Integer factorization

D. J. Bernstein

Thanks to:
University of Illinois at Chicago NSF DMS-0140542
Alfred P. Sloan Foundation

Sieving c and $611+c$ for small c :

etc.

Sieving c and $611+c$ for small c :

etc.

Have complete fac $c(611+c)$ for som
$14 \cdot 625=2^{1} 3^{0} 5^{4}$
$64 \cdot 675=2^{6} 3^{3} 5^{2}$
$75 \cdot 686=2^{1} 3^{1} 5^{2}$
$14 \cdot 64 \cdot 75 \cdot 625$.
$=2^{8} 3^{4} 5^{8} 7^{4}=\left(2^{4}\right.$ $\operatorname{gcd}\{14 \cdot 64 \cdot 75-$ $=47$.
$611=47 \cdot 13$.

Sieving c and $611+c$ for small c :

etc.

Have complete factorization of $c(611+c)$ for some c's.
$14 \cdot 625=2^{1} 3^{0} 5^{4} 7^{1}$.
$64 \cdot 675=2^{6} 3^{3} 5^{2} 7^{0}$.
$75 \cdot 686=2^{1} 3^{1} 5^{2} 7^{3}$.
$14 \cdot 64 \cdot 75 \cdot 625 \cdot 675 \cdot 686$
$=2^{8} 3^{4} 5^{8} 7^{4}=\left(2^{4} 3^{2} 5^{4} 7^{2}\right)^{2}$.
$\operatorname{gcd}\left\{14 \cdot 64 \cdot 75-2^{4} 3^{2} 5^{4} 7^{2}, 611\right\}$
$=47$.
$611=47 \cdot 13$.
$+c$ for small $c:$

Have complete factorization of $c(611+c)$ for some c's.
$14 \cdot 625=2^{1} 3^{0} 5^{4} 7^{1}$.
$64 \cdot 675=2^{6} 3^{3} 5^{2} 7^{0}$.
$75 \cdot 686=2^{1} 3^{1} 5^{2} 7^{3}$.
$14 \cdot 64 \cdot 75 \cdot 625 \cdot 675 \cdot 686$
$=2^{8} 3^{4} 5^{8} 7^{4}=\left(2^{4} 3^{2} 5^{4} 7^{2}\right)^{2}$.
$\operatorname{gcd}\left\{14 \cdot 64 \cdot 75-2^{4} 3^{2} 5^{4} 7^{2}, 611\right\}$
$=47$.
$611=47 \cdot 13$.

Given n and parar

1. Use powers of sieve c and $n+c$
2. Look for nonem with $c(n+c)$ com and with $\prod_{c} c(n+$
3. Compute $\operatorname{gcd}\{3$ where $x=\prod_{c} c-$

Have complete factorization of $c(611+c)$ for some c 's.

$$
\begin{aligned}
& 14 \cdot 625=2^{1} 3^{0} 5^{4} 7^{1} . \\
& 64 \cdot 675=2^{6} 3^{3} 5^{2} 7^{0} . \\
& 75 \cdot 686=2^{1} 3^{1} 5^{2} 7^{3} . \\
& 14 \cdot 64 \cdot 75 \cdot 625 \cdot 675 \cdot 686 \\
& =2^{8} 3^{4} 5^{8} 7^{4}=\left(2^{4} 3^{2} 5^{4} 7^{2}\right)^{2} . \\
& \operatorname{gcd}\left\{14 \cdot 64 \cdot 75-2^{4} 3^{2} 5^{4} 7^{2}, 611\right\} \\
& =47 .
\end{aligned}
$$

$$
611=47 \cdot 13 .
$$

Given n and parameter y :

1. Use powers of primes $\leq y$ to sieve c and $n+c$ for $1 \leq c \leq y^{2}$.
2. Look for nonempty set of c 's with $c(n+c)$ completely factored and with $\prod_{c} c(n+c)$ square.
3. Compute $\operatorname{gcd}\{x, n\}$
where $x=\prod_{c} c-\sqrt{\prod_{c} c(n+c)}$.
torization of e c's.
$575 \cdot 686$
$\left.3^{2} 5^{4} 7^{2}\right)^{2}$
$\left.2^{4} 3^{2} 5^{4} 7^{2}, 611\right\}$

Given n and parameter y :

1. Use powers of primes $\leq y$ to sieve c and $n+c$ for $1 \leq c \leq y^{2}$.
2. Look for nonempty set of c 's with $c(n+c)$ completely factored and with $\prod_{c} c(n+c)$ square.
3. Compute $\operatorname{gcd}\{x, n\}$
where $x=\prod_{c} c-\sqrt{\prod_{c} c(n+c)}$.

This is the \mathbf{Q} siev
Same principles:
Continued-fracti
(Lehmer, Powers,
Brillhart, Morrison
Linear sieve (Sch
Quadratic sieve
Number-field sie
(Pollard, Buhler,
Pomerance, Adlem

Given n and parameter y :

1. Use powers of primes $\leq y$ to sieve c and $n+c$ for $1 \leq c \leq y^{2}$.
2. Look for nonempty set of c 's with $c(n+c)$ completely factored and with $\prod_{c} c(n+c)$ square.
3. Compute $\operatorname{gcd}\{x, n\}$
where $x=\prod_{c} c-\sqrt{\prod_{c} c(n+c)}$.

This is the \mathbf{Q} sieve.
Same principles:
Continued-fraction method
(Lehmer, Powers,
Brillhart, Morrison).
Linear sieve (Schroeppel).
Quadratic sieve (Pomerance).
Number-field sieve
(Pollard, Buhler, Lenstra,
Pomerance, Adleman).
neter y :
orimes $\leq y$ to for $1 \leq c \leq y^{2}$.
pty set of c's pletely factored
c) square.
$c, n\}$
$\prod_{c} c(n+c)$.

This is the \mathbf{Q} sieve.
Same principles:
Continued-fraction method
(Lehmer, Powers,
Brillhart, Morrison).
Linear sieve (Schroeppel).
Quadratic sieve (Pomerance).
Number-field sieve
(Pollard, Buhler, Lenstra,
Pomerance, Adleman).

Sieving speed

Handle sieving in sieve $\{n+1, \ldots$, sieve $\{n+y+1$,. sieve $\{n+2 y+1$ etc.

Sieving $\{n+1, n$ using primes $p \leq$? means finding, for $c \in\{n+1, n+2$, which p 's divide n

This is the \mathbf{Q} sieve.
Same principles:
Continued-fraction method
(Lehmer, Powers,
Brillhart, Morrison).
Linear sieve (Schroeppel).
Quadratic sieve (Pomerance).
Number-field sieve
(Pollard, Buhler, Lenstra,
Pomerance, Adleman).

Sieving speed

Handle sieving in y pieces:
sieve $\{n+1, \ldots, n+y\}$;
sieve $\{n+y+1, \ldots, n+2 y\}$;
sieve $\{n+2 y+1, \ldots, n+3 y\}$; etc.

Sieving $\{n+1, n+2, \ldots, n+y\}$
using primes $p \leq y$
means finding, for each
$c \in\{n+1, n+2, \ldots, n+y\}$, which p 's divide $n+c$.

on method

roeppel).
Pomerance).

ve

enstra, an).

Sieving speed

Handle sieving in y pieces:
sieve $\{n+1, \ldots, n+y\}$;
sieve $\{n+y+1, \ldots, n+2 y\}$;
sieve $\{n+2 y+1, \ldots, n+3 y\}$; etc.

Sieving $\{n+1, n+2, \ldots, n+y\}$
using primes $p \leq y$
means finding, for each
$c \in\{n+1, n+2, \ldots, n+y\}$, which p 's divide $n+c$.

Consider all pairs where $n+c$ is a n

Easy to generate sorted by second $(612,2),(614,2)$, $(620,2),(612,3)$, $(615,5),(620,5)$,

Sieving means list sorted by first com $(612,2),(612,3)$, $(615,3),(615,5)$, $(618,2),(618,3)$,

Sieving speed

Handle sieving in y pieces:
sieve $\{n+1, \ldots, n+y\}$;
sieve $\{n+y+1, \ldots, n+2 y\}$;
sieve $\{n+2 y+1, \ldots, n+3 y\}$; etc.

Sieving $\{n+1, n+2, \ldots, n+y\}$ using primes $p \leq y$
means finding, for each
$c \in\{n+1, n+2, \ldots, n+y\}$, which p 's divide $n+c$.

Consider all pairs $(n+c, p)$ where $n+c$ is a multiple of p.

Easy to generate pairs sorted by second component: $(612,2),(614,2),(616,2),(618,2)$, $(620,2),(612,3),(615,3),(618,3)$, $(615,5),(620,5),(616,7)$.

Sieving means listing pairs sorted by first component: $(612,2),(612,3),(614,2)$, $(615,3),(615,5),(616,2),(616,7)$, $(618,2),(618,3),(620,2),(620,5)$.

Consider all pairs $(n+c, p)$ where $n+c$ is a multiple of p.

Easy to generate pairs
sorted by second component:

$$
\begin{aligned}
& (612,2),(614,2),(616,2),(618,2), \\
& (620,2),(612,3),(615,3),(618,3), \\
& (615,5),(620,5),(616,7) .
\end{aligned}
$$

Sieving means listing pairs
sorted by first component:
$(612,2),(612,3),(614,2)$,
$(615,3),(615,5),(616,2),(616,7)$, $(618,2),(618,3),(620,2),(620,5)$.

There are $y^{1+o(1)}$ involving $\{n+1, r$

Sieving $\{n+1, n$ takes $y^{1+o(1)}$ seco on RAM costing y 2-dimensional mes is much faster: y^{0} on machine costin

Can do even bette on machine costin using "elliptic-cur

Consider all pairs $(n+c, p)$ where $n+c$ is a multiple of p.

Easy to generate pairs sorted by second component: $(612,2),(614,2),(616,2),(618,2)$, $(620,2),(612,3),(615,3),(618,3)$, $(615,5),(620,5),(616,7)$.

Sieving means listing pairs sorted by first component: $(612,2),(612,3),(614,2)$, $(615,3),(615,5),(616,2),(616,7)$, $(618,2),(618,3),(620,2),(620,5)$.

There are $y^{1+o(1)}$ pairs involving $\{n+1, n+2, \ldots, n+y\}$.

Sieving $\{n+1, n+2, \ldots, n+y\}$ takes $y^{1+o(1)}$ seconds on RAM costing $y^{1+o(1)}$ dollars.

2-dimensional mesh computer is much faster: $y^{0.5+o(1)}$ seconds on machine costing $y^{1+o(1)}$ dollars.

Can do even better: $y^{o(1)}$ seconds on machine costing $y^{1+o(1)}$ dollars, using "elliptic-curve method."
$(n+c, p)$
nultiple of p.
airs
omponent:
$(616,2),(618,2)$,
$(615,3),(618,3)$,
$(616,7)$.
ng pairs
ponent:
$(614,2)$,
$(616,2),(616,7)$,
$(620,2),(620,5)$.

There are $y^{1+o(1)}$ pairs involving $\{n+1, n+2, \ldots, n+y\}$.

Sieving $\{n+1, n+2, \ldots, n+y\}$ takes $y^{1+o(1)}$ seconds on RAM costing $y^{1+o(1)}$ dollars.

2-dimensional mesh computer is much faster: $y^{0.5+o(1)}$ seconds on machine costing $y^{1+o(1)}$ dollars.

Can do even better: $y^{o(1)}$ seconds on machine costing $y^{1+o(1)}$ dollars, using "elliptic-curve method."

Square-finding spe
Start from factore $c_{1}\left(n+c_{1}\right)=\prod_{p}$ R $c_{2}\left(n+c_{2}\right)=\prod_{p} 2$ etc.

Want to find f_{1}, f such that
$\left(c_{1}\left(n+c_{1}\right)\right)^{f_{1}}\left(c_{2}\right.$
is a square.
In other words:
$\prod_{p} p^{f_{1} e_{1}(p)+f_{2} e_{2}(p}$ has even exponent

There are $y^{1+o(1)}$ pairs involving $\{n+1, n+2, \ldots, n+y\}$.

Sieving $\{n+1, n+2, \ldots, n+y\}$ takes $y^{1+o(1)}$ seconds on RAM costing $y^{1+o(1)}$ dollars.

2-dimensional mesh computer is much faster: $y^{0.5+o(1)}$ seconds on machine costing $y^{1+o(1)}$ dollars.

Can do even better: $y^{o(1)}$ seconds on machine costing $y^{1+o(1)}$ dollars, using "elliptic-curve method."

Square-finding speed

Start from factored $c(n+c)$'s:
$c_{1}\left(n+c_{1}\right)=\prod_{p} p^{e_{1}(p)}$, $c_{2}\left(n+c_{2}\right)=\prod_{p} p^{e_{2}(p)}$, etc.

Want to find f_{1}, f_{2}, \ldots
such that
$\left(c_{1}\left(n+c_{1}\right)\right)^{f_{1}}\left(c_{2}\left(n+c_{2}\right)\right)^{f_{2}} \ldots$
is a square.
In other words:
$\prod_{p} p^{f_{1} e_{1}(p)+f_{2} e_{2}(p)+\cdots}$ has even exponents.
pairs
$\imath+2, \ldots, n+y\}$.
$+2, \ldots, n+y\}$ nds
1+o(1) dollars.
h computer
.5+o(1) seconds
g $y^{1+o(1)}$ dollars.
r: $y^{o(1)}$ seconds
g $y^{1+o(1)}$ dollars,
e method."

Square-finding speed

Start from factored $c(n+c)$'s:
$c_{1}\left(n+c_{1}\right)=\prod_{p} p^{e_{1}(p)}$,
$c_{2}\left(n+c_{2}\right)=\prod_{p} p^{e_{2}(p)}$,
etc.
Want to find f_{1}, f_{2}, \ldots
such that
$\left(c_{1}\left(n+c_{1}\right)\right)^{f_{1}}\left(c_{2}\left(n+c_{2}\right)\right)^{f_{2}} \ldots$
is a square.
In other words:
$\prod_{p} p^{f_{1} e_{1}(p)+f_{2} e_{2}(p)+\cdots}$
has even exponents.

In other words:
$f_{1}\left(e_{1}(2), e_{1}(3), e_{1}\right.$
$+f_{2}\left(e_{2}(2), e_{2}(3)\right.$,
$+\cdots$ is even.
e.g. given
$14 \cdot 625=2^{1} 3^{0} 5^{4}$
$64 \cdot 675=2^{6} 3^{3} 5^{2}$
$75 \cdot 686=2^{1} 3^{1} 5^{2}$
find f_{1}, f_{2}, f_{3} such $f_{1}(1,0,4,1)+f_{2}($
$+f_{3}(1,1,2,3)$ is

Square-finding speed

Start from factored $c(n+c)$'s:
$c_{1}\left(n+c_{1}\right)=\prod_{p} p^{e_{1}(p)}$,
$c_{2}\left(n+c_{2}\right)=\prod_{p} p^{e_{2}(p)}$, etc.

Want to find f_{1}, f_{2}, \ldots
such that
$\left(c_{1}\left(n+c_{1}\right)\right)^{f_{1}}\left(c_{2}\left(n+c_{2}\right)\right)^{f_{2}} \ldots$
is a square.
In other words:
$\prod_{p} p^{f_{1} e_{1}(p)+f_{2} e_{2}(p)+\cdots}$
has even exponents.

In other words:
$f_{1}\left(e_{1}(2), e_{1}(3), e_{1}(5), \ldots\right)$
$+f_{2}\left(e_{2}(2), e_{2}(3), e_{2}(5), \ldots\right)$
$+\cdots$ is even.
e.g. given
$14 \cdot 625=2^{1} 3^{0} 5^{4} 7^{1}$,
$64 \cdot 675=2^{6} 3^{3} 5^{2} 7^{0}$,
$75 \cdot 686=2^{1} 3^{1} 5^{2} 7^{3}$:
find f_{1}, f_{2}, f_{3} such that
$f_{1}(1,0,4,1)+f_{2}(6,3,2,0)$
$+f_{3}(1,1,2,3)$ is even.
ed
d $c(n+c)$'s:
${ }^{e_{1}(p), ~}$
$e_{2}(p)$,
$\left.\left.n+c_{2}\right)\right)^{f_{2} \ldots}$

In other words:
$f_{1}\left(e_{1}(2), e_{1}(3), e_{1}(5), \ldots\right)$
$+f_{2}\left(e_{2}(2), e_{2}(3), e_{2}(5), \ldots\right)$
$+\cdots$ is even.
e.g. given
$14 \cdot 625=2^{1} 3^{0} 5^{4} 7^{1}$,
$64 \cdot 675=2^{6} 3^{3} 5^{2} 7^{0}$,
$75 \cdot 686=2^{1} 3^{1} 5^{2} 7^{3}$:
find f_{1}, f_{2}, f_{3} such that
$f_{1}(1,0,4,1)+f_{2}(6,3,2,0)$
$+f_{3}(1,1,2,3)$ is even.

This is linear alget finding kernel of a
$y^{3+o(1)}$ seconds using Gaussian eli
$y^{2+o(1)}$ seconds using Wiedemann'

Again exploit para $y^{1.5+o(1)}$ seconds on a 2-dimensiona costing $y^{1+o(1)}$ do

In other words:

$$
\begin{aligned}
& f_{1}\left(e_{1}(2), e_{1}(3), e_{1}(5), \ldots\right) \\
& +f_{2}\left(e_{2}(2), e_{2}(3), e_{2}(5), \ldots\right) \\
& +\cdots \text { is even. }
\end{aligned}
$$

e.g. given
$14 \cdot 625=2^{1} 3^{0} 5^{4} 7^{1}$,
$64 \cdot 675=2^{6} 3^{3} 5^{2} 7^{0}$,
$75 \cdot 686=2^{1} 3^{1} 5^{2} 7^{3}$:
find f_{1}, f_{2}, f_{3} such that
$f_{1}(1,0,4,1)+f_{2}(6,3,2,0)$
$+f_{3}(1,1,2,3)$ is even.

This is linear algebra mod 2 : finding kernel of a matrix.
$y^{3+o(1)}$ seconds
using Gaussian elimination.
$y^{2+o(1)}$ seconds
using Wiedemann's method.
Again exploit parallelism:
$y^{1.5+o(1)}$ seconds
on a 2-dimensional mesh costing $y^{1+o(1)}$ dollars.

$$
\begin{aligned}
& (5), \ldots) \\
& \left.e_{2}(5), \ldots\right)
\end{aligned}
$$

$$
70
$$

$$
73 .
$$

that

$$
6,3,2,0)
$$

even.

This is linear algebra $\bmod 2$: finding kernel of a matrix.
$y^{3+o(1)}$ seconds
using Gaussian elimination.
$y^{2+o(1)}$ seconds using Wiedemann's method.

Again exploit parallelism:
$y^{1.5+o(1)}$ seconds
on a 2-dimensional mesh costing $y^{1+o(1)}$ dollars.

How big is y ?
Positive integers have $\approx u^{-u}$ chan of completely fact into primes $\leq y$, where $u=(\log x)$

Very crude approx but in right ballpa
(Try numerical exp count products of use fancy analytic

This is linear algebra mod 2 : finding kernel of a matrix.
$y^{3+o(1)}$ seconds
using Gaussian elimination.
$y^{2+o(1)}$ seconds using Wiedemann's method.

Again exploit parallelism:
$y^{1.5+o(1)}$ seconds
on a 2-dimensional mesh costing $y^{1+o(1)}$ dollars.

How big is y ?

Positive integers $\leq x$ have $\approx u^{-u}$ chance of completely factoring into primes $\leq y$, where $u=(\log x) / \log y$.

Very crude approximation but in right ballpark.
(Try numerical experiments; count products of primes; use fancy analytic theorems.)
bra mod 2: matrix.
nination.
s method.
Ilelism:

I mesh
llars.

How big is y ?

Positive integers $\leq x$
have $\approx u^{-u}$ chance
of completely factoring into primes $\leq y$,
where $u=(\log x) / \log y$.
Very crude approximation but in right ballpark.
(Try numerical experiments; count products of primes; use fancy analytic theorems.)

For $\log y \approx \sqrt{(1 / 2}$ Positive integers have $\approx 1 / y$ chanc of completely fact into primes $\leq y$.

Presumably the in $1(n+1), 2(n+2)$ have $\approx y$ complet thus produce a sq often factor n.

How big is $y ?$

Positive integers $\leq x$
have $\approx u^{-u}$ chance
of completely factoring
into primes $\leq y$,
where $u=(\log x) / \log y$.
Very crude approximation but in right ballpark.
(Try numerical experiments;
count products of primes; use fancy analytic theorems.)

For $\log y \approx \sqrt{(1 / 2) \log n \log \log n}$:
Positive integers $\leq y^{2}\left(n+y^{2}\right)$
have $\approx 1 / y$ chance
of completely factoring into primes $\leq y$.

Presumably the integers $1(n+1), 2(n+2), \ldots, y^{2}\left(n+y^{2}\right)$
have $\approx y$ complete factorizations; thus produce a square; often factor n.

For $\log y \approx \sqrt{(1 / 2) \log n \log \log n}$: Positive integers $\leq y^{2}\left(n+y^{2}\right)$ have $\approx 1 / y$ chance of completely factoring into primes $\leq y$.

Presumably the integers $1(n+1), 2(n+2), \ldots, y^{2}\left(n+y^{2}\right)$
have $\approx y$ complete factorizations; thus produce a square;
often factor n.

So we believe that
Q-sieve price-perfc is $c+o(1)$ power $\exp (\sqrt{\log n} \log \log$ for some constant

Continued-fraction linear sieve, quadr smaller power.
Use integers aroun
Number-field sieve $\exp (\sqrt[3]{(\log n)(\log }$ Use even smaller i

For $\log y \approx \sqrt{(1 / 2) \log n \log \log n}$:
Positive integers $\leq y^{2}\left(n+y^{2}\right)$
have $\approx 1 / y$ chance
of completely factoring into primes $\leq y$.

Presumably the integers $1(n+1), 2(n+2), \ldots, y^{2}\left(n+y^{2}\right)$
have $\approx y$ complete factorizations; thus produce a square; often factor n.

So we believe that
Q-sieve price-performance ratio is $c+o(1)$ power of
$\exp (\sqrt{\log n \log \log n})$, for some constant c.

Continued-fraction method, linear sieve, quadratic sieve:
smaller power.
Use integers around \sqrt{n}.
Number-field sieve: power of $\exp \left(\sqrt[3]{(\log n)(\log \log n)^{2}}\right)$.
Use even smaller integers.
2) $\log n \log \log n$:
$=y^{2}\left(n+y^{2}\right)$
oring
tegers
$, \ldots, y^{2}\left(n+y^{2}\right)$
e factorizations;
ıare;

So we believe that
Q-sieve price-performance ratio is $c+o(1)$ power of
$\exp (\sqrt{\log n \log \log n})$, for some constant c.

Continued-fraction method, linear sieve, quadratic sieve:
smaller power.
Use integers around \sqrt{n}.
Number-field sieve: power of $\exp \left(\sqrt[3]{(\log n)(\log \log n)^{2}}\right)$. Use even smaller integers.

Discrete logarithm
Can use the same to compute k give "Index-calculus m

Exponential in log to compute discre by collisions, kang

Subexponential in to use index calcu Can cryptanalyze

So we believe that
Q-sieve price-performance ratio is $c+o(1)$ power of $\exp (\sqrt{\log n \log \log n})$, for some constant c.

Continued-fraction method, linear sieve, quadratic sieve:
smaller power.
Use integers around \sqrt{n}.
Number-field sieve: power of $\exp \left(\sqrt[3]{(\log n)(\log \log n)^{2}}\right)$.
Use even smaller integers.

Discrete logarithms

Can use the same techniques to compute k given $3^{k} \bmod n$. "Index-calculus methods."

Exponential in $\log n$ to compute discrete logarithm by collisions, kangaroos, etc.

Subexponential in $\log n$ to use index calculus.
Can cryptanalyze larger n.

Discrete logarithms

Can use the same techniques to compute k given $3^{k} \bmod n$.
"Index-calculus methods."
Exponential in $\log n$
to compute discrete logarithm
by collisions, kangaroos, etc.
Subexponential in $\log n$
to use index calculus.
Can cryptanalyze larger n.

Collisions, kangaro work for elliptic cu so we can cryptan small elliptic curve

We don't know an Index calculus doe work for elliptic CL Diffie-Hellman spe use elliptic curves. Signature-verificat still use RSA/Rab

Discrete logarithms

Can use the same techniques to compute k given $3^{k} \bmod n$. "Index-calculus methods."

Exponential in $\log n$ to compute discrete logarithm by collisions, kangaroos, etc.

Subexponential in $\log n$ to use index calculus.
Can cryptanalyze larger n.

Collisions, kangaroos, etc. work for elliptic curves, so we can cryptanalyze small elliptic curves.

We don't know anything better. Index calculus doesn't work for elliptic curves.

Diffie-Hellman speed records use elliptic curves.
Signature-verification speed records still use RSA/Rabin variants.

