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How fast is sorting?

Input: array of � numbers.

Each number in 1 � 2 � � � � �
� 2 ,

represented in binary.

Output: array of � numbers,

in increasing order,

represented in binary;

same multiset as input.

A machine is given the input

and computes the output.

How much time does it use?
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Summarize scalability

by reporting exponent of � .

� � (1) means log � or (log � )3 or

100 � 5
�
log log � + 1 � or � � �

� 1+ � (1) means � or 5 � or
� log � or � (7(log � )3 + 8) or � � �

(Definition: � (1) means any

function of � that converges to 0.

e.g. 5 � = � 1+(log 5)
�
log � ;

(log 5) log � converges to 0.)

At this level of detail,

how fast is the machine?
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Possibility 1: The machine is a
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a 1-dimensional array

containing � 1+ � (1) “cells.”

Each cell stores � � (1) bits.
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sorts last � � 2 � numbers;
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Each cell in the array has

network links to the 2 adjacent

cells in the same column.

Each cell in the top row has

network links to the 2 adjacent

cells in the top row.
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Possibility 4: The machine is a

“2-dimensional mesh

using Schimmler sort.”

Machine has � 1+ � (1) cells

in a 2-dimensional array.

Each cell has network links

to the 4 adjacent cells.

Machine also has a CPU

attached to top-left cell.

CPU broadcasts instructions

to all of the cells, but

cells do most of the processing.
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Schimmler sort:

Recursively sort quadrants

in parallel. Then four steps:

Sort each column in parallel.

Sort each row in parallel.
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Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.
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so cost does not

increase by factor .
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Backtrack to find collision.

Oops, may have multiple collisions;
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But usually not a problem.
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about � times faster,

not much more expensive.
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