The power of parallel computation
D. J. Bernstein

Thanks to:
University of Illinois at Chicago NSF CCR-9983950
Alfred P. Sloan Foundation

How fast is sorting?
Input: array of n numbers.
Each number in $\left\{1,2, \ldots, n^{2}\right\}$, represented in binary.

Output: array of n numbers, in increasing order, represented in binary; same multiset as input.

A machine is given the input and computes the output. How much time does it use?

How fast is sorting?
Input: array of n numbers.
Each number in $\left\{1,2, \ldots, n^{2}\right\}$, represented in binary.

Output: array of n numbers, in increasing order, represented in binary; same multiset as input.

A machine is given the input and computes the output. How much time does it use?

Summarize scalab by reporting expor $n^{o(1)}$ means $\log n$ $100 n^{5 / \log \log n}+$ $n^{1+o(1)}$ means n $n \log n$ or $n(7(\log$
(Definition: o(1) function of n that e.g. $5 n=n^{1+(\log }$ $(\log 5) / \log n$ conv

At this level of det how fast is the ma

How fast is sorting?
Input: array of n numbers.
Each number in $\left\{1,2, \ldots, n^{2}\right\}$, represented in binary.

Output: array of n numbers, in increasing order, represented in binary; same multiset as input.

A machine is given the input and computes the output. How much time does it use?

Summarize scalability by reporting exponent of n.
$n^{o(1)}$ means $\log n$ or $(\log n)^{3}$ or $100 n^{5 / \log \log n}+\sqrt{1 / n}$ or \ldots
$n^{1+o(1)}$ means n or $5 n$ or
$n \log n$ or $n\left(7(\log n)^{3}+8\right)$ or \ldots
(Definition: o(1) means any
function of n that converges to 0 .
e.g. $5 n=n^{1+(\log 5) / \log n}$;
$(\log 5) / \log n$ converges to 0 .)
At this level of detail, how fast is the machine?

Summarize scalability by reporting exponent of n.
$n^{o(1)}$ means $\log n$ or $(\log n)^{3}$ or $100 n^{5 / \log \log n}+\sqrt{1 / n}$ or \ldots
$n^{1+o(1)}$ means n or $5 n$ or
$n \log n$ or $n\left(7(\log n)^{3}+8\right)$ or \ldots
(Definition: o(1) means any function of n that converges to 0 .
e.g. $5 n=n^{1+(\log 5) / \log n}$;
$(\log 5) / \log n$ converges to 0 .)
At this level of detail, how fast is the machine?

The answer depen how the machine

Possibility 1: The "1-tape Turing ma using selection sor

Specifically: The r a 1-dimensional ar containing $n^{1+o(1)}$ Each cell stores n Input and output stored in these cel

Summarize scalability by reporting exponent of n.
$n^{o(1)}$ means $\log n$ or $(\log n)^{3}$ or $100 n^{5 / \log \log n}+\sqrt{1 / n}$ or \ldots
$n^{1+o(1)}$ means n or $5 n$ or $n \log n$ or $n\left(7(\log n)^{3}+8\right)$ or \ldots
(Definition: o(1) means any function of n that converges to 0 .
e.g. $5 n=n^{1+(\log 5) / \log n}$;
$(\log 5) / \log n$ converges to 0 .)
At this level of detail, how fast is the machine?

The answer depends on how the machine works.

Possibility 1: The machine is a "1-tape Turing machine using selection sort."

Specifically: The machine has
a 1-dimensional array containing $n^{1+o(1) ~ " c e l l s . " ~}$ Each cell stores $n^{o(1)}$ bits.

Input and output are stored in these cells.
lity ent of n.
or $(\log n)^{3}$ or
$1 / n$ or..
or $5 n$ or
$n)^{3}+8$) or \ldots
neans any
converges to 0 .
5) $/ \log n$.
erges to 0 .)
ail,
chine?

The answer depends on how the machine works.

Possibility 1: The machine is a "1-tape Turing machine using selection sort."

Specifically: The machine has
a 1-dimensional array containing $n^{1+o(1) ~ " c e l l s . " ~}$
Each cell stores $n^{o(1)}$ bits.
Input and output are stored in these cells.

The machine also "head" moving th Head contains $n^{o(}$

Head can see the its current array p perform arithmetic move to adjacent

Selection sort: He looks at each arra picks up the larges moves it to the en picks up the secon etc.

The answer depends on how the machine works.

Possibility 1: The machine is a
"1-tape Turing machine using selection sort."

Specifically: The machine has
a 1-dimensional array containing $n^{1+o(1)}$ "cells." Each cell stores $n^{o(1)}$ bits.

Input and output are stored in these cells.

The machine also has a "head" moving through array. Head contains $n^{o(1)}$ cells.

Head can see the cell at its current array position; perform arithmetic etc.; move to adjacent array position.

Selection sort: Head looks at each array position, picks up the largest number, moves it to the end of the array, picks up the second largest, etc.
ds on works.
machine is a chine
nachine has
ray
"cells."
(1) bits.
are
Is.

The machine also has a "head" moving through array. Head contains $n^{o(1)}$ cells.

Head can see the cell at its current array position; perform arithmetic etc.; move to adjacent array position.

Selection sort: Head looks at each array position, picks up the largest number, moves it to the end of the array, picks up the second largest, etc.

Moving to adjacer takes $n^{o(1)}$ second

Moving a number takes $n^{1+o(1)}$ seco Same for comparis

Total sorting time $n^{2+o(1)}$ seconds.

Cost of machine: $n^{1+o(1)}$ dollars for $n^{1+o(1)}$ cells. Negligible extra cc

The machine also has a "head" moving through array. Head contains $n^{o(1)}$ cells.

Head can see the cell at its current array position; perform arithmetic etc.; move to adjacent array position.

Selection sort: Head looks at each array position, picks up the largest number, moves it to the end of the array, picks up the second largest, etc.

Moving to adjacent array position takes $n^{o(1)}$ seconds.

Moving a number to end of array takes $n^{1+o(1)}$ seconds.
Same for comparisons etc.
Total sorting time:
$n^{2+o(1)}$ seconds.
Cost of machine:
$n^{1+o(1)}$ dollars
for $n^{1+o(1)}$ cells.
Negligible extra cost for head.
has a
rough array.

1) cells.
cell at
osition;
: etc.;
array position.
ad
y position,
it number,
d of the array,
d largest,

Moving to adjacent array position takes $n^{o(1)}$ seconds.

Moving a number to end of array takes $n^{1+o(1)}$ seconds.
Same for comparisons etc.
Total sorting time:
$n^{2+o(1)}$ seconds.
Cost of machine:
$n^{1+o(1)}$ dollars
for $n^{1+o(1)}$ cells.
Negligible extra cost for head.

Possibility 2: The "2-dimensional RA using merge sort."

Machine has n^{1+o} in a 2-dimensional $n^{0.5+o(1)}$ rows, n^{0} Machine also has

Merge sort: Head sorts first $\lfloor n / 2\rfloor \mathrm{n}$ sorts last $\lceil n / 2\rceil \mathrm{n}$ merges the sorted

Moving to adjacent array position takes $n^{o(1)}$ seconds.

Moving a number to end of array takes $n^{1+o(1)}$ seconds.
Same for comparisons etc.
Total sorting time:
$n^{2+o(1)}$ seconds.
Cost of machine:
$n^{1+o(1)}$ dollars
for $n^{1+o(1)}$ cells.
Negligible extra cost for head.

Possibility 2: The machine is a "2-dimensional RAM using merge sort."

Machine has $n^{1+o(1)}$ cells in a 2-dimensional array:
$n^{0.5+o(1)}$ rows, $n^{0.5+o(1)}$ columns.
Machine also has a head.
Merge sort: Head recursively sorts first $\lfloor n / 2\rfloor$ numbers; sorts last $\lceil n / 2\rceil$ numbers; merges the sorted lists.
t array position
s.
to end of array nds.
ons etc.
st for head.

Possibility 2: The machine is a "2-dimensional RAM using merge sort."

Machine has $n^{1+o(1)}$ cells in a 2-dimensional array:
$n^{0.5+o(1)}$ rows, $n^{0.5+o(1)}$ columns.
Machine also has a head.
Merge sort: Head recursively sorts first $\lfloor n / 2\rfloor$ numbers; sorts last $\lceil n / 2\rceil$ numbers; merges the sorted lists.

Merging requires r to "random" array
Average jump: n^{0} to adjacent array

Each move takes
Total sorting time $n^{1.5+o(1)}$ seconds.

Cost of machine: $n^{1+o(1)}$ dollars.

Possibility 2: The machine is a "2-dimensional RAM using merge sort."

Machine has $n^{1+o(1)}$ cells in a 2-dimensional array:
$n^{0.5+o(1)}$ rows, $n^{0.5+o(1)}$ columns.
Machine also has a head.
Merge sort: Head recursively sorts first $\lfloor n / 2\rfloor$ numbers; sorts last $\lceil n / 2\rceil$ numbers; merges the sorted lists.

Merging requires $n^{1+o(1)}$ jumps to "random" array positions.

Average jump: $n^{0.5+o(1)}$ moves to adjacent array positions.

Each move takes $n^{o(1)}$ seconds.
Total sorting time:
$n^{1.5+o(1)}$ seconds.
Cost of machine: once again $n^{1+o(1)}$ dollars.
machine is a M
(1) cells array:
$.5+o(1)$ columns.
a head.
recursively
umbers;
umbers;
lists.

Merging requires $n^{1+o(1)}$ jumps to "random" array positions.

Average jump: $n^{0.5+o(1)}$ moves to adjacent array positions.

Each move takes $n^{o(1)}$ seconds.
Total sorting time:
$n^{1.5+o(1)}$ seconds.
Cost of machine: once again $n^{1+o(1)}$ dollars.

Possibility 3: The "pipelined 2-dimer using radix-2 sort.'

Machine has n^{1+o} in a 2-dimensional Each cell in the ar network links to th cells in the same c Each cell in the to network links to th cells in the top rov

Merging requires $n^{1+o(1)}$ jumps to "random" array positions.

Average jump: $n^{0.5+o(1)}$ moves to adjacent array positions.

Each move takes $n^{o(1)}$ seconds.
Total sorting time:
$n^{1.5+o(1)}$ seconds.
Cost of machine: once again $n^{1+o(1)}$ dollars.

Possibility 3: The machine is a "pipelined 2-dimensional RAM using radix-2 sort."

Machine has $n^{1+o(1)}$ cells in a 2-dimensional array. Each cell in the array has network links to the 2 adjacent cells in the same column.
Each cell in the top row has network links to the 2 adjacent cells in the top row.
$2^{1+o(1)}$ jumps positions.
$.5+o(1)$ moves oositions.
$\imath^{o(1)}$ seconds.
once again

Possibility 3: The machine is a "pipelined 2-dimensional RAM using radix-2 sort."

Machine has $n^{1+o(1)}$ cells in a 2-dimensional array.
Each cell in the array has
network links to the 2 adjacent cells in the same column.
Each cell in the top row has network links to the 2 adjacent cells in the top row.

Machine also has attached to top-le

CPU can read/wri sending request th Does not need to before sending nex

CPU can read an of $n^{0.5+o(1)}$ cells in $n^{0.5+o(1)}$ secon Sends all requests, then receives resp

Possibility 3: The machine is a "pipelined 2-dimensional RAM using radix-2 sort."

Machine has $n^{1+o(1)}$ cells in a 2-dimensional array. Each cell in the array has network links to the 2 adjacent cells in the same column. Each cell in the top row has network links to the 2 adjacent cells in the top row.

Machine also has a CPU attached to top-left cell.

CPU can read/write any cell by sending request through network.
Does not need to wait for response before sending next request.

CPU can read an entire row of $n^{0.5+o(1)}$ cells in $n^{0.5+o(1)}$ seconds.
Sends all requests, then receives responses.
machine is a isional RAM
(1) cells array.
ray has
e 2 adjacent olumn.
p row has
e 2 adjacent

Machine also has a CPU attached to top-left cell.

CPU can read/write any cell by sending request through network.
Does not need to wait for response before sending next request.

CPU can read an entire row of $n^{0.5+o(1)}$ cells in $n^{0.5+o(1)}$ seconds.
Sends all requests, then receives responses.

Radix-2 sort: CPL shuffles array usin even numbers bef $31415926 \mapsto$ 42631159.

Then using bit 1 : 41159263.

Then using bit 2 : 11923456.

Then using bit 3 :
11234569. etc.

Machine also has a CPU
attached to top-left cell.
CPU can read/write any cell by sending request through network.
Does not need to wait for response before sending next request.

CPU can read an entire row of $n^{0.5+o(1)}$ cells in $n^{0.5+o(1)}$ seconds.
Sends all requests, then receives responses.

Radix-2 sort: CPU
shuffles array using bit 0 , even numbers before odd.
$31415926 \mapsto$
42631159.

Then using bit 1 :
41159263.

Then using bit 2 :
11923456.

Then using bit 3 :
11234569.
etc.

a CPU
 ft cell.

te any cell by rough network
wait for response t request.
entire row
ds.
onses.

Radix-2 sort: CPU
shuffles array using bit 0 , even numbers before odd.
$31415926 \mapsto$
42631159.

Then using bit 1 :
41159263.

Then using bit 2 :
11923456.

Then using bit 3:
11234569 .
etc.

Each shuffle takes $n^{1+o(1)}$ seconds.
$n^{o(1)}$ shuffles.
Total sorting time $n^{1+o(1)}$ seconds.

Cost of machine: $n^{1+o(1)}$ dollars.

Radix-2 sort: CPU shuffles array using bit 0 , even numbers before odd.
$31415926 \mapsto$
42631159.

Then using bit 1 :
41159263.

Then using bit 2 :
11923456.

Then using bit 3 :
11234569 . etc.

Each shuffle takes
$n^{1+o(1)}$ seconds.
$n^{o(1)}$ shuffles.
Total sorting time:
$n^{1+o(1)}$ seconds.
Cost of machine: once again $n^{1+o(1)}$ dollars.

Each shuffle takes
$n^{1+o(1)}$ seconds.
$n^{o(1)}$ shuffles.
Total sorting time:
$n^{1+o(1)}$ seconds.
Cost of machine: once again $n^{1+o(1)}$ dollars.

Possibility 4: The "2-dimensional m using Schimmler s

Machine has n^{1+o} in a 2-dimensional Each cell has netw to the 4 adjacent

Machine also has attached to top-le CPU broadcasts in to all of the cells, cells do most of th

Each shuffle takes $n^{1+o(1)}$ seconds.
$n^{o(1)}$ shuffles.
Total sorting time:
$n^{1+o(1)}$ seconds.
Cost of machine: once again $n^{1+o(1)}$ dollars.

Possibility 4: The machine is a "2-dimensional mesh using Schimmler sort."

Machine has $n^{1+o(1)}$ cells in a 2-dimensional array.
Each cell has network links to the 4 adjacent cells.

Machine also has a CPU attached to top-left cell. CPU broadcasts instructions
to all of the cells, but
cells do most of the processing.

Possibility 4: The machine is a "2-dimensional mesh using Schimmler sort."

Machine has $n^{1+o(1)}$ cells in a 2-dimensional array.
Each cell has network links to the 4 adjacent cells.

Machine also has a CPU attached to top-left cell.
CPU broadcasts instructions
to all of the cells, but cells do most of the processing.

Sort row of $n^{0.5+c}$ in $n^{0.5+o(1)}$ secon

Sort each pair in $31415926 \mapsto$ 13145926

Sort alternate pair $13145926 \mapsto$ 11345296

Repeat until numb equals row length.

Sort each row, in in $n^{0.5+o(1)}$ secon

Possibility 4: The machine is a "2-dimensional mesh using Schimmler sort."

Machine has $n^{1+o(1)}$ cells in a 2-dimensional array.
Each cell has network links to the 4 adjacent cells.

Machine also has a CPU
attached to top-left cell.
CPU broadcasts instructions
to all of the cells, but
cells do most of the processing.

Sort row of $n^{0.5+o(1)}$ cells in $n^{0.5+o(1)}$ seconds:

Sort each pair in parallel.
31415926 \mapsto
13145926
Sort alternate pairs in parallel.
$13145926 \mapsto$
11345296
Repeat until number of steps equals row length.

Sort each row, in parallel, in $n^{0.5+o(1)}$ seconds.
machine is a sh
ort."
(1) cells array. ork links cells.

a CPU

ft cell.
structions
but
e processing.

Sort row of $n^{0.5+o(1)}$ cells in $n^{0.5+o(1)}$ seconds:

Sort each pair in parallel.
3141 59 $26 \mapsto$
13145926
Sort alternate pairs in parallel.
$13145926 \mapsto$
11345296
Repeat until number of steps equals row length.

Sort each row, in parallel, in $n^{0.5+o(1)}$ seconds.

Schimmler sort:
Recursively sort q in parallel. Then f Sort each column Sort each row in p Sort each column Sort each row in p

With proper choic left-to-right/rightfor each row, can that this sorts who

Sort row of $n^{0.5+o(1)}$ cells in $n^{0.5+o(1)}$ seconds:

Sort each pair in parallel.
31415926 \mapsto
13145926
Sort alternate pairs in parallel.
$13145926 \mapsto$
11345296
Repeat until number of steps equals row length.

Sort each row, in parallel, in $n^{0.5+o(1)}$ seconds.

Schimmler sort:
Recursively sort quadrants in parallel. Then four steps:
Sort each column in parallel.
Sort each row in parallel.
Sort each column in parallel.
Sort each row in parallel.
With proper choice of left-to-right/right-to-left for each row, can prove that this sorts whole array.
(1) cells
ds:
arallel.
s in parallel.
er of steps

Schimmler sort:
Recursively sort quadrants in parallel. Then four steps:
Sort each column in parallel.
Sort each row in parallel.
Sort each column in parallel.
Sort each row in parallel.
With proper choice of left-to-right/right-to-left for each row, can prove that this sorts whole array.

For example, assu this 8×8 array is

3	1	4	1	5	9
5	3	5	8	9	7
2	3	8	4	6	2
3	3	8	3	2	7
0	2	8	8	4	1
1	6	9	3	9	9
5	1	0	5	8	2
7	4	9	4	4	5

Schimmler sort:
Recursively sort quadrants in parallel. Then four steps:
Sort each column in parallel.
Sort each row in parallel.
Sort each column in parallel.
Sort each row in parallel.
With proper choice of
left-to-right/right-to-left for each row, can prove that this sorts whole array.

For example, assume that this 8×8 array is in cells:

3	1	4	1	5	9	2	6
5	3	5	8	9	7	9	3
2	3	8	4	6	2	6	4
3	3	8	3	2	7	9	5
0	2	8	8	4	1	9	7
1	6	9	3	9	9	3	7
5	1	0	5	8	2	0	9
7	4	9	4	4	5	9	2

radrants
our steps:
in parallel.
arallel.
in parallel.
arallel.
e of
to-left
prove
le array.

For example, assume that this 8×8 array is in cells:

3	1	4	1	5	9	2	6
5	3	5	8	9	7	9	3
2	3	8	4	6	2	6	4
3	3	8	3	2	7	9	5
0	2	8	8	4	1	9	7
1	6	9	3	9	9	3	7
5	1	0	5	8	2	0	9
7	4	9	4	4	5	9	2

Recursively sort qu top \rightarrow, bottom \leftarrow

1	1	2	3	2	2
3	3	3	3	4	5
3	4	4	5	6	6
5	8	8	8	9	9
1	1	0	0	2	2
4	4	3	2	5	4
7	6	5	5	9	8
9	9	8	8	9	9

For example, assume that this 8×8 array is in cells:

3	1	4	1	5	9	2	6
5	3	5	8	9	7	9	3
2	3	8	4	6	2	6	4
3	3	8	3	2	7	9	5
0	2	8	8	4	1	9	7
1	6	9	3	9	9	3	7
5	1	0	5	8	2	0	9
7	4	9	4	4	5	9	2

Recursively sort quadrants, top \rightarrow, bottom \leftarrow :

1	1	2	3	2	2	2	3
3	3	3	3	4	5	5	6
3	4	4	5	6	6	7	7
5	8	8	8	9	9	9	9
1	1	0	0	2	2	1	0
4	4	3	2	5	4	4	3
7	6	5	5	9	8	7	7
9	9	8	8	9	9	9	9

ne that in cells:

2	6
9	3
6	4
9	5
9	7
3	7
0	9
9	2

Recursively sort quadrants, top \rightarrow, bottom \leftarrow :

1	1	2	3	2	2	2	3
3	3	3	3	4	5	5	6
3	4	4	5	6	6	7	7
5	8	8	8	9	9	9	9
1	1	0	0	2	2	1	0
4	4	3	2	5	4	4	3
7	6	5	5	9	8	7	7
9	9	8	8	9	9	9	9

Sort each column in parallel:

1	1	0	0	2	2
1	1	2	2	2	2
3	3	3	3	4	4
3	4	3	3	5	5
4	4	4	5	6	6
5	6	5	5	9	8
7	8	8	8	9	9
9	9	8	8	9	9

Recursively sort quadrants, top \rightarrow, bottom \leftarrow :

1	1	2	3	2	2	2	3
3	3	3	3	4	5	5	6
3	4	4	5	6	6	7	7
5	8	8	8	9	9	9	9
1	1	0	0	2	2	1	0
4	4	3	2	5	4	4	3
7	6	5	5	9	8	7	7
9	9	8	8	9	9	9	9

Sort each column in parallel:

1	1	0	0	2	2	1	0
1	1	2	2	2	2	2	3
3	3	3	3	4	4	4	3
3	4	3	3	5	5	5	6
4	4	4	5	6	6	7	7
5	6	5	5	9	8	7	7
7	8	8	8	9	9	9	9
9	9	8	8	9	9	9	9

radrants,

2	3
5	6
7	7
9	9
1	0
4	3
7	7
9	9

Sort each column in parallel:

1	1	0	0	2	2	1	0
1	1	2	2	2	2	2	3
3	3	3	3	4	4	4	3
3	4	3	3	5	5	5	6
4	4	4	5	6	6	7	7
5	6	5	5	9	8	7	7
7	8	8	8	9	9	9	9
9	9	8	8	9	9	9	9

Sort each row in alternately \leftarrow, \rightarrow :

0	0	0	1	1	1
3	2	2	2	2	2
3	3	3	3	3	4
6	5	5	5	4	3
4	4	4	5	6	6
9	8	7	7	6	5
7	8	8	8	9	9
9	9	9	9	9	9

Sort each column in parallel:

1	1	0	0	2	2	1	0
1	1	2	2	2	2	2	3
3	3	3	3	4	4	4	3
3	4	3	3	5	5	5	6
4	4	4	5	6	6	7	7
5	6	5	5	9	8	7	7
7	8	8	8	9	9	9	9
9	9	8	8	9	9	9	9

Sort each row in parallel, alternately \leftarrow, \rightarrow :

0	0	0	1	1	1	2	2
3	2	2	2	2	2	1	1
3	3	3	3	3	4	4	4
6	5	5	5	4	3	3	3
4	4	4	5	6	6	7	7
9	8	7	7	6	5	5	5
7	8	8	8	9	9	9	9
9	9	9	9	9	9	8	8

Sort each row in parallel, alternately \leftarrow, \rightarrow :

1	0
2	3
4	3
5	6
7	7
7	7
9	9
9	9

0	0	0	1	1	1	2	2
3	2	2	2	2	2	1	1
3	3	3	3	3	4	4	4
6	5	5	5	4	3	3	3
4	4	4	5	6	6	7	7
9	8	7	7	6	5	5	5
7	8	8	8	9	9	9	9
9	9	9	9	9	9	8	8

Sort each column in parallel:

0	0	0	1	1	1
3	2	2	2	2	2
3	3	3	3	3	3
4	4	4	5	4	4
6	5	5	5	6	5
7	8	7	7	6	6
9	8	8	8	9	9
9	9	9	9	9	9

Sort each row in parallel, alternately \leftarrow, \rightarrow :

0	0	0	1	1	1	2	2
3	2	2	2	2	2	1	1
3	3	3	3	3	4	4	4
6	5	5	5	4	3	3	3
4	4	4	5	6	6	7	7
9	8	7	7	6	5	5	5
7	8	8	8	9	9	9	9
9	9	9	9	9	9	8	8

Sort each column in parallel:

0	0	0	1	1	1	1	1
3	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3
4	4	4	5	4	4	4	4
6	5	5	5	6	5	5	5
7	8	7	7	6	6	7	7
9	8	8	8	9	9	8	8
9	9	9	9	9	9	9	9

arallel,

2	2
1	1
4	4
3	3
7	7
5	5
9	9
8	8

Sort each column in parallel:

0	0	0	1	1	1	1	1
3	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3
4	4	4	5	4	4	4	4
6	5	5	5	6	5	5	5
7	8	7	7	6	6	7	7
9	8	8	8	9	9	8	8
9	9	9	9	9	9	9	9

Sort each row in p
\leftarrow or \rightarrow as desirec

0	0	0	1	1	1
2	2	2	2	2	2
3	3	3	3	3	3
4	4	4	4	4	4
5	5	5	5	5	5
6	6	7	7	7	7
8	8	8	8	8	9
9	9	9	9	9	9

Sort each column in parallel:

0	0	0	1	1	1	1	1
3	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3
4	4	4	5	4	4	4	4
6	5	5	5	6	5	5	5
7	8	7	7	6	6	7	7
9	8	8	8	9	9	8	8
9	9	9	9	9	9	9	9

Sort each row in parallel, \leftarrow or \rightarrow as desired:

0	0	0	1	1	1	1	1
2	2	2	2	2	2	2	3
3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	5
5	5	5	5	5	5	6	6
6	6	7	7	7	7	7	8
8	8	8	8	8	9	9	9
9	9	9	9	9	9	9	9

1	1
2	2
3	3
4	4
5	5
7	7
8	8
9	9

Sort each row in parallel, \leftarrow or \rightarrow as desired:

0	0	0	1	1	1	1	1
2	2	2	2	2	2	2	3
3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	5
5	5	5	5	5	5	6	6
6	6	7	7	7	7	7	8
8	8	8	8	8	9	9	9
9	9	9	9	9	9	9	9

Sort one row in $n^{0.5+o(1)}$ secon

All rows in paralle $n^{0.5+o(1)}$ seconds.

Total sorting time $n^{0.5+o(1)}$ seconds.

Cost of machine: $n^{1+o(1)}$ dollars.

Sort each row in parallel, \leftarrow or \rightarrow as desired:

0	0	0	1	1	1	1	1
2	2	2	2	2	2	2	3
3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	5
5	5	5	5	5	5	6	6
6	6	7	7	7	7	7	8
8	8	8	8	8	9	9	9
9	9	9	9	9	9	9	9

Sort one row
in $n^{0.5+o(1)}$ seconds.
All rows in parallel:
$n^{0.5+o(1)}$ seconds.
Total sorting time:
$n^{0.5+o(1)}$ seconds.
Cost of machine: once again $n^{1+o(1)}$ dollars.
arallel,
d:

1	1
2	3
3	3
4	5
6	6
7	8
9	9
9	9

Sort one row in $n^{0.5+o(1)}$ seconds.

All rows in parallel:
$n^{0.5+o(1)}$ seconds.
Total sorting time:
$n^{0.5+o(1)}$ seconds.
Cost of machine: once again $n^{1+o(1)}$ dollars.

Some philosophica
1-tape Turing mac RAMs, 2-dimensio compute the same

Prove this by prov each machine can computations on t
(We believe that reasonable model can be simulated
1-tape Turing mac
"Church-Turing th

Sort one row
in $n^{0.5+o(1)}$ seconds.
All rows in parallel:
$n^{0.5+o(1)}$ seconds.
Total sorting time:
$n^{0.5+o(1)}$ seconds.
Cost of machine: once again $n^{1+o(1)}$ dollars.

Some philosophical notes

1-tape Turing machines, RAMs, 2-dimensional meshes compute the same functions.

Prove this by proving that each machine can simulate computations on the others.
(We believe that every
reasonable model of computation
can be simulated by a
1-tape Turing machine.
"Church-Turing thesis.")

Some philosophical notes

ds.
once again

1-tape Turing machines, RAMs, 2-dimensional meshes compute the same functions.

Prove this by proving that each machine can simulate computations on the others.
(We believe that every
reasonable model of computation can be simulated by a
1-tape Turing machine.
"Church-Turing thesis.")

1-tape Turing mac
RAMs, 2-dimensio
compute the same in polynomial time at polynomial cost

Prove this by prov simulations are po
(Is this true for ev reasonable model Quantum comput factor in polynomi
Can Turing machi
Can quantum com

Some philosophical notes

1-tape Turing machines, RAMs, 2-dimensional meshes compute the same functions.

Prove this by proving that each machine can simulate computations on the others.
(We believe that every reasonable model of computation can be simulated by a
1-tape Turing machine.
"Church-Turing thesis.")

1-tape Turing machines, RAMs, 2-dimensional meshes compute the same functions in polynomial time at polynomial cost.

Prove this by proving that simulations are polynomial.
(Is this true for every
reasonable model of computation?
Quantum computers can factor in polynomial time.
Can Turing machines do that?
Can quantum computers be built?)
hines, nal meshes functions.
ing that simulate
he others.
very
of computation
oy a
hine.
esis.")

1-tape Turing machines, RAMs, 2-dimensional meshes compute the same functions in polynomial time at polynomial cost.

Prove this by proving that simulations are polynomial.
(Is this true for every reasonable model of computation?
Quantum computers can
factor in polynomial time.
Can Turing machines do that?
Can quantum computers be built?)

1-tape Turing mac RAMs, 2-dimensio do not compute the same function within, e.g., time and $\operatorname{cost} n^{1+o(1)}$

Example: 1-tape cannot sort in n^{1+} Too local.

Example: 2-dimen cannot sort in $n^{0.5}$ Too sequential.

1-tape Turing machines, RAMs, 2-dimensional meshes compute the same functions in polynomial time at polynomial cost.

Prove this by proving that simulations are polynomial.
(Is this true for every
reasonable model of computation?
Quantum computers can
factor in polynomial time.
Can Turing machines do that?
Can quantum computers be built?)

1-tape Turing machines, RAMs, 2-dimensional meshes do not compute the same functions within, e.g., time $n^{1+o(1)}$ and cost $n^{1+o(1)}$.

Example: 1-tape Turing machine cannot sort in $n^{1+o(1)}$ seconds. Too local.

Example: 2-dimensional RAM cannot sort in $n^{0.5+o(1)}$ seconds.
Too sequential.
hines,
nal meshes
functions
ing that lynomial.
ery
of computation?
ers can
al time.
nes do that?
puters be built?)

1-tape Turing machines,
RAMs, 2-dimensional meshes
do not compute the same functions
within, e.g., time $n^{1+o(1)}$
and cost $n^{1+o(1)}$.
Example: 1-tape Turing machine cannot sort in $n^{1+o(1)}$ seconds. Too local.

Example: 2-dimensional RAM
cannot sort in $n^{0.5+o(1)}$ seconds.
Too sequential.

Review of sorting measured in secon machine costing n $n^{2.0+o(1)}: 1$-tape $n^{1.5+o(1)}: 2$-dimer $n^{1.0+o(1)}$: pipeline $n^{0.5+o(1)}: 2$-dimer

Why does anyone sorting time is n^{1-} Why choose third
Silly! Fourth macl

1-tape Turing machines, RAMs, 2-dimensional meshes do not compute the same functions within, e.g., time $n^{1+o(1)}$ and cost $n^{1+o(1)}$.

Example: 1-tape Turing machine cannot sort in $n^{1+o(1)}$ seconds.
Too local.
Example: 2-dimensional RAM
cannot sort in $n^{0.5+o(1)}$ seconds.
Too sequential.

Review of sorting times, measured in seconds, for machine costing $n^{1+o(1)}$ dollars:
$n^{2.0+o(1)}$: 1-tape Turing machine.
$n^{1.5+o(1)}: 2$-dimensional RAM.
$n^{1.0+o(1)}$: pipelined RAM.
$n^{0.5+o(1)}:$ 2-dimensional mesh.
Why does anyone say that sorting time is $n^{1+o(1)}$?
Why choose third machine?
Silly! Fourth machine is better!
hines,
nal meshes
$n^{1+o(1)}$

「uring machine o(1) seconds.
sional RAM
+o(1) seconds.

Review of sorting times, measured in seconds, for machine costing $n^{1+o(1)}$ dollars:
$n^{2.0+o(1)}$: 1-tape Turing machine.
$n^{1.5+o(1)}: 2$-dimensional RAM.
$n^{1.0+o(1)}$: pipelined RAM.
$n^{0.5+o(1)}:$ 2-dimensional mesh.
Why does anyone say that sorting time is $n^{1+o(1)}$?
Why choose third machine?
Silly! Fourth machine is better!

Warning: $o(1)$ is Speedup factor su might not be a sp for small values of

When n is small, RAM might seem sensible machine c

But, once n is lar having a huge mer waiting for a singl is a silly machine

Review of sorting times, measured in seconds, for machine costing $n^{1+o(1)}$ dollars:
$n^{2.0+o(1)}$: 1-tape Turing machine.
$n^{1.5+o(1)}:$ 2-dimensional RAM.
$n^{1.0+o(1)}$: pipelined RAM.
$n^{0.5+o(1)}:$ 2-dimensional mesh.
Why does anyone say that
sorting time is $n^{1+o(1)}$?
Why choose third machine?
Silly! Fourth machine is better!

Warning: $o(1)$ is asymptotic.
Speedup factor such as $n^{0.5+o(1)}$
might not be a speedup for small values of n.

When n is small,
RAM might seem to be a sensible machine design.

But, once n is large enough, having a huge memory waiting for a single CPU is a silly machine design.
times,
ds, for
1+o(1) dollars:
Turing machine.
sional RAM.
d RAM.
isional mesh.
say that
o(1)?
machine?
ine is better!

Warning: $o(1)$ is asymptotic.
Speedup factor such as $n^{0.5+o(1)}$
might not be a speedup for small values of n.

When n is small,
RAM might seem to be a sensible machine design.

But, once n is large enough, having a huge memory waiting for a single CPU is a silly machine design.

Myth:
Parallel computati improve price-perf p parallel compute may reduce time but increase cost

Reality: Can often a large serial com into p small parall so cost does not increase by factor

Warning: o(1) is asymptotic.
Speedup factor such as $n^{0.5+o(1)}$
might not be a speedup for small values of n.

When n is small,
RAM might seem to be a sensible machine design.

But, once n is large enough, having a huge memory waiting for a single CPU is a silly machine design.

Myth:
Parallel computation cannot improve price-performance ratio;
p parallel computers
may reduce time by factor p but increase cost by factor p.

Reality: Can often convert a large serial computer into p small parallel cells, so cost does not increase by factor p.
symptotic.
ch as $n^{0.5+o(1)}$
eedup
n.
to be a lesign.
je enough, nory
e CPU
design.

Myth:

Parallel computation cannot

 improve price-performance ratio;p parallel computers may reduce time by factor p but increase cost by factor p.

Reality: Can often convert
a large serial computer into p small parallel cells, so cost does not increase by factor p.

Myth: Designing cannot produce m small constant-fac compared to, e.g., What matters is s streamlining, such instruction-decodi

Reality: In 1997, was 1000 times fa set of Pentiums at What matters is p

Myth:

Parallel computation cannot improve price-performance ratio;
p parallel computers
may reduce time by factor p but increase cost by factor p.

Reality: Can often convert a large serial computer into p small parallel cells, so cost does not increase by factor p.

Myth: Designing a new machine cannot produce more than a small constant-factor improvement compared to, e.g., a Pentium.
What matters is special-purpose streamlining, such as reducing instruction-decoding costs.

Reality: In 1997, DES Cracker was 1000 times faster than a set of Pentiums at the same price.
What matters is parallelism.
on cannot ormance ratio;
factor p
y factor p.
convert
uter
el cells,

p.

Myth: Designing a new machine cannot produce more than a small constant-factor improvement compared to, e.g., a Pentium. What matters is special-purpose streamlining, such as reducing instruction-decoding costs.

Reality: In 1997, DES Cracker was 1000 times faster than a set of Pentiums at the same price. What matters is parallelism.

Future computers massively parallel Look at o(1) detai we've reached larg

Computer designe today's RAM-style just as we laugh a a 1-tape Turing m

Algorithm experts today's dominant algorithm analysis, count CPU "opera view memory acce

Myth: Designing a new machine cannot produce more than a small constant-factor improvement compared to, e.g., a Pentium. What matters is special-purpose streamlining, such as reducing instruction-decoding costs.

Reality: In 1997, DES Cracker was 1000 times faster than a set of Pentiums at the same price. What matters is parallelism.

Future computers will be massively parallel meshes. Look at o(1) details to see that we've reached large enough n.

Computer designers will laugh at today's RAM-style machines, just as we laugh at a 1-tape Turing machine.

Algorithm experts will laugh at today's dominant style of algorithm analysis, where we count CPU "operations" and view memory access as free.
new machine ore than a tor improvement
a Pentium.
oecial-purpose as reducing ng costs.

DES Cracker ster than a the same price. arallelism.

Future computers will be massively parallel meshes.
Look at o(1) details to see that we've reached large enough n.

Computer designers will laugh at today's RAM-style machines, just as we laugh at
a 1-tape Turing machine.
Algorithm experts will laugh at today's dominant style of algorithm analysis, where we count CPU "operations" and view memory access as free.

Collision search

Common cryptana Find collision in H Input: Program to at high speed.
H is a function fro 256-bit strings to 256-bit strings.

Output: 256-bit s such that $x_{1} \neq x_{2}$ and $H\left(x_{1}\right)=H(x$

Future computers will be massively parallel meshes. Look at o(1) details to see that we've reached large enough n.

Computer designers will laugh at today's RAM-style machines, just as we laugh at a 1-tape Turing machine.

Algorithm experts will laugh at today's dominant style of algorithm analysis, where we count CPU "operations" and view memory access as free.

Collision search

Common cryptanalytic problem: Find collision in H.

Input: Program to compute H at high speed.
H is a function from
256-bit strings to
256-bit strings.
Output: 256-bit strings x_{1}, x_{2}
such that $x_{1} \neq x_{2}$
and $H\left(x_{1}\right)=H\left(x_{2}\right)$.
will be meshes.
Is to see that e enough n.
s will laugh at machines,
achine.
will laugh at
style of
where we
tions" and
ss as free.

Collision search

Common cryptanalytic problem:
Find collision in H.
Input: Program to compute H at high speed.
H is a function from
256-bit strings to
256-bit strings.
Output: 256-bit strings x_{1}, x_{2}
such that $x_{1} \neq x_{2}$
and $H\left(x_{1}\right)=H\left(x_{2}\right)$.

For any 256-bit r : Compute $H(r), H$ until finding a stri that begins with 4 (A "distinguished Call that string Z Oops, $Z(r)$ might But usually it doe

Computing $Z(r) \mathrm{t}$ involves $\approx 2^{40} \mathrm{inp}$

Collision search

Common cryptanalytic problem:
Find collision in H.
Input: Program to compute H at high speed.
H is a function from
256-bit strings to
256-bit strings.
Output: 256-bit strings x_{1}, x_{2}
such that $x_{1} \neq x_{2}$
and $H\left(x_{1}\right)=H\left(x_{2}\right)$.

For any 256-bit r :
Compute $H(r), H(H(r)), \ldots$ until finding a string that begins with 40 zero bits.
(A "distinguished point.")
Call that string $Z(r)$.
Oops, $Z(r)$ might not exist. But usually it does.

Computing $Z(r)$ typically involves $\approx 2^{40}$ inputs to H.
lytic problem:

compute H

m
rings x_{1}, x_{2}
2).

For any 256-bit r :
Compute $H(r), H(H(r)), \ldots$ until finding a string that begins with 40 zero bits. (A "distinguished point.")
Call that string $Z(r)$.
Oops, $Z(r)$ might not exist.
But usually it does.
Computing $Z(r)$ typically involves $\approx 2^{40}$ inputs to H.

Choose random r_{1} Compute $Z\left(r_{1}\right)$, Z

Uses $\approx 2^{40} n$ input $r_{1}, H\left(r_{1}\right), H^{2}\left(r_{1}\right)$,
$r_{2}, H\left(r_{2}\right), H^{2}\left(r_{2}\right)$,
$r_{n}, H\left(r_{n}\right), H^{2}\left(r_{n}\right)$
"Birthday paradox
$\approx 2^{79} n^{2}$ input pai chances for a colli

For any 256-bit r :
Compute $H(r), H(H(r)), \ldots$
until finding a string that begins with 40 zero bits.
(A "distinguished point.")
Call that string $Z(r)$.
Oops, $Z(r)$ might not exist.
But usually it does.
Computing $Z(r)$ typically involves $\approx 2^{40}$ inputs to H.

Choose random $r_{1}, r_{2}, \ldots, r_{n}$.
Compute $Z\left(r_{1}\right), Z\left(r_{2}\right), \ldots, Z\left(r_{n}\right)$.
Uses $\approx 2^{40} n$ inputs to H :
$r_{1}, H\left(r_{1}\right), H^{2}\left(r_{1}\right), H^{3}\left(r_{1}\right), \ldots$
$r_{2}, H\left(r_{2}\right), H^{2}\left(r_{2}\right), H^{3}\left(r_{2}\right), \ldots$
$r_{n}, H\left(r_{n}\right), H^{2}\left(r_{n}\right), H^{3}\left(r_{n}\right), \ldots$
"Birthday paradox":
$\approx 2^{79} n^{2}$ input pairs, so $\approx 2^{79} n^{2}$ chances for a collision in H.
$(H(r)), \ldots$ ng
0 zero bits.
point.")
(r).
not exist.
ypically
uts to H.

Choose random $r_{1}, r_{2}, \ldots, r_{n}$.
Compute $Z\left(r_{1}\right), Z\left(r_{2}\right), \ldots, Z\left(r_{n}\right)$.
Uses $\approx 2^{40} n$ inputs to H :
$r_{1}, H\left(r_{1}\right), H^{2}\left(r_{1}\right), H^{3}\left(r_{1}\right), \ldots$
$r_{2}, H\left(r_{2}\right), H^{2}\left(r_{2}\right), H^{3}\left(r_{2}\right), \ldots$
$r_{n}, H\left(r_{n}\right), H^{2}\left(r_{n}\right), H^{3}\left(r_{n}\right), \ldots$
"Birthday paradox":
$\approx 2^{79} n^{2}$ input pairs, so $\approx 2^{79} n^{2}$ chances for a collision in H.

Say there's a collis $H^{161}\left(r_{2}\right)=H^{190}($ $Z\left(r_{2}\right)$ is after H^{16} $Z\left(r_{7}\right)$ is after H^{19} and $H^{160}\left(r_{2}\right) \neq H$

Then $Z\left(r_{2}\right)=Z($
Recognize this by $Z\left(r_{1}\right), Z\left(r_{2}\right), \ldots$, and comparing ad Backtrack to find

Oops, may have m backtracking can But usually not a

Choose random $r_{1}, r_{2}, \ldots, r_{n}$.
Compute $Z\left(r_{1}\right), Z\left(r_{2}\right), \ldots, Z\left(r_{n}\right)$.
Uses $\approx 2^{40} n$ inputs to H :
$r_{1}, H\left(r_{1}\right), H^{2}\left(r_{1}\right), H^{3}\left(r_{1}\right), \ldots$
$r_{2}, H\left(r_{2}\right), H^{2}\left(r_{2}\right), H^{3}\left(r_{2}\right), \ldots$
$r_{n}, H\left(r_{n}\right), H^{2}\left(r_{n}\right), H^{3}\left(r_{n}\right), \ldots$
"Birthday paradox":
$\approx 2^{79} n^{2}$ input pairs, so $\approx 2^{79} n^{2}$ chances for a collision in H.

Say there's a collision: e.g., $H^{161}\left(r_{2}\right)=H^{190}\left(r_{7}\right)$ where $Z\left(r_{2}\right)$ is after $H^{161}\left(r_{2}\right)$, $Z\left(r_{7}\right)$ is after $H^{190}\left(r_{7}\right)$, and $H^{160}\left(r_{2}\right) \neq H^{189}\left(r_{7}\right)$.
Then $Z\left(r_{2}\right)=Z\left(r_{7}\right)$.
Recognize this by sorting $Z\left(r_{1}\right), Z\left(r_{2}\right), \ldots, Z\left(r_{n}\right)$
and comparing adjacent outputs.
Backtrack to find collision.
Oops, may have multiple collisions; backtracking can be expensive. But usually not a problem.

$, r_{2}, \ldots, r_{n}$

$$
\left(r_{2}\right), \ldots, Z\left(r_{n}\right)
$$

s to H :
$H^{3}\left(r_{1}\right), \ldots$
$H^{3}\left(r_{2}\right), \ldots$
$, H^{3}\left(r_{n}\right), \ldots$
rs, so $\approx 2^{79} n^{2}$ sion in H.

Say there's a collision: e.g., $H^{161}\left(r_{2}\right)=H^{190}\left(r_{7}\right)$ where
$Z\left(r_{2}\right)$ is after $H^{161}\left(r_{2}\right)$,
$Z\left(r_{7}\right)$ is after $H^{190}\left(r_{7}\right)$,
and $H^{160}\left(r_{2}\right) \neq H^{189}\left(r_{7}\right)$.
Then $Z\left(r_{2}\right)=Z\left(r_{7}\right)$.
Recognize this by sorting

$$
Z\left(r_{1}\right), Z\left(r_{2}\right), \ldots, Z\left(r_{n}\right)
$$

and comparing adjacent outputs.
Backtrack to find collision.
Oops, may have multiple collisions; backtracking can be expensive. But usually not a problem.

Serial computer:
$\approx 2^{40} n$ evaluation
$\approx n \log n$ sorting
$\approx 256 n$ bits of RA
2-dimensional mes with n parallel pro $\approx 2^{40}$ evaluations
$\approx 8 \sqrt{n}$ sorting ste
$\approx n$ small cells.
Mesh computer is about n times fas not much more ex

Say there's a collision: e.g., $H^{161}\left(r_{2}\right)=H^{190}\left(r_{7}\right)$ where $Z\left(r_{2}\right)$ is after $H^{161}\left(r_{2}\right)$, $Z\left(r_{7}\right)$ is after $H^{190}\left(r_{7}\right)$, and $H^{160}\left(r_{2}\right) \neq H^{189}\left(r_{7}\right)$.

Then $Z\left(r_{2}\right)=Z\left(r_{7}\right)$.
Recognize this by sorting $Z\left(r_{1}\right), Z\left(r_{2}\right), \ldots, Z\left(r_{n}\right)$
and comparing adjacent outputs.
Backtrack to find collision.
Oops, may have multiple collisions; backtracking can be expensive. But usually not a problem.

Serial computer:
$\approx 2^{40} n$ evaluations of H;
$\approx n \log n$ sorting steps;
$\approx 256 n$ bits of RAM.
2-dimensional mesh computer with n parallel processors:
$\approx 2^{40}$ evaluations of H;
$\approx 8 \sqrt{n}$ sorting steps;
$\approx n$ small cells.
Mesh computer is about n times faster, not much more expensive.
ion: e.g.,
r_{7}) where
$1\left(r_{2}\right)$,
$0\left(r_{7}\right)$,
${ }^{189}\left(r_{7}\right)$
$\left.r_{7}\right)$.
sorting
$Z\left(r_{n}\right)$
jacent outputs.
collision.
ultiple collisions;
oe expensive.
problem.

Serial computer:
$\approx 2^{40} n$ evaluations of H;
$\approx n \log n$ sorting steps;
$\approx 256 n$ bits of RAM.
2-dimensional mesh computer with n parallel processors:
$\approx 2^{40}$ evaluations of H;
$\approx 8 \sqrt{n}$ sorting steps;
$\approx n$ small cells.
Mesh computer is
about n times faster, not much more expensive.

Using collision sea for "discrete logar

Want to figure ou $P, k P$ on an ellipti

Define $H(x, y)=$ Find collision in H usually reveals k.

Price-performance $q^{1 / 2+o(1)}$ dollar-se if curve has q poin Fancier methods, rho, kangaroo, etc

Serial computer:
$\approx 2^{40} n$ evaluations of H;
$\approx n \log n$ sorting steps;
$\approx 256 n$ bits of RAM.
2-dimensional mesh computer with n parallel processors:
$\approx 2^{40}$ evaluations of H;
$\approx 8 \sqrt{n}$ sorting steps;
$\approx n$ small cells.
Mesh computer is
about n times faster, not much more expensive.

Using collision search for "discrete logarithms":

Want to figure out k given $P, k P$ on an elliptic curve.

Define $H(x, y)=x P+y k P$.
Find collision in H; usually reveals k.

Price-performance ratio:
$q^{1 / 2+o(1)}$ dollar-seconds
if curve has q points.
Fancier methods, same $1 / 2$: rho, kangaroo, etc.

