear sieve (Schroeppel).

Quadratic sieve (Pomerance).

Number-field sieve

(Pollard, Buhler, Lenstra,

Pomerance, Adleman).

Sieving speed

Handle sieving in pieces:

sieve � + 1 � � � � �
� + ;

sieve � + + 1 � � � � �
� + 2 ;

sieve � + 2 + 1 � � � � �
� + 3 ;

etc.

Sieving � + 1 �
� + 2 � � � � �

� +

using primes

means finding, for each
� � + 1 �

� + 2 � � � � �
� + ,

which ’s divide � + � .

This is the Q sieve.

Same principles:

Continued-fraction method

(Lehmer, Powers,

Brillhart, Morrison).

Linear sieve (Schroeppel).

Quadratic sieve (Pomerance).

Number-field sieve

(Pollard, Buhler, Lenstra,

Pomerance, Adleman).

Sieving speed

Handle sieving in pieces:

sieve � + 1 � � � � �
� + ;

sieve � + + 1 � � � � �
� + 2 ;

sieve � + 2 + 1 � � � � �
� + 3 ;

etc.

Sieving � + 1 �
� + 2 � � � � �

� +

using primes

means finding, for each
� � + 1 �

� + 2 � � � � �
� + ,

which ’s divide � + � .

Consider all pairs (� + �
�)

where � + � is a multiple of .

Easy to generate pairs

sorted by second component:

(612 � 2), (614 � 2), (616 � 2), (618 � 2),

(620 � 2), (612 � 3), (615 � 3), (618 � 3),

(615 � 5), (620 � 5), (616 � 7).

Sieving means listing pairs

sorted by first component:

(612 � 2), (612 � 3), (614 � 2),

(615 � 3), (615 � 5), (616 � 2), (616 � 7),

(618 � 2), (618 � 3), (620 � 2), (620 � 5).

Sieving speed

Handle sieving in pieces:

sieve � + 1 � � � � �
� + ;

sieve � + + 1 � � � � �
� + 2 ;

sieve � + 2 + 1 � � � � �
� + 3 ;

etc.

Sieving � + 1 �
� + 2 � � � � �

� +

using primes

means finding, for each
� � + 1 �

� + 2 � � � � �
� + ,

which ’s divide � + � .

Consider all pairs (� + �
�)

where � + � is a multiple of .

Easy to generate pairs

sorted by second component:

(612 � 2), (614 � 2), (616 � 2), (618 � 2),

(620 � 2), (612 � 3), (615 � 3), (618 � 3),

(615 � 5), (620 � 5), (616 � 7).

Sieving means listing pairs

sorted by first component:

(612 � 2), (612 � 3), (614 � 2),

(615 � 3), (615 � 5), (616 � 2), (616 � 7),

(618 � 2), (618 � 3), (620 � 2), (620 � 5).

Sieving speed

Handle sieving in pieces:

sieve � + 1 � � � � �
� + ;

sieve � + + 1 � � � � �
� + 2 ;

sieve � + 2 + 1 � � � � �
� + 3 ;

etc.

Sieving � + 1 �
� + 2 � � � � �

� +

using primes

means finding, for each
� � + 1 �

� + 2 � � � � �
� + ,

which ’s divide � + � .

Consider all pairs (� + �
�)

where � + � is a multiple of .

Easy to generate pairs

sorted by second component:

(612 � 2), (614 � 2), (616 � 2), (618 � 2),

(620 � 2), (612 � 3), (615 � 3), (618 � 3),

(615 � 5), (620 � 5), (616 � 7).

Sieving means listing pairs

sorted by first component:

(612 � 2), (612 � 3), (614 � 2),

(615 � 3), (615 � 5), (616 � 2), (616 � 7),

(618 � 2), (618 � 3), (620 � 2), (620 � 5).

There are 1+ � (1) pairs

involving � + 1 �
� + 2 � � � � �

� + .

Sieving � + 1 �
� + 2 � � � � �

� +

takes 1+ � (1) seconds

on RAM costing 1+ � (1) dollars.

2-dimensional mesh computer

is much faster: 0 � 5+ � (1) seconds

on machine costing 1+ � (1) dollars.

Can do even better:
� (1) seconds

on machine costing 1+ � (1) dollars,

using “elliptic-curve method.”

Consider all pairs (� + �
�)

where � + � is a multiple of .

Easy to generate pairs

sorted by second component:

(612 � 2), (614 � 2), (616 � 2), (618 � 2),

(620 � 2), (612 � 3), (615 � 3), (618 � 3),

(615 � 5), (620 � 5), (616 � 7).

Sieving means listing pairs

sorted by first component:

(612 � 2), (612 � 3), (614 � 2),

(615 � 3), (615 � 5), (616 � 2), (616 � 7),

(618 � 2), (618 � 3), (620 � 2), (620 � 5).

There are 1+ � (1) pairs

involving � + 1 �
� + 2 � � � � �

� + .

Sieving � + 1 �
� + 2 � � � � �

� +

takes 1+ � (1) seconds

on RAM costing 1+ � (1) dollars.

2-dimensional mesh computer

is much faster: 0 � 5+ � (1) seconds

on machine costing 1+ � (1) dollars.

Can do even better:
� (1) seconds

on machine costing 1+ � (1) dollars,

using “elliptic-curve method.”

Consider all pairs (� + �
�)

where � + � is a multiple of .

Easy to generate pairs

sorted by second component:

(612 � 2), (614 � 2), (616 � 2), (618 � 2),

(620 � 2), (612 � 3), (615 � 3), (618 � 3),

(615 � 5), (620 � 5), (616 � 7).

Sieving means listing pairs

sorted by first component:

(612 � 2), (612 � 3), (614 � 2),

(615 � 3), (615 � 5), (616 � 2), (616 � 7),

(618 � 2), (618 � 3), (620 � 2), (620 � 5).

There are 1+ � (1) pairs

involving � + 1 �
� + 2 � � � � �

� + .

Sieving � + 1 �
� + 2 � � � � �

� +

takes 1+ � (1) seconds

on RAM costing 1+ � (1) dollars.

2-dimensional mesh computer

is much faster: 0 � 5+ � (1) seconds

on machine costing 1+ � (1) dollars.

Can do even better:
� (1) seconds

on machine costing 1+ � (1) dollars,

using “elliptic-curve method.”

Square-finding speed

Start from factored � (� + �)’s:
�

1(
� + �

1) = �
�
1(�),

�

2(
� + �

2) = �
�
2(�),

etc.

Want to find 1 � 2 � � � �

such that

(�

1(
� + �

1)) 1(�

2(
� + �

2)) 2 � � �

is a square.

In other words:

� 1
�
1(�)+ 2

�
2(�)+ �����

has even exponents.

There are 1+ � (1) pairs

involving � + 1 �
� + 2 � � � � �

� + .

Sieving � + 1 �
� + 2 � � � � �

� +

takes 1+ � (1) seconds

on RAM costing 1+ � (1) dollars.

2-dimensional mesh computer

is much faster: 0 � 5+ � (1) seconds

on machine costing 1+ � (1) dollars.

Can do even better:
� (1) seconds

on machine costing 1+ � (1) dollars,

using “elliptic-curve method.”

Square-finding speed

Start from factored � (� + �)’s:
�

1(
� + �

1) = �
�
1(�),

�

2(
� + �

2) = �
�
2(�),

etc.

Want to find 1 � 2 � � � �

such that

(�

1(
� + �

1)) 1(�

2(
� + �

2)) 2 � � �

is a square.

In other words:

� 1
�
1(�)+ 2

�
2(�)+ �����

has even exponents.

There are 1+ � (1) pairs

involving � + 1 �
� + 2 � � � � �

� + .

Sieving � + 1 �
� + 2 � � � � �

� +

takes 1+ � (1) seconds

on RAM costing 1+ � (1) dollars.

2-dimensional mesh computer

is much faster: 0 � 5+ � (1) seconds

on machine costing 1+ � (1) dollars.

Can do even better:
� (1) seconds

on machine costing 1+ � (1) dollars,

using “elliptic-curve method.”

Square-finding speed

Start from factored � (� + �)’s:
�

1(
� + �

1) = �
�
1(�),

�

2(
� + �

2) = �
�
2(�),

etc.

Want to find 1 � 2 � � � �

such that

(�

1(
� + �

1)) 1(�

2(
� + �

2)) 2 � � �

is a square.

In other words:

� 1
�
1(�)+ 2

�
2(�)+ �����

has even exponents.

In other words:

1(� 1(2) � � 1(3) � � 1(5) � � � �)

+ 2(� 2(2) � � 2(3) � � 2(5) � � � �)

+ � � � is even.

e.g. given

14 � 625 = 21305471,

64 � 675 = 26335270,

75 � 686 = 21315273:

find 1 � 2 � 3 such that

1(1 � 0 � 4 � 1) + 2(6 � 3 � 2 � 0)

+ 3(1 � 1 � 2 � 3) is even.

Square-finding speed

Start from factored � (� + �)’s:
�

1(
� + �

1) = �
�
1(�),

�

2(
� + �

2) = �
�
2(�),

etc.

Want to find 1 � 2 � � � �

such that

(�

1(
� + �

1)) 1(�

2(
� + �

2)) 2 � � �

is a square.

In other words:

� 1
�
1(�)+ 2

�
2(�)+ �����

has even exponents.

In other words:

1(� 1(2) � � 1(3) � � 1(5) � � � �)

+ 2(� 2(2) � � 2(3) � � 2(5) � � � �)

+ � � � is even.

e.g. given

14 � 625 = 21305471,

64 � 675 = 26335270,

75 � 686 = 21315273:

find 1 � 2 � 3 such that

1(1 � 0 � 4 � 1) + 2(6 � 3 � 2 � 0)

+ 3(1 � 1 � 2 � 3) is even.

Square-finding speed

Start from factored � (� + �)’s:
�

1(
� + �

1) = �
�
1(�),

�

2(
� + �

2) = �
�
2(�),

etc.

Want to find 1 � 2 � � � �

such that

(�

1(
� + �

1)) 1(�

2(
� + �

2)) 2 � � �

is a square.

In other words:

� 1
�
1(�)+ 2

�
2(�)+ �����

has even exponents.

In other words:

1(� 1(2) � � 1(3) � � 1(5) � � � �)

+ 2(� 2(2) � � 2(3) � � 2(5) � � � �)

+ � � � is even.

e.g. given

14 � 625 = 21305471,

64 � 675 = 26335270,

75 � 686 = 21315273:

find 1 � 2 � 3 such that

1(1 � 0 � 4 � 1) + 2(6 � 3 � 2 � 0)

+ 3(1 � 1 � 2 � 3) is even.

This is linear algebra mod 2:

finding kernel of a matrix.

3+ � (1) seconds

using Gaussian elimination.

2+ � (1) seconds

using Wiedemann’s method.

Again exploit parallelism:
1 � 5+ � (1) seconds

on a 2-dimensional mesh

costing 1+ � (1) dollars.

In other words:

1(� 1(2) � � 1(3) � � 1(5) � � � �)

+ 2(� 2(2) � � 2(3) � � 2(5) � � � �)

+ � � � is even.

e.g. given

14 � 625 = 21305471,

64 � 675 = 26335270,

75 � 686 = 21315273:

find 1 � 2 � 3 such that

1(1 � 0 � 4 � 1) + 2(6 � 3 � 2 � 0)

+ 3(1 � 1 � 2 � 3) is even.

This is linear algebra mod 2:

finding kernel of a matrix.

3+ � (1) seconds

using Gaussian elimination.

2+ � (1) seconds

using Wiedemann’s method.

Again exploit parallelism:
1 � 5+ � (1) seconds

on a 2-dimensional mesh

costing 1+ � (1) dollars.

In other words:

1(� 1(2) � � 1(3) � � 1(5) � � � �)

+ 2(� 2(2) � � 2(3) � � 2(5) � � � �)

+ � � � is even.

e.g. given

14 � 625 = 21305471,

64 � 675 = 26335270,

75 � 686 = 21315273:

find 1 � 2 � 3 such that

1(1 � 0 � 4 � 1) + 2(6 � 3 � 2 � 0)

+ 3(1 � 1 � 2 � 3) is even.

This is linear algebra mod 2:

finding kernel of a matrix.

3+ � (1) seconds

using Gaussian elimination.

2+ � (1) seconds

using Wiedemann’s method.

Again exploit parallelism:
1 � 5+ � (1) seconds

on a 2-dimensional mesh

costing 1+ � (1) dollars.

How big is ?

Positive integers �
have � �

�
chance

of completely factoring

into primes ,

where � = (log �) log .

Very crude approximation

but in right ballpark.

(Try numerical experiments;

count products of primes;

use fancy analytic theorems.)

This is linear algebra mod 2:

finding kernel of a matrix.

3+ � (1) seconds

using Gaussian elimination.

2+ � (1) seconds

using Wiedemann’s method.

Again exploit parallelism:
1 � 5+ � (1) seconds

on a 2-dimensional mesh

costing 1+ � (1) dollars.

How big is ?

Positive integers �
have � �

�
chance

of completely factoring

into primes ,

where � = (log �) log .

Very crude approximation

but in right ballpark.

(Try numerical experiments;

count products of primes;

use fancy analytic theorems.)

This is linear algebra mod 2:

finding kernel of a matrix.

3+ � (1) seconds

using Gaussian elimination.

2+ � (1) seconds

using Wiedemann’s method.

Again exploit parallelism:
1 � 5+ � (1) seconds

on a 2-dimensional mesh

costing 1+ � (1) dollars.

How big is ?

Positive integers �
have � �

�
chance

of completely factoring

into primes ,

where � = (log �) log .

Very crude approximation

but in right ballpark.

(Try numerical experiments;

count products of primes;

use fancy analytic theorems.)

For log (1 2) log � log log � :

Positive integers 2(� + 2)

have 1 chance

of completely factoring

into primes .

Presumably the integers

1(� + 1) � 2(� + 2) � � � � �
2(� + 2)

have complete factorizations;

thus produce a square;

often factor � .

How big is ?

Positive integers �
have � �

�
chance

of completely factoring

into primes ,

where � = (log �) log .

Very crude approximation

but in right ballpark.

(Try numerical experiments;

count products of primes;

use fancy analytic theorems.)

For log (1 2) log � log log � :

Positive integers 2(� + 2)

have 1 chance

of completely factoring

into primes .

Presumably the integers

1(� + 1) � 2(� + 2) � � � � �
2(� + 2)

have complete factorizations;

thus produce a square;

often factor � .

How big is ?

Positive integers �
have � �

�
chance

of completely factoring

into primes ,

where � = (log �) log .

Very crude approximation

but in right ballpark.

(Try numerical experiments;

count products of primes;

use fancy analytic theorems.)

For log (1 2) log � log log � :

Positive integers 2(� + 2)

have 1 chance

of completely factoring

into primes .

Presumably the integers

1(� + 1) � 2(� + 2) � � � � �
2(� + 2)

have complete factorizations;

thus produce a square;

often factor � .

So we believe that

Q-sieve price-performance ratio

is � + � (1) power of

exp(log � log log �),

for some constant � .

Continued-fraction method,

linear sieve, quadratic sieve:

smaller power.

Use integers around � .

Number-field sieve: power of

exp(3 (log �)(log log �)2).

Use even smaller integers.

For log (1 2) log � log log � :

Positive integers 2(� + 2)

have 1 chance

of completely factoring

into primes .

Presumably the integers

1(� + 1) � 2(� + 2) � � � � �
2(� + 2)

have complete factorizations;

thus produce a square;

often factor � .

So we believe that

Q-sieve price-performance ratio

is � + � (1) power of

exp(log � log log �),

for some constant � .

Continued-fraction method,

linear sieve, quadratic sieve:

smaller power.

Use integers around � .

Number-field sieve: power of

exp(3 (log �)(log log �)2).

Use even smaller integers.

For log (1 2) log � log log � :

Positive integers 2(� + 2)

have 1 chance

of completely factoring

into primes .

Presumably the integers

1(� + 1) � 2(� + 2) � � � � �
2(� + 2)

have complete factorizations;

thus produce a square;

often factor � .

So we believe that

Q-sieve price-performance ratio

is � + � (1) power of

exp(log � log log �),

for some constant � .

Continued-fraction method,

linear sieve, quadratic sieve:

smaller power.

Use integers around � .

Number-field sieve: power of

exp(3 (log �)(log log �)2).

Use even smaller integers.

Discrete logarithms

Can use the same techniques

to compute given 3
�

mod � .

“Index-calculus methods.”

Exponential in log �

to compute discrete logarithm

by collisions, kangaroos, etc.

Subexponential in log �

to use index calculus.

Can cryptanalyze larger � .

So we believe that

Q-sieve price-performance ratio

is � + � (1) power of

exp(log � log log �),

for some constant � .

Continued-fraction method,

linear sieve, quadratic sieve:

smaller power.

Use integers around � .

Number-field sieve: power of

exp(3 (log �)(log log �)2).

Use even smaller integers.

Discrete logarithms

Can use the same techniques

to compute given 3
�

mod � .

“Index-calculus methods.”

Exponential in log �

to compute discrete logarithm

by collisions, kangaroos, etc.

Subexponential in log �

to use index calculus.

Can cryptanalyze larger � .

So we believe that

Q-sieve price-performance ratio

is � + � (1) power of

exp(log � log log �),

for some constant � .

Continued-fraction method,

linear sieve, quadratic sieve:

smaller power.

Use integers around � .

Number-field sieve: power of

exp(3 (log �)(log log �)2).

Use even smaller integers.

Discrete logarithms

Can use the same techniques

to compute given 3
�

mod � .

“Index-calculus methods.”

Exponential in log �

to compute discrete logarithm

by collisions, kangaroos, etc.

Subexponential in log �

to use index calculus.

Can cryptanalyze larger � .

Collisions, kangaroos, etc.

work for elliptic curves,

so we can cryptanalyze

small elliptic curves.

We don’t know anything better.

Index calculus doesn’t

work for elliptic curves.

Diffie-Hellman speed records

use elliptic curves.

Signature-verification speed records

still use RSA/Rabin variants.

Discrete logarithms

Can use the same techniques

to compute given 3
�

mod � .

“Index-calculus methods.”

Exponential in log �

to compute discrete logarithm

by collisions, kangaroos, etc.

Subexponential in log �

to use index calculus.

Can cryptanalyze larger � .

Collisions, kangaroos, etc.

work for elliptic curves,

so we can cryptanalyze

small elliptic curves.

We don’t know anything better.

Index calculus doesn’t

work for elliptic curves.

Diffie-Hellman speed records

use elliptic curves.

Signature-verification speed records

still use RSA/Rabin variants.

