
The power of

parallel computation

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF CCR–9983950

Alfred P. Sloan Foundation

How fast is sorting?

Input: array of � numbers.

Each number in 1 � 2 � � � � �
� 2 ,

represented in binary.

Output: array of � numbers,

in increasing order,

represented in binary;

same multiset as input.

A machine is given the input

and computes the output.

How much time does it use?

The power of

parallel computation

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF CCR–9983950

Alfred P. Sloan Foundation

How fast is sorting?

Input: array of � numbers.

Each number in 1 � 2 � � � � �
� 2 ,

represented in binary.

Output: array of � numbers,

in increasing order,

represented in binary;

same multiset as input.

A machine is given the input

and computes the output.

How much time does it use?

Summarize scalability

by reporting exponent of � .

� � (1) means log � or (log �)3 or

100 � 5
�
log log � + 1 � or � � �

� 1+ � (1) means � or 5 � or
� log � or � (7(log �)3 + 8) or � � �

(Definition: � (1) means any

function of � that converges to 0.

e.g. 5 � = � 1+(log 5)
�
log � ;

(log 5) log � converges to 0.)

At this level of detail,

how fast is the machine?

How fast is sorting?

Input: array of � numbers.

Each number in 1 � 2 � � � � �
� 2 ,

represented in binary.

Output: array of � numbers,

in increasing order,

represented in binary;

same multiset as input.

A machine is given the input

and computes the output.

How much time does it use?

Summarize scalability

by reporting exponent of � .

� � (1) means log � or (log �)3 or

100 � 5
�
log log � + 1 � or � � �

� 1+ � (1) means � or 5 � or
� log � or � (7(log �)3 + 8) or � � �

(Definition: � (1) means any

function of � that converges to 0.

e.g. 5 � = � 1+(log 5)
�
log � ;

(log 5) log � converges to 0.)

At this level of detail,

how fast is the machine?

How fast is sorting?

Input: array of � numbers.

Each number in 1 � 2 � � � � �
� 2 ,

represented in binary.

Output: array of � numbers,

in increasing order,

represented in binary;

same multiset as input.

A machine is given the input

and computes the output.

How much time does it use?

Summarize scalability

by reporting exponent of � .

� � (1) means log � or (log �)3 or

100 � 5
�
log log � + 1 � or � � �

� 1+ � (1) means � or 5 � or
� log � or � (7(log �)3 + 8) or � � �

(Definition: � (1) means any

function of � that converges to 0.

e.g. 5 � = � 1+(log 5)
�
log � ;

(log 5) log � converges to 0.)

At this level of detail,

how fast is the machine?

The answer depends on

how the machine works.

Possibility 1: The machine is a

“1-tape Turing machine

using selection sort.”

Specifically: The machine has

a 1-dimensional array

containing � 1+ � (1) “cells.”

Each cell stores � � (1) bits.

Input and output are

stored in these cells.

Summarize scalability

by reporting exponent of � .

� � (1) means log � or (log �)3 or

100 � 5
�
log log � + 1 � or � � �

� 1+ � (1) means � or 5 � or
� log � or � (7(log �)3 + 8) or � � �

(Definition: � (1) means any

function of � that converges to 0.

e.g. 5 � = � 1+(log 5)
�
log � ;

(log 5) log � converges to 0.)

At this level of detail,

how fast is the machine?

The answer depends on

how the machine works.

Possibility 1: The machine is a

“1-tape Turing machine

using selection sort.”

Specifically: The machine has

a 1-dimensional array

containing � 1+ � (1) “cells.”

Each cell stores � � (1) bits.

Input and output are

stored in these cells.

Summarize scalability

by reporting exponent of � .

� � (1) means log � or (log �)3 or

100 � 5
�
log log � + 1 � or � � �

� 1+ � (1) means � or 5 � or
� log � or � (7(log �)3 + 8) or � � �

(Definition: � (1) means any

function of � that converges to 0.

e.g. 5 � = � 1+(log 5)
�
log � ;

(log 5) log � converges to 0.)

At this level of detail,

how fast is the machine?

The answer depends on

how the machine works.

Possibility 1: The machine is a

“1-tape Turing machine

using selection sort.”

Specifically: The machine has

a 1-dimensional array

containing � 1+ � (1) “cells.”

Each cell stores � � (1) bits.

Input and output are

stored in these cells.

The machine also has a

“head” moving through array.

Head contains � � (1) cells.

Head can see the cell at

its current array position;

perform arithmetic etc.;

move to adjacent array position.

Selection sort: Head

looks at each array position,

picks up the largest number,

moves it to the end of the array,

picks up the second largest,

etc.

The answer depends on

how the machine works.

Possibility 1: The machine is a

“1-tape Turing machine

using selection sort.”

Specifically: The machine has

a 1-dimensional array

containing � 1+ � (1) “cells.”

Each cell stores � � (1) bits.

Input and output are

stored in these cells.

The machine also has a

“head” moving through array.

Head contains � � (1) cells.

Head can see the cell at

its current array position;

perform arithmetic etc.;

move to adjacent array position.

Selection sort: Head

looks at each array position,

picks up the largest number,

moves it to the end of the array,

picks up the second largest,

etc.

The answer depends on

how the machine works.

Possibility 1: The machine is a

“1-tape Turing machine

using selection sort.”

Specifically: The machine has

a 1-dimensional array

containing � 1+ � (1) “cells.”

Each cell stores � � (1) bits.

Input and output are

stored in these cells.

The machine also has a

“head” moving through array.

Head contains � � (1) cells.

Head can see the cell at

its current array position;

perform arithmetic etc.;

move to adjacent array position.

Selection sort: Head

looks at each array position,

picks up the largest number,

moves it to the end of the array,

picks up the second largest,

etc.

Moving to adjacent array position

takes � � (1) seconds.

Moving a number to end of array

takes � 1+ � (1) seconds.

Same for comparisons etc.

Total sorting time:
� 2+ � (1) seconds.

Cost of machine:
� 1+ � (1) dollars

for � 1+ � (1) cells.

Negligible extra cost for head.

The machine also has a

“head” moving through array.

Head contains � � (1) cells.

Head can see the cell at

its current array position;

perform arithmetic etc.;

move to adjacent array position.

Selection sort: Head

looks at each array position,

picks up the largest number,

moves it to the end of the array,

picks up the second largest,

etc.

Moving to adjacent array position

takes � � (1) seconds.

Moving a number to end of array

takes � 1+ � (1) seconds.

Same for comparisons etc.

Total sorting time:
� 2+ � (1) seconds.

Cost of machine:
� 1+ � (1) dollars

for � 1+ � (1) cells.

Negligible extra cost for head.

The machine also has a

“head” moving through array.

Head contains � � (1) cells.

Head can see the cell at

its current array position;

perform arithmetic etc.;

move to adjacent array position.

Selection sort: Head

looks at each array position,

picks up the largest number,

moves it to the end of the array,

picks up the second largest,

etc.

Moving to adjacent array position

takes � � (1) seconds.

Moving a number to end of array

takes � 1+ � (1) seconds.

Same for comparisons etc.

Total sorting time:
� 2+ � (1) seconds.

Cost of machine:
� 1+ � (1) dollars

for � 1+ � (1) cells.

Negligible extra cost for head.

Possibility 2: The machine is a

“2-dimensional RAM

using merge sort.”

Machine has � 1+ � (1) cells

in a 2-dimensional array:
� 0 � 5+ � (1) rows, � 0 � 5+ � (1) columns.

Machine also has a head.

Merge sort: Head recursively

sorts first
�

� 2 � numbers;

sorts last � � 2 � numbers;

merges the sorted lists.

Moving to adjacent array position

takes � � (1) seconds.

Moving a number to end of array

takes � 1+ � (1) seconds.

Same for comparisons etc.

Total sorting time:
� 2+ � (1) seconds.

Cost of machine:
� 1+ � (1) dollars

for � 1+ � (1) cells.

Negligible extra cost for head.

Possibility 2: The machine is a

“2-dimensional RAM

using merge sort.”

Machine has � 1+ � (1) cells

in a 2-dimensional array:
� 0 � 5+ � (1) rows, � 0 � 5+ � (1) columns.

Machine also has a head.

Merge sort: Head recursively

sorts first
�

� 2 � numbers;

sorts last � � 2 � numbers;

merges the sorted lists.

Moving to adjacent array position

takes � � (1) seconds.

Moving a number to end of array

takes � 1+ � (1) seconds.

Same for comparisons etc.

Total sorting time:
� 2+ � (1) seconds.

Cost of machine:
� 1+ � (1) dollars

for � 1+ � (1) cells.

Negligible extra cost for head.

Possibility 2: The machine is a

“2-dimensional RAM

using merge sort.”

Machine has � 1+ � (1) cells

in a 2-dimensional array:
� 0 � 5+ � (1) rows, � 0 � 5+ � (1) columns.

Machine also has a head.

Merge sort: Head recursively

sorts first
�

� 2 � numbers;

sorts last � � 2 � numbers;

merges the sorted lists.

Merging requires � 1+ � (1) jumps

to “random” array positions.

Average jump: � 0 � 5+ � (1) moves

to adjacent array positions.

Each move takes � � (1) seconds.

Total sorting time:
� 1 � 5+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) dollars.

Possibility 2: The machine is a

“2-dimensional RAM

using merge sort.”

Machine has � 1+ � (1) cells

in a 2-dimensional array:
� 0 � 5+ � (1) rows, � 0 � 5+ � (1) columns.

Machine also has a head.

Merge sort: Head recursively

sorts first
�

� 2 � numbers;

sorts last � � 2 � numbers;

merges the sorted lists.

Merging requires � 1+ � (1) jumps

to “random” array positions.

Average jump: � 0 � 5+ � (1) moves

to adjacent array positions.

Each move takes � � (1) seconds.

Total sorting time:
� 1 � 5+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) dollars.

Possibility 2: The machine is a

“2-dimensional RAM

using merge sort.”

Machine has � 1+ � (1) cells

in a 2-dimensional array:
� 0 � 5+ � (1) rows, � 0 � 5+ � (1) columns.

Machine also has a head.

Merge sort: Head recursively

sorts first
�

� 2 � numbers;

sorts last � � 2 � numbers;

merges the sorted lists.

Merging requires � 1+ � (1) jumps

to “random” array positions.

Average jump: � 0 � 5+ � (1) moves

to adjacent array positions.

Each move takes � � (1) seconds.

Total sorting time:
� 1 � 5+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) dollars.

Possibility 3: The machine is a

“pipelined 2-dimensional RAM

using radix-2 sort.”

Machine has � 1+ � (1) cells

in a 2-dimensional array.

Each cell in the array has

network links to the 2 adjacent

cells in the same column.

Each cell in the top row has

network links to the 2 adjacent

cells in the top row.

Merging requires � 1+ � (1) jumps

to “random” array positions.

Average jump: � 0 � 5+ � (1) moves

to adjacent array positions.

Each move takes � � (1) seconds.

Total sorting time:
� 1 � 5+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) dollars.

Possibility 3: The machine is a

“pipelined 2-dimensional RAM

using radix-2 sort.”

Machine has � 1+ � (1) cells

in a 2-dimensional array.

Each cell in the array has

network links to the 2 adjacent

cells in the same column.

Each cell in the top row has

network links to the 2 adjacent

cells in the top row.

Merging requires � 1+ � (1) jumps

to “random” array positions.

Average jump: � 0 � 5+ � (1) moves

to adjacent array positions.

Each move takes � � (1) seconds.

Total sorting time:
� 1 � 5+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) dollars.

Possibility 3: The machine is a

“pipelined 2-dimensional RAM

using radix-2 sort.”

Machine has � 1+ � (1) cells

in a 2-dimensional array.

Each cell in the array has

network links to the 2 adjacent

cells in the same column.

Each cell in the top row has

network links to the 2 adjacent

cells in the top row.

Machine also has a CPU

attached to top-left cell.

CPU can read/write any cell by

sending request through network.

Does not need to wait for response

before sending next request.

CPU can read an entire row

of � 0 � 5+ � (1) cells

in � 0 � 5+ � (1) seconds.

Sends all requests,

then receives responses.

Possibility 3: The machine is a

“pipelined 2-dimensional RAM

using radix-2 sort.”

Machine has � 1+ � (1) cells

in a 2-dimensional array.

Each cell in the array has

network links to the 2 adjacent

cells in the same column.

Each cell in the top row has

network links to the 2 adjacent

cells in the top row.

Machine also has a CPU

attached to top-left cell.

CPU can read/write any cell by

sending request through network.

Does not need to wait for response

before sending next request.

CPU can read an entire row

of � 0 � 5+ � (1) cells

in � 0 � 5+ � (1) seconds.

Sends all requests,

then receives responses.

Possibility 3: The machine is a

“pipelined 2-dimensional RAM

using radix-2 sort.”

Machine has � 1+ � (1) cells

in a 2-dimensional array.

Each cell in the array has

network links to the 2 adjacent

cells in the same column.

Each cell in the top row has

network links to the 2 adjacent

cells in the top row.

Machine also has a CPU

attached to top-left cell.

CPU can read/write any cell by

sending request through network.

Does not need to wait for response

before sending next request.

CPU can read an entire row

of � 0 � 5+ � (1) cells

in � 0 � 5+ � (1) seconds.

Sends all requests,

then receives responses.

Radix-2 sort: CPU

shuffles array using bit 0,

even numbers before odd.

3 1 4 1 5 9 2 6 �

4 2 6 3 1 1 5 9.

Then using bit 1:

4 1 1 5 9 2 6 3.

Then using bit 2:

1 1 9 2 3 4 5 6.

Then using bit 3:

1 1 2 3 4 5 6 9.

etc.

Machine also has a CPU

attached to top-left cell.

CPU can read/write any cell by

sending request through network.

Does not need to wait for response

before sending next request.

CPU can read an entire row

of � 0 � 5+ � (1) cells

in � 0 � 5+ � (1) seconds.

Sends all requests,

then receives responses.

Radix-2 sort: CPU

shuffles array using bit 0,

even numbers before odd.

3 1 4 1 5 9 2 6 �

4 2 6 3 1 1 5 9.

Then using bit 1:

4 1 1 5 9 2 6 3.

Then using bit 2:

1 1 9 2 3 4 5 6.

Then using bit 3:

1 1 2 3 4 5 6 9.

etc.

Machine also has a CPU

attached to top-left cell.

CPU can read/write any cell by

sending request through network.

Does not need to wait for response

before sending next request.

CPU can read an entire row

of � 0 � 5+ � (1) cells

in � 0 � 5+ � (1) seconds.

Sends all requests,

then receives responses.

Radix-2 sort: CPU

shuffles array using bit 0,

even numbers before odd.

3 1 4 1 5 9 2 6 �

4 2 6 3 1 1 5 9.

Then using bit 1:

4 1 1 5 9 2 6 3.

Then using bit 2:

1 1 9 2 3 4 5 6.

Then using bit 3:

1 1 2 3 4 5 6 9.

etc.

Each shuffle takes
� 1+ � (1) seconds.

� � (1) shuffles.

Total sorting time:
� 1+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) dollars.

Radix-2 sort: CPU

shuffles array using bit 0,

even numbers before odd.

3 1 4 1 5 9 2 6 �

4 2 6 3 1 1 5 9.

Then using bit 1:

4 1 1 5 9 2 6 3.

Then using bit 2:

1 1 9 2 3 4 5 6.

Then using bit 3:

1 1 2 3 4 5 6 9.

etc.

Each shuffle takes
� 1+ � (1) seconds.

� � (1) shuffles.

Total sorting time:
� 1+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) dollars.

Radix-2 sort: CPU

shuffles array using bit 0,

even numbers before odd.

3 1 4 1 5 9 2 6 �

4 2 6 3 1 1 5 9.

Then using bit 1:

4 1 1 5 9 2 6 3.

Then using bit 2:

1 1 9 2 3 4 5 6.

Then using bit 3:

1 1 2 3 4 5 6 9.

etc.

Each shuffle takes
� 1+ � (1) seconds.

� � (1) shuffles.

Total sorting time:
� 1+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) dollars.

Possibility 4: The machine is a

“2-dimensional mesh

using Schimmler sort.”

Machine has � 1+ � (1) cells

in a 2-dimensional array.

Each cell has network links

to the 4 adjacent cells.

Machine also has a CPU

attached to top-left cell.

CPU broadcasts instructions

to all of the cells, but

cells do most of the processing.

Each shuffle takes
� 1+ � (1) seconds.

� � (1) shuffles.

Total sorting time:
� 1+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) dollars.

Possibility 4: The machine is a

“2-dimensional mesh

using Schimmler sort.”

Machine has � 1+ � (1) cells

in a 2-dimensional array.

Each cell has network links

to the 4 adjacent cells.

Machine also has a CPU

attached to top-left cell.

CPU broadcasts instructions

to all of the cells, but

cells do most of the processing.

Each shuffle takes
� 1+ � (1) seconds.

� � (1) shuffles.

Total sorting time:
� 1+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) dollars.

Possibility 4: The machine is a

“2-dimensional mesh

using Schimmler sort.”

Machine has � 1+ � (1) cells

in a 2-dimensional array.

Each cell has network links

to the 4 adjacent cells.

Machine also has a CPU

attached to top-left cell.

CPU broadcasts instructions

to all of the cells, but

cells do most of the processing.

Sort row of � 0 � 5+ � (1) cells

in � 0 � 5+ � (1) seconds:

Sort each pair in parallel.

3 1 4 1 5 9 2 6 �

1 3 1 4 5 9 2 6

Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 �

1 1 3 4 5 2 9 6

Repeat until number of steps

equals row length.

Sort each row, in parallel,

in � 0 � 5+ � (1) seconds.

Possibility 4: The machine is a

“2-dimensional mesh

using Schimmler sort.”

Machine has � 1+ � (1) cells

in a 2-dimensional array.

Each cell has network links

to the 4 adjacent cells.

Machine also has a CPU

attached to top-left cell.

CPU broadcasts instructions

to all of the cells, but

cells do most of the processing.

Sort row of � 0 � 5+ � (1) cells

in � 0 � 5+ � (1) seconds:

Sort each pair in parallel.

3 1 4 1 5 9 2 6 �

1 3 1 4 5 9 2 6

Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 �

1 1 3 4 5 2 9 6

Repeat until number of steps

equals row length.

Sort each row, in parallel,

in � 0 � 5+ � (1) seconds.

Possibility 4: The machine is a

“2-dimensional mesh

using Schimmler sort.”

Machine has � 1+ � (1) cells

in a 2-dimensional array.

Each cell has network links

to the 4 adjacent cells.

Machine also has a CPU

attached to top-left cell.

CPU broadcasts instructions

to all of the cells, but

cells do most of the processing.

Sort row of � 0 � 5+ � (1) cells

in � 0 � 5+ � (1) seconds:

Sort each pair in parallel.

3 1 4 1 5 9 2 6 �

1 3 1 4 5 9 2 6

Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 �

1 1 3 4 5 2 9 6

Repeat until number of steps

equals row length.

Sort each row, in parallel,

in � 0 � 5+ � (1) seconds.

Schimmler sort:

Recursively sort quadrants

in parallel. Then four steps:

Sort each column in parallel.

Sort each row in parallel.

Sort each column in parallel.

Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

Sort row of � 0 � 5+ � (1) cells

in � 0 � 5+ � (1) seconds:

Sort each pair in parallel.

3 1 4 1 5 9 2 6 �

1 3 1 4 5 9 2 6

Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 �

1 1 3 4 5 2 9 6

Repeat until number of steps

equals row length.

Sort each row, in parallel,

in � 0 � 5+ � (1) seconds.

Schimmler sort:

Recursively sort quadrants

in parallel. Then four steps:

Sort each column in parallel.

Sort each row in parallel.

Sort each column in parallel.

Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

Sort row of � 0 � 5+ � (1) cells

in � 0 � 5+ � (1) seconds:

Sort each pair in parallel.

3 1 4 1 5 9 2 6 �

1 3 1 4 5 9 2 6

Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 �

1 1 3 4 5 2 9 6

Repeat until number of steps

equals row length.

Sort each row, in parallel,

in � 0 � 5+ � (1) seconds.

Schimmler sort:

Recursively sort quadrants

in parallel. Then four steps:

Sort each column in parallel.

Sort each row in parallel.

Sort each column in parallel.

Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

For example, assume that

this 8 � 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

Schimmler sort:

Recursively sort quadrants

in parallel. Then four steps:

Sort each column in parallel.

Sort each row in parallel.

Sort each column in parallel.

Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

For example, assume that

this 8 � 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

Schimmler sort:

Recursively sort quadrants

in parallel. Then four steps:

Sort each column in parallel.

Sort each row in parallel.

Sort each column in parallel.

Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

For example, assume that

this 8 � 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

Recursively sort quadrants,

top , bottom :

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

For example, assume that

this 8 � 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

Recursively sort quadrants,

top , bottom :

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

For example, assume that

this 8 � 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

Recursively sort quadrants,

top , bottom :

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

Recursively sort quadrants,

top , bottom :

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

Recursively sort quadrants,

top , bottom :

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

Sort each row in parallel,

alternately , :

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

Sort each row in parallel,

alternately , :

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

Sort each row in parallel,

alternately , :

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

Sort each row in parallel,

alternately , :

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

Sort each row in parallel,

alternately , :

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

Sort each row in parallel,

or as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

Sort each row in parallel,

or as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

Sort each row in parallel,

or as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

Sort one row

in � 0 � 5+ � (1) seconds.

All rows in parallel:
� 0 � 5+ � (1) seconds.

Total sorting time:
� 0 � 5+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) dollars.

Sort each row in parallel,

or as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

Sort one row

in � 0 � 5+ � (1) seconds.

All rows in parallel:
� 0 � 5+ � (1) seconds.

Total sorting time:
� 0 � 5+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) dollars.

Sort each row in parallel,

or as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

Sort one row

in � 0 � 5+ � (1) seconds.

All rows in parallel:
� 0 � 5+ � (1) seconds.

Total sorting time:
� 0 � 5+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) dollars.

Some philosophical notes

1-tape Turing machines,

RAMs, 2-dimensional meshes

compute the same functions.

Prove this by proving that

each machine can simulate

computations on the others.

(We believe that every

reasonable model of computation

can be simulated by a

1-tape Turing machine.

“Church-Turing thesis.”)

Sort one row

in � 0 � 5+ � (1) seconds.

All rows in parallel:
� 0 � 5+ � (1) seconds.

Total sorting time:
� 0 � 5+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) dollars.

Some philosophical notes

1-tape Turing machines,

RAMs, 2-dimensional meshes

compute the same functions.

Prove this by proving that

each machine can simulate

computations on the others.

(We believe that every

reasonable model of computation

can be simulated by a

1-tape Turing machine.

“Church-Turing thesis.”)

Sort one row

in � 0 � 5+ � (1) seconds.

All rows in parallel:
� 0 � 5+ � (1) seconds.

Total sorting time:
� 0 � 5+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) dollars.

Some philosophical notes

1-tape Turing machines,

RAMs, 2-dimensional meshes

compute the same functions.

Prove this by proving that

each machine can simulate

computations on the others.

(We believe that every

reasonable model of computation

can be simulated by a

1-tape Turing machine.

“Church-Turing thesis.”)

1-tape Turing machines,

RAMs, 2-dimensional meshes

compute the same functions

in polynomial time

at polynomial cost.

Prove this by proving that

simulations are polynomial.

(Is this true for every

reasonable model of computation?

Quantum computers can

factor in polynomial time.

Can Turing machines do that?

Can quantum computers be built?)

Some philosophical notes

1-tape Turing machines,

RAMs, 2-dimensional meshes

compute the same functions.

Prove this by proving that

each machine can simulate

computations on the others.

(We believe that every

reasonable model of computation

can be simulated by a

1-tape Turing machine.

“Church-Turing thesis.”)

1-tape Turing machines,

RAMs, 2-dimensional meshes

compute the same functions

in polynomial time

at polynomial cost.

Prove this by proving that

simulations are polynomial.

(Is this true for every

reasonable model of computation?

Quantum computers can

factor in polynomial time.

Can Turing machines do that?

Can quantum computers be built?)

Some philosophical notes

1-tape Turing machines,

RAMs, 2-dimensional meshes

compute the same functions.

Prove this by proving that

each machine can simulate

computations on the others.

(We believe that every

reasonable model of computation

can be simulated by a

1-tape Turing machine.

“Church-Turing thesis.”)

1-tape Turing machines,

RAMs, 2-dimensional meshes

compute the same functions

in polynomial time

at polynomial cost.

Prove this by proving that

simulations are polynomial.

(Is this true for every

reasonable model of computation?

Quantum computers can

factor in polynomial time.

Can Turing machines do that?

Can quantum computers be built?)

1-tape Turing machines,

RAMs, 2-dimensional meshes

do not compute

the same functions

within, e.g., time � 1+ � (1)

and cost � 1+ � (1).

Example: 1-tape Turing machine

cannot sort in � 1+ � (1) seconds.

Too local.

Example: 2-dimensional RAM

cannot sort in � 0 � 5+ � (1) seconds.

Too sequential.

1-tape Turing machines,

RAMs, 2-dimensional meshes

compute the same functions

in polynomial time

at polynomial cost.

Prove this by proving that

simulations are polynomial.

(Is this true for every

reasonable model of computation?

Quantum computers can

factor in polynomial time.

Can Turing machines do that?

Can quantum computers be built?)

1-tape Turing machines,

RAMs, 2-dimensional meshes

do not compute

the same functions

within, e.g., time � 1+ � (1)

and cost � 1+ � (1).

Example: 1-tape Turing machine

cannot sort in � 1+ � (1) seconds.

Too local.

Example: 2-dimensional RAM

cannot sort in � 0 � 5+ � (1) seconds.

Too sequential.

1-tape Turing machines,

RAMs, 2-dimensional meshes

compute the same functions

in polynomial time

at polynomial cost.

Prove this by proving that

simulations are polynomial.

(Is this true for every

reasonable model of computation?

Quantum computers can

factor in polynomial time.

Can Turing machines do that?

Can quantum computers be built?)

1-tape Turing machines,

RAMs, 2-dimensional meshes

do not compute

the same functions

within, e.g., time � 1+ � (1)

and cost � 1+ � (1).

Example: 1-tape Turing machine

cannot sort in � 1+ � (1) seconds.

Too local.

Example: 2-dimensional RAM

cannot sort in � 0 � 5+ � (1) seconds.

Too sequential.

Review of sorting times,

measured in seconds, for

machine costing � 1+ � (1) dollars:

� 2 � 0+ � (1): 1-tape Turing machine.
� 1 � 5+ � (1): 2-dimensional RAM.
� 1 � 0+ � (1): pipelined RAM.
� 0 � 5+ � (1): 2-dimensional mesh.

Why does anyone say that

sorting time is � 1+ � (1)?

Why choose third machine?

Silly! Fourth machine is better!

1-tape Turing machines,

RAMs, 2-dimensional meshes

do not compute

the same functions

within, e.g., time � 1+ � (1)

and cost � 1+ � (1).

Example: 1-tape Turing machine

cannot sort in � 1+ � (1) seconds.

Too local.

Example: 2-dimensional RAM

cannot sort in � 0 � 5+ � (1) seconds.

Too sequential.

Review of sorting times,

measured in seconds, for

machine costing � 1+ � (1) dollars:

� 2 � 0+ � (1): 1-tape Turing machine.
� 1 � 5+ � (1): 2-dimensional RAM.
� 1 � 0+ � (1): pipelined RAM.
� 0 � 5+ � (1): 2-dimensional mesh.

Why does anyone say that

sorting time is � 1+ � (1)?

Why choose third machine?

Silly! Fourth machine is better!

1-tape Turing machines,

RAMs, 2-dimensional meshes

do not compute

the same functions

within, e.g., time � 1+ � (1)

and cost � 1+ � (1).

Example: 1-tape Turing machine

cannot sort in � 1+ � (1) seconds.

Too local.

Example: 2-dimensional RAM

cannot sort in � 0 � 5+ � (1) seconds.

Too sequential.

Review of sorting times,

measured in seconds, for

machine costing � 1+ � (1) dollars:

� 2 � 0+ � (1): 1-tape Turing machine.
� 1 � 5+ � (1): 2-dimensional RAM.
� 1 � 0+ � (1): pipelined RAM.
� 0 � 5+ � (1): 2-dimensional mesh.

Why does anyone say that

sorting time is � 1+ � (1)?

Why choose third machine?

Silly! Fourth machine is better!

Warning: � (1) is asymptotic.

Speedup factor such as � 0 � 5+ � (1)

might not be a speedup

for small values of � .

When � is small,

RAM might seem to be a

sensible machine design.

But, once � is large enough,

having a huge memory

waiting for a single CPU

is a silly machine design.

Review of sorting times,

measured in seconds, for

machine costing � 1+ � (1) dollars:

� 2 � 0+ � (1): 1-tape Turing machine.
� 1 � 5+ � (1): 2-dimensional RAM.
� 1 � 0+ � (1): pipelined RAM.
� 0 � 5+ � (1): 2-dimensional mesh.

Why does anyone say that

sorting time is � 1+ � (1)?

Why choose third machine?

Silly! Fourth machine is better!

Warning: � (1) is asymptotic.

Speedup factor such as � 0 � 5+ � (1)

might not be a speedup

for small values of � .

When � is small,

RAM might seem to be a

sensible machine design.

But, once � is large enough,

having a huge memory

waiting for a single CPU

is a silly machine design.

Review of sorting times,

measured in seconds, for

machine costing � 1+ � (1) dollars:

� 2 � 0+ � (1): 1-tape Turing machine.
� 1 � 5+ � (1): 2-dimensional RAM.
� 1 � 0+ � (1): pipelined RAM.
� 0 � 5+ � (1): 2-dimensional mesh.

Why does anyone say that

sorting time is � 1+ � (1)?

Why choose third machine?

Silly! Fourth machine is better!

Warning: � (1) is asymptotic.

Speedup factor such as � 0 � 5+ � (1)

might not be a speedup

for small values of � .

When � is small,

RAM might seem to be a

sensible machine design.

But, once � is large enough,

having a huge memory

waiting for a single CPU

is a silly machine design.

Myth:

Parallel computation cannot

improve price-performance ratio;

parallel computers

may reduce time by factor

but increase cost by factor .

Reality: Can often convert

a large serial computer

into small parallel cells,

so cost does not

increase by factor .

Warning: � (1) is asymptotic.

Speedup factor such as � 0 � 5+ � (1)

might not be a speedup

for small values of � .

When � is small,

RAM might seem to be a

sensible machine design.

But, once � is large enough,

having a huge memory

waiting for a single CPU

is a silly machine design.

Myth:

Parallel computation cannot

improve price-performance ratio;

parallel computers

may reduce time by factor

but increase cost by factor .

Reality: Can often convert

a large serial computer

into small parallel cells,

so cost does not

increase by factor .

Warning: � (1) is asymptotic.

Speedup factor such as � 0 � 5+ � (1)

might not be a speedup

for small values of � .

When � is small,

RAM might seem to be a

sensible machine design.

But, once � is large enough,

having a huge memory

waiting for a single CPU

is a silly machine design.

Myth:

Parallel computation cannot

improve price-performance ratio;

parallel computers

may reduce time by factor

but increase cost by factor .

Reality: Can often convert

a large serial computer

into small parallel cells,

so cost does not

increase by factor .

Myth: Designing a new machine

cannot produce more than a

small constant-factor improvement

compared to, e.g., a Pentium.

What matters is special-purpose

streamlining, such as reducing

instruction-decoding costs.

Reality: In 1997, DES Cracker

was 1000 times faster than a

set of Pentiums at the same price.

What matters is parallelism.

Myth:

Parallel computation cannot

improve price-performance ratio;

parallel computers

may reduce time by factor

but increase cost by factor .

Reality: Can often convert

a large serial computer

into small parallel cells,

so cost does not

increase by factor .

Myth: Designing a new machine

cannot produce more than a

small constant-factor improvement

compared to, e.g., a Pentium.

What matters is special-purpose

streamlining, such as reducing

instruction-decoding costs.

Reality: In 1997, DES Cracker

was 1000 times faster than a

set of Pentiums at the same price.

What matters is parallelism.

Myth:

Parallel computation cannot

improve price-performance ratio;

parallel computers

may reduce time by factor

but increase cost by factor .

Reality: Can often convert

a large serial computer

into small parallel cells,

so cost does not

increase by factor .

Myth: Designing a new machine

cannot produce more than a

small constant-factor improvement

compared to, e.g., a Pentium.

What matters is special-purpose

streamlining, such as reducing

instruction-decoding costs.

Reality: In 1997, DES Cracker

was 1000 times faster than a

set of Pentiums at the same price.

What matters is parallelism.

Future computers will be

massively parallel meshes.

Look at � (1) details to see that

we’ve reached large enough � .

Computer designers will laugh at

today’s RAM-style machines,

just as we laugh at

a 1-tape Turing machine.

Algorithm experts will laugh at

today’s dominant style of

algorithm analysis, where we

count CPU “operations” and

view memory access as free.

Myth: Designing a new machine

cannot produce more than a

small constant-factor improvement

compared to, e.g., a Pentium.

What matters is special-purpose

streamlining, such as reducing

instruction-decoding costs.

Reality: In 1997, DES Cracker

was 1000 times faster than a

set of Pentiums at the same price.

What matters is parallelism.

Future computers will be

massively parallel meshes.

Look at � (1) details to see that

we’ve reached large enough � .

Computer designers will laugh at

today’s RAM-style machines,

just as we laugh at

a 1-tape Turing machine.

Algorithm experts will laugh at

today’s dominant style of

algorithm analysis, where we

count CPU “operations” and

view memory access as free.

Myth: Designing a new machine

cannot produce more than a

small constant-factor improvement

compared to, e.g., a Pentium.

What matters is special-purpose

streamlining, such as reducing

instruction-decoding costs.

Reality: In 1997, DES Cracker

was 1000 times faster than a

set of Pentiums at the same price.

What matters is parallelism.

Future computers will be

massively parallel meshes.

Look at � (1) details to see that

we’ve reached large enough � .

Computer designers will laugh at

today’s RAM-style machines,

just as we laugh at

a 1-tape Turing machine.

Algorithm experts will laugh at

today’s dominant style of

algorithm analysis, where we

count CPU “operations” and

view memory access as free.

Collision search

Common cryptanalytic problem:

Find collision in .

Input: Program to compute

at high speed.

is a function from

256-bit strings to

256-bit strings.

Output: 256-bit strings � 1 ��� 2

such that � 1 = � 2

and (� 1) = (� 2).

Future computers will be

massively parallel meshes.

Look at � (1) details to see that

we’ve reached large enough � .

Computer designers will laugh at

today’s RAM-style machines,

just as we laugh at

a 1-tape Turing machine.

Algorithm experts will laugh at

today’s dominant style of

algorithm analysis, where we

count CPU “operations” and

view memory access as free.

Collision search

Common cryptanalytic problem:

Find collision in .

Input: Program to compute

at high speed.

is a function from

256-bit strings to

256-bit strings.

Output: 256-bit strings � 1 ��� 2

such that � 1 = � 2

and (� 1) = (� 2).

Future computers will be

massively parallel meshes.

Look at � (1) details to see that

we’ve reached large enough � .

Computer designers will laugh at

today’s RAM-style machines,

just as we laugh at

a 1-tape Turing machine.

Algorithm experts will laugh at

today’s dominant style of

algorithm analysis, where we

count CPU “operations” and

view memory access as free.

Collision search

Common cryptanalytic problem:

Find collision in .

Input: Program to compute

at high speed.

is a function from

256-bit strings to

256-bit strings.

Output: 256-bit strings � 1 ��� 2

such that � 1 = � 2

and (� 1) = (� 2).

For any 256-bit � :

Compute (�) � ((�)) � � � �

until finding a string

that begins with 40 zero bits.

(A “distinguished point.”)

Call that string (�).

Oops, (�) might not exist.

But usually it does.

Computing (�) typically

involves 240 inputs to .

Collision search

Common cryptanalytic problem:

Find collision in .

Input: Program to compute

at high speed.

is a function from

256-bit strings to

256-bit strings.

Output: 256-bit strings � 1 ��� 2

such that � 1 = � 2

and (� 1) = (� 2).

For any 256-bit � :

Compute (�) � ((�)) � � � �

until finding a string

that begins with 40 zero bits.

(A “distinguished point.”)

Call that string (�).

Oops, (�) might not exist.

But usually it does.

Computing (�) typically

involves 240 inputs to .

Collision search

Common cryptanalytic problem:

Find collision in .

Input: Program to compute

at high speed.

is a function from

256-bit strings to

256-bit strings.

Output: 256-bit strings � 1 ��� 2

such that � 1 = � 2

and (� 1) = (� 2).

For any 256-bit � :

Compute (�) � ((�)) � � � �

until finding a string

that begins with 40 zero bits.

(A “distinguished point.”)

Call that string (�).

Oops, (�) might not exist.

But usually it does.

Computing (�) typically

involves 240 inputs to .

Choose random � 1 � � 2 � � � � � � � .

Compute (� 1) � (� 2) � � � � � (� �).

Uses 240 � inputs to :

� 1 � (� 1) �
2(� 1) �

3(� 1) � � � �

� 2 � (� 2) �
2(� 2) �

3(� 2) � � � �

...

� � � (� �) �
2(� �) �

3(� �) � � � �

“Birthday paradox”:

279 � 2 input pairs, so 279 � 2

chances for a collision in .

For any 256-bit � :

Compute (�) � ((�)) � � � �

until finding a string

that begins with 40 zero bits.

(A “distinguished point.”)

Call that string (�).

Oops, (�) might not exist.

But usually it does.

Computing (�) typically

involves 240 inputs to .

Choose random � 1 � � 2 � � � � � � � .

Compute (� 1) � (� 2) � � � � � (� �).

Uses 240 � inputs to :

� 1 � (� 1) �
2(� 1) �

3(� 1) � � � �

� 2 � (� 2) �
2(� 2) �

3(� 2) � � � �

...

� � � (� �) �
2(� �) �

3(� �) � � � �

“Birthday paradox”:

279 � 2 input pairs, so 279 � 2

chances for a collision in .

For any 256-bit � :

Compute (�) � ((�)) � � � �

until finding a string

that begins with 40 zero bits.

(A “distinguished point.”)

Call that string (�).

Oops, (�) might not exist.

But usually it does.

Computing (�) typically

involves 240 inputs to .

Choose random � 1 � � 2 � � � � � � � .

Compute (� 1) � (� 2) � � � � � (� �).

Uses 240 � inputs to :

� 1 � (� 1) �
2(� 1) �

3(� 1) � � � �

� 2 � (� 2) �
2(� 2) �

3(� 2) � � � �

...

� � � (� �) �
2(� �) �

3(� �) � � � �

“Birthday paradox”:

279 � 2 input pairs, so 279 � 2

chances for a collision in .

Say there’s a collision: e.g.,
161(� 2) = 190(� 7) where

(� 2) is after 161(� 2),

(� 7) is after 190(� 7),

and 160(� 2) = 189(� 7).

Then (� 2) = (� 7).

Recognize this by sorting

(� 1) � (� 2) � � � � � (� �)

and comparing adjacent outputs.

Backtrack to find collision.

Oops, may have multiple collisions;

backtracking can be expensive.

But usually not a problem.

Choose random � 1 � � 2 � � � � � � � .

Compute (� 1) � (� 2) � � � � � (� �).

Uses 240 � inputs to :

� 1 � (� 1) �
2(� 1) �

3(� 1) � � � �

� 2 � (� 2) �
2(� 2) �

3(� 2) � � � �

...

� � � (� �) �
2(� �) �

3(� �) � � � �

“Birthday paradox”:

279 � 2 input pairs, so 279 � 2

chances for a collision in .

Say there’s a collision: e.g.,
161(� 2) = 190(� 7) where

(� 2) is after 161(� 2),

(� 7) is after 190(� 7),

and 160(� 2) = 189(� 7).

Then (� 2) = (� 7).

Recognize this by sorting

(� 1) � (� 2) � � � � � (� �)

and comparing adjacent outputs.

Backtrack to find collision.

Oops, may have multiple collisions;

backtracking can be expensive.

But usually not a problem.

Choose random � 1 � � 2 � � � � � � � .

Compute (� 1) � (� 2) � � � � � (� �).

Uses 240 � inputs to :

� 1 � (� 1) �
2(� 1) �

3(� 1) � � � �

� 2 � (� 2) �
2(� 2) �

3(� 2) � � � �

...

� � � (� �) �
2(� �) �

3(� �) � � � �

“Birthday paradox”:

279 � 2 input pairs, so 279 � 2

chances for a collision in .

Say there’s a collision: e.g.,
161(� 2) = 190(� 7) where

(� 2) is after 161(� 2),

(� 7) is after 190(� 7),

and 160(� 2) = 189(� 7).

Then (� 2) = (� 7).

Recognize this by sorting

(� 1) � (� 2) � � � � � (� �)

and comparing adjacent outputs.

Backtrack to find collision.

Oops, may have multiple collisions;

backtracking can be expensive.

But usually not a problem.

Serial computer:

240 � evaluations of ;
� log � sorting steps;

256 � bits of RAM.

2-dimensional mesh computer

with � parallel processors:

240 evaluations of ;

8 � sorting steps;
� small cells.

Mesh computer is

about � times faster,

not much more expensive.

Say there’s a collision: e.g.,
161(� 2) = 190(� 7) where

(� 2) is after 161(� 2),

(� 7) is after 190(� 7),

and 160(� 2) = 189(� 7).

Then (� 2) = (� 7).

Recognize this by sorting

(� 1) � (� 2) � � � � � (� �)

and comparing adjacent outputs.

Backtrack to find collision.

Oops, may have multiple collisions;

backtracking can be expensive.

But usually not a problem.

Serial computer:

240 � evaluations of ;
� log � sorting steps;

256 � bits of RAM.

2-dimensional mesh computer

with � parallel processors:

240 evaluations of ;

8 � sorting steps;
� small cells.

Mesh computer is

about � times faster,

not much more expensive.

Say there’s a collision: e.g.,
161(� 2) = 190(�7) where

(� 2) is after 161(� 2),

(� 7) is after 190(� 7),

and 160(� 2) = 189(� 7).

Then (� 2) = (� 7).

Recognize this by sorting

(� 1) � (� 2) � � � � � (� �)

and comparing adjacent outputs.

Backtrack to find collision.

Oops, may have multiple collisions;

backtracking can be expensive.

But usually not a problem.

Serial computer:

240 � evaluations of ;
� log � sorting steps;

256 � bits of RAM.

2-dimensional mesh computer

with � parallel processors:

240 evaluations of ;

8 � sorting steps;
� small cells.

Mesh computer is

about � times faster,

not much more expensive.

Using collision search

for “discrete logarithms”:

Want to figure out given

� on an elliptic curve.

Define (� �) = � + .

Find collision in ;

usually reveals .

Price-performance ratio:
� 1

�
2+ � (1) dollar-seconds

if curve has � points.

Fancier methods, same 1 2:

rho, kangaroo, etc.

Serial computer:

240 � evaluations of ;
� log � sorting steps;

256 � bits of RAM.

2-dimensional mesh computer

with � parallel processors:

240 evaluations of ;

8 � sorting steps;
� small cells.

Mesh computer is

about � times faster,

not much more expensive.

Using collision search

for “discrete logarithms”:

Want to figure out given

� on an elliptic curve.

Define (� �) = � + .

Find collision in ;

usually reveals .

Price-performance ratio:
� 1

�
2+ � (1) dollar-seconds

if curve has � points.

Fancier methods, same 1 2:

rho, kangaroo, etc.

