
The power of

parallel computation

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF CCR–9983950

Alfred P. Sloan Foundation

How fast is sorting?

Input: array of � numbers.

Each number in 1 � 2 � � � � �
� 2 ,

represented in binary.

Output: array of � numbers,

in increasing order,

represented in binary;

same multiset as input.

A machine is given the input

and computes the output.

How much time does it use?

The power of

parallel computation

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF CCR–9983950

Alfred P. Sloan Foundation

How fast is sorting?

Input: array of � numbers.

Each number in 1 � 2 � � � � �
� 2 ,

represented in binary.

Output: array of � numbers,

in increasing order,

represented in binary;

same multiset as input.

A machine is given the input

and computes the output.

How much time does it use?

The answer depends on

how the machine works.

Possibility 1: The machine is a

“1-tape Turing machine

using selection sort.”

Specifically: The machine has

a 1-dimensional array

containing Θ(�) “cells.”

Each cell stores Θ(lg �) bits.

Input and output are

stored in these cells.

How fast is sorting?

Input: array of � numbers.

Each number in 1 � 2 � � � � �
� 2 ,

represented in binary.

Output: array of � numbers,

in increasing order,

represented in binary;

same multiset as input.

A machine is given the input

and computes the output.

How much time does it use?

The answer depends on

how the machine works.

Possibility 1: The machine is a

“1-tape Turing machine

using selection sort.”

Specifically: The machine has

a 1-dimensional array

containing Θ(�) “cells.”

Each cell stores Θ(lg �) bits.

Input and output are

stored in these cells.

How fast is sorting?

Input: array of � numbers.

Each number in 1 � 2 � � � � �
� 2 ,

represented in binary.

Output: array of � numbers,

in increasing order,

represented in binary;

same multiset as input.

A machine is given the input

and computes the output.

How much time does it use?

The answer depends on

how the machine works.

Possibility 1: The machine is a

“1-tape Turing machine

using selection sort.”

Specifically: The machine has

a 1-dimensional array

containing Θ(�) “cells.”

Each cell stores Θ(lg �) bits.

Input and output are

stored in these cells.

The machine also has a

“head” moving through array.

Head contains Θ(1) cells.

Head can see the cell at

its current array position;

perform arithmetic etc.;

move to adjacent array position.

Selection sort: Head

looks at each array position,

picks up the largest number,

moves it to the end of the array,

picks up the second largest,

etc.

The answer depends on

how the machine works.

Possibility 1: The machine is a

“1-tape Turing machine

using selection sort.”

Specifically: The machine has

a 1-dimensional array

containing Θ(�) “cells.”

Each cell stores Θ(lg �) bits.

Input and output are

stored in these cells.

The machine also has a

“head” moving through array.

Head contains Θ(1) cells.

Head can see the cell at

its current array position;

perform arithmetic etc.;

move to adjacent array position.

Selection sort: Head

looks at each array position,

picks up the largest number,

moves it to the end of the array,

picks up the second largest,

etc.

The answer depends on

how the machine works.

Possibility 1: The machine is a

“1-tape Turing machine

using selection sort.”

Specifically: The machine has

a 1-dimensional array

containing Θ(�) “cells.”

Each cell stores Θ(lg �) bits.

Input and output are

stored in these cells.

The machine also has a

“head” moving through array.

Head contains Θ(1) cells.

Head can see the cell at

its current array position;

perform arithmetic etc.;

move to adjacent array position.

Selection sort: Head

looks at each array position,

picks up the largest number,

moves it to the end of the array,

picks up the second largest,

etc.

Moving to adjacent array position

takes � � (1) seconds.

Moving a number to end of array

takes � 1+ � (1) seconds.

Same for comparisons etc.

Total sorting time:
� 2+ � (1) seconds.

Cost of machine:
� 1+ � (1) Euros

for � 1+ � (1) cells.

Negligible extra cost for head.

The machine also has a

“head” moving through array.

Head contains Θ(1) cells.

Head can see the cell at

its current array position;

perform arithmetic etc.;

move to adjacent array position.

Selection sort: Head

looks at each array position,

picks up the largest number,

moves it to the end of the array,

picks up the second largest,

etc.

Moving to adjacent array position

takes � � (1) seconds.

Moving a number to end of array

takes � 1+ � (1) seconds.

Same for comparisons etc.

Total sorting time:
� 2+ � (1) seconds.

Cost of machine:
� 1+ � (1) Euros

for � 1+ � (1) cells.

Negligible extra cost for head.

The machine also has a

“head” moving through array.

Head contains Θ(1) cells.

Head can see the cell at

its current array position;

perform arithmetic etc.;

move to adjacent array position.

Selection sort: Head

looks at each array position,

picks up the largest number,

moves it to the end of the array,

picks up the second largest,

etc.

Moving to adjacent array position

takes � � (1) seconds.

Moving a number to end of array

takes � 1+ � (1) seconds.

Same for comparisons etc.

Total sorting time:
� 2+ � (1) seconds.

Cost of machine:
� 1+ � (1) Euros

for � 1+ � (1) cells.

Negligible extra cost for head.

Possibility 2: The machine is a

“2-dimensional RAM

using merge sort.”

Machine has Θ(�) cells

in a 2-dimensional array:

Θ(�) rows, Θ(�) columns.

Machine also has a head.

Merge sort: Head recursively

sorts first
�

� 2 � numbers;

sorts last � � 2 � numbers;

merges the sorted lists.

Moving to adjacent array position

takes � � (1) seconds.

Moving a number to end of array

takes � 1+ � (1) seconds.

Same for comparisons etc.

Total sorting time:
� 2+ � (1) seconds.

Cost of machine:
� 1+ � (1) Euros

for � 1+ � (1) cells.

Negligible extra cost for head.

Possibility 2: The machine is a

“2-dimensional RAM

using merge sort.”

Machine has Θ(�) cells

in a 2-dimensional array:

Θ(�) rows, Θ(�) columns.

Machine also has a head.

Merge sort: Head recursively

sorts first
�

� 2 � numbers;

sorts last � � 2 � numbers;

merges the sorted lists.

Moving to adjacent array position

takes � � (1) seconds.

Moving a number to end of array

takes � 1+ � (1) seconds.

Same for comparisons etc.

Total sorting time:
� 2+ � (1) seconds.

Cost of machine:
� 1+ � (1) Euros

for � 1+ � (1) cells.

Negligible extra cost for head.

Possibility 2: The machine is a

“2-dimensional RAM

using merge sort.”

Machine has Θ(�) cells

in a 2-dimensional array:

Θ(�) rows, Θ(�) columns.

Machine also has a head.

Merge sort: Head recursively

sorts first
�

� 2 � numbers;

sorts last � � 2 � numbers;

merges the sorted lists.

Merging requires � 1+ � (1) jumps

to “random” array positions.

Average jump: � 0 � 5+ � (1) moves

to adjacent array positions.

Each move takes � � (1) seconds.

Total sorting time:
� 1 � 5+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) Euros.

Possibility 2: The machine is a

“2-dimensional RAM

using merge sort.”

Machine has Θ(�) cells

in a 2-dimensional array:

Θ(�) rows, Θ(�) columns.

Machine also has a head.

Merge sort: Head recursively

sorts first
�

� 2 � numbers;

sorts last � � 2 � numbers;

merges the sorted lists.

Merging requires � 1+ � (1) jumps

to “random” array positions.

Average jump: � 0 � 5+ � (1) moves

to adjacent array positions.

Each move takes � � (1) seconds.

Total sorting time:
� 1 � 5+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) Euros.

Possibility 2: The machine is a

“2-dimensional RAM

using merge sort.”

Machine has Θ(�) cells

in a 2-dimensional array:

Θ(�) rows, Θ(�) columns.

Machine also has a head.

Merge sort: Head recursively

sorts first
�

� 2 � numbers;

sorts last � � 2 � numbers;

merges the sorted lists.

Merging requires � 1+ � (1) jumps

to “random” array positions.

Average jump: � 0 � 5+ � (1) moves

to adjacent array positions.

Each move takes � � (1) seconds.

Total sorting time:
� 1 � 5+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) Euros.

Possibility 3: The machine is a

“pipelined 2-dimensional RAM

using radix-2 sort.”

Machine has Θ(�) cells

in a 2-dimensional array.

Each cell in the array has

network links to the 2 adjacent

cells in the same column.

Each cell in the top row has

network links to the 2 adjacent

cells in the top row.

Machine also has a CPU

attached to top-left cell.

Merging requires � 1+ � (1) jumps

to “random” array positions.

Average jump: � 0 � 5+ � (1) moves

to adjacent array positions.

Each move takes � � (1) seconds.

Total sorting time:
� 1 � 5+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) Euros.

Possibility 3: The machine is a

“pipelined 2-dimensional RAM

using radix-2 sort.”

Machine has Θ(�) cells

in a 2-dimensional array.

Each cell in the array has

network links to the 2 adjacent

cells in the same column.

Each cell in the top row has

network links to the 2 adjacent

cells in the top row.

Machine also has a CPU

attached to top-left cell.

Merging requires � 1+ � (1) jumps

to “random” array positions.

Average jump: � 0 � 5+ � (1) moves

to adjacent array positions.

Each move takes � � (1) seconds.

Total sorting time:
� 1 � 5+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) Euros.

Possibility 3: The machine is a

“pipelined 2-dimensional RAM

using radix-2 sort.”

Machine has Θ(�) cells

in a 2-dimensional array.

Each cell in the array has

network links to the 2 adjacent

cells in the same column.

Each cell in the top row has

network links to the 2 adjacent

cells in the top row.

Machine also has a CPU

attached to top-left cell.

Radix-2 sort: CPU

shuffles array using bit 0,

even numbers before odd.

3 1 4 1 5 9 2 6 �

4 2 6 3 1 1 5 9.

Then using bit 1:

4 1 1 5 9 2 6 3.

Then using bit 2:

1 1 9 2 3 4 5 6.

Then using bit 3:

1 1 2 3 4 5 6 9.

etc. Θ(lg �) bits.

Possibility 3: The machine is a

“pipelined 2-dimensional RAM

using radix-2 sort.”

Machine has Θ(�) cells

in a 2-dimensional array.

Each cell in the array has

network links to the 2 adjacent

cells in the same column.

Each cell in the top row has

network links to the 2 adjacent

cells in the top row.

Machine also has a CPU

attached to top-left cell.

Radix-2 sort: CPU

shuffles array using bit 0,

even numbers before odd.

3 1 4 1 5 9 2 6 �

4 2 6 3 1 1 5 9.

Then using bit 1:

4 1 1 5 9 2 6 3.

Then using bit 2:

1 1 9 2 3 4 5 6.

Then using bit 3:

1 1 2 3 4 5 6 9.

etc. Θ(lg �) bits.

Possibility 3: The machine is a

“pipelined 2-dimensional RAM

using radix-2 sort.”

Machine has Θ(�) cells

in a 2-dimensional array.

Each cell in the array has

network links to the 2 adjacent

cells in the same column.

Each cell in the top row has

network links to the 2 adjacent

cells in the top row.

Machine also has a CPU

attached to top-left cell.

Radix-2 sort: CPU

shuffles array using bit 0,

even numbers before odd.

3 1 4 1 5 9 2 6 �

4 2 6 3 1 1 5 9.

Then using bit 1:

4 1 1 5 9 2 6 3.

Then using bit 2:

1 1 9 2 3 4 5 6.

Then using bit 3:

1 1 2 3 4 5 6 9.

etc. Θ(lg �) bits.

CPU can read/write any cell by

sending request through network.

Does not need to wait for response

before sending next request.

CPU can read an entire row

of � 0 � 5+ � (1) cells

in � 0 � 5+ � (1) seconds.

Sends all requests,

then receives responses.

Total sorting time:
� 1+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) Euros.

Radix-2 sort: CPU

shuffles array using bit 0,

even numbers before odd.

3 1 4 1 5 9 2 6 �

4 2 6 3 1 1 5 9.

Then using bit 1:

4 1 1 5 9 2 6 3.

Then using bit 2:

1 1 9 2 3 4 5 6.

Then using bit 3:

1 1 2 3 4 5 6 9.

etc. Θ(lg �) bits.

CPU can read/write any cell by

sending request through network.

Does not need to wait for response

before sending next request.

CPU can read an entire row

of � 0 � 5+ � (1) cells

in � 0 � 5+ � (1) seconds.

Sends all requests,

then receives responses.

Total sorting time:
� 1+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) Euros.

Radix-2 sort: CPU

shuffles array using bit 0,

even numbers before odd.

3 1 4 1 5 9 2 6 �

4 2 6 3 1 1 5 9.

Then using bit 1:

4 1 1 5 9 2 6 3.

Then using bit 2:

1 1 9 2 3 4 5 6.

Then using bit 3:

1 1 2 3 4 5 6 9.

etc. Θ(lg �) bits.

CPU can read/write any cell by

sending request through network.

Does not need to wait for response

before sending next request.

CPU can read an entire row

of � 0 � 5+ � (1) cells

in � 0 � 5+ � (1) seconds.

Sends all requests,

then receives responses.

Total sorting time:
� 1+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) Euros.

Possibility 4: The machine is a

“2-dimensional mesh

using Schimmler sort.”

Machine has Θ(�) cells

in a 2-dimensional array.

Each cell has network links

to the 4 adjacent cells.

Machine also has a CPU

attached to top-left cell.

CPU broadcasts instructions

to all of the cells, but

cells do most of the processing.

CPU can read/write any cell by

sending request through network.

Does not need to wait for response

before sending next request.

CPU can read an entire row

of � 0 � 5+ � (1) cells

in � 0 � 5+ � (1) seconds.

Sends all requests,

then receives responses.

Total sorting time:
� 1+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) Euros.

Possibility 4: The machine is a

“2-dimensional mesh

using Schimmler sort.”

Machine has Θ(�) cells

in a 2-dimensional array.

Each cell has network links

to the 4 adjacent cells.

Machine also has a CPU

attached to top-left cell.

CPU broadcasts instructions

to all of the cells, but

cells do most of the processing.

CPU can read/write any cell by

sending request through network.

Does not need to wait for response

before sending next request.

CPU can read an entire row

of � 0 � 5+ � (1) cells

in � 0 � 5+ � (1) seconds.

Sends all requests,

then receives responses.

Total sorting time:
� 1+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) Euros.

Possibility 4: The machine is a

“2-dimensional mesh

using Schimmler sort.”

Machine has Θ(�) cells

in a 2-dimensional array.

Each cell has network links

to the 4 adjacent cells.

Machine also has a CPU

attached to top-left cell.

CPU broadcasts instructions

to all of the cells, but

cells do most of the processing.

Schimmler sort:

Recursively sort quadrants

in parallel. Then four steps:

Sort each column in parallel.

Sort each row in parallel.

Sort each column in parallel.

Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

Possibility 4: The machine is a

“2-dimensional mesh

using Schimmler sort.”

Machine has Θ(�) cells

in a 2-dimensional array.

Each cell has network links

to the 4 adjacent cells.

Machine also has a CPU

attached to top-left cell.

CPU broadcasts instructions

to all of the cells, but

cells do most of the processing.

Schimmler sort:

Recursively sort quadrants

in parallel. Then four steps:

Sort each column in parallel.

Sort each row in parallel.

Sort each column in parallel.

Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

Possibility 4: The machine is a

“2-dimensional mesh

using Schimmler sort.”

Machine has Θ(�) cells

in a 2-dimensional array.

Each cell has network links

to the 4 adjacent cells.

Machine also has a CPU

attached to top-left cell.

CPU broadcasts instructions

to all of the cells, but

cells do most of the processing.

Schimmler sort:

Recursively sort quadrants

in parallel. Then four steps:

Sort each column in parallel.

Sort each row in parallel.

Sort each column in parallel.

Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

To sort one row:

Sort each pair in parallel.

3 1 4 1 5 9 2 6 �

1 3 1 4 5 9 2 6

Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 �

1 1 3 4 5 2 9 6

Repeat.

Can prove that row is sorted

when number of steps

equals row length.

Schimmler sort:

Recursively sort quadrants

in parallel. Then four steps:

Sort each column in parallel.

Sort each row in parallel.

Sort each column in parallel.

Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

To sort one row:

Sort each pair in parallel.

3 1 4 1 5 9 2 6 �

1 3 1 4 5 9 2 6

Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 �

1 1 3 4 5 2 9 6

Repeat.

Can prove that row is sorted

when number of steps

equals row length.

Schimmler sort:

Recursively sort quadrants

in parallel. Then four steps:

Sort each column in parallel.

Sort each row in parallel.

Sort each column in parallel.

Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

To sort one row:

Sort each pair in parallel.

3 1 4 1 5 9 2 6 �

1 3 1 4 5 9 2 6

Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 �

1 1 3 4 5 2 9 6

Repeat.

Can prove that row is sorted

when number of steps

equals row length.

Sort one row

in � 0 � 5+ � (1) seconds.

All rows in parallel:
� 0 � 5+ � (1) seconds.

Total sorting time:
� 0 � 5+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) Euros.

To sort one row:

Sort each pair in parallel.

3 1 4 1 5 9 2 6 �

1 3 1 4 5 9 2 6

Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 �

1 1 3 4 5 2 9 6

Repeat.

Can prove that row is sorted

when number of steps

equals row length.

Sort one row

in � 0 � 5+ � (1) seconds.

All rows in parallel:
� 0 � 5+ � (1) seconds.

Total sorting time:
� 0 � 5+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) Euros.

To sort one row:

Sort each pair in parallel.

3 1 4 1 5 9 2 6 �

1 3 1 4 5 9 2 6

Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 �

1 1 3 4 5 2 9 6

Repeat.

Can prove that row is sorted

when number of steps

equals row length.

Sort one row

in � 0 � 5+ � (1) seconds.

All rows in parallel:
� 0 � 5+ � (1) seconds.

Total sorting time:
� 0 � 5+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) Euros.

Some philosophical notes

1-tape Turing machines,

RAMs, 2-dimensional meshes

compute the same functions.

Prove this by proving that

each machine can simulate

computations on the others.

(We believe that every

reasonable model of computation

can be simulated by a

1-tape Turing machine.

“Church-Turing thesis.”)

Sort one row

in � 0 � 5+ � (1) seconds.

All rows in parallel:
� 0 � 5+ � (1) seconds.

Total sorting time:
� 0 � 5+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) Euros.

Some philosophical notes

1-tape Turing machines,

RAMs, 2-dimensional meshes

compute the same functions.

Prove this by proving that

each machine can simulate

computations on the others.

(We believe that every

reasonable model of computation

can be simulated by a

1-tape Turing machine.

“Church-Turing thesis.”)

Sort one row

in � 0 � 5+ � (1) seconds.

All rows in parallel:
� 0 � 5+ � (1) seconds.

Total sorting time:
� 0 � 5+ � (1) seconds.

Cost of machine: once again
� 1+ � (1) Euros.

Some philosophical notes

1-tape Turing machines,

RAMs, 2-dimensional meshes

compute the same functions.

Prove this by proving that

each machine can simulate

computations on the others.

(We believe that every

reasonable model of computation

can be simulated by a

1-tape Turing machine.

“Church-Turing thesis.”)

1-tape Turing machines,

RAMs, 2-dimensional meshes

compute the same functions

in polynomial time

at polynomial cost.

Prove this by proving that

simulations are polynomial.

(Is this true for every

reasonable model of computation?

Consider quantum computers.)

Some philosophical notes

1-tape Turing machines,

RAMs, 2-dimensional meshes

compute the same functions.

Prove this by proving that

each machine can simulate

computations on the others.

(We believe that every

reasonable model of computation

can be simulated by a

1-tape Turing machine.

“Church-Turing thesis.”)

1-tape Turing machines,

RAMs, 2-dimensional meshes

compute the same functions

in polynomial time

at polynomial cost.

Prove this by proving that

simulations are polynomial.

(Is this true for every

reasonable model of computation?

Consider quantum computers.)

Some philosophical notes

1-tape Turing machines,

RAMs, 2-dimensional meshes

compute the same functions.

Prove this by proving that

each machine can simulate

computations on the others.

(We believe that every

reasonable model of computation

can be simulated by a

1-tape Turing machine.

“Church-Turing thesis.”)

1-tape Turing machines,

RAMs, 2-dimensional meshes

compute the same functions

in polynomial time

at polynomial cost.

Prove this by proving that

simulations are polynomial.

(Is this true for every

reasonable model of computation?

Consider quantum computers.)

1-tape Turing machines,

RAMs, 2-dimensional meshes

do not compute

the same functions

within, e.g., time � 1+ � (1)

and cost � 1+ � (1).

Example: 1-tape Turing machine

cannot sort in time � 1+ � (1).

Too local!

Example: 2-dimensional RAM

cannot sort in time � 0 � 5+ � (1).

Too sequential!

1-tape Turing machines,

RAMs, 2-dimensional meshes

compute the same functions

in polynomial time

at polynomial cost.

Prove this by proving that

simulations are polynomial.

(Is this true for every

reasonable model of computation?

Consider quantum computers.)

1-tape Turing machines,

RAMs, 2-dimensional meshes

do not compute

the same functions

within, e.g., time � 1+ � (1)

and cost � 1+ � (1).

Example: 1-tape Turing machine

cannot sort in time � 1+ � (1).

Too local!

Example: 2-dimensional RAM

cannot sort in time � 0 � 5+ � (1).

Too sequential!

1-tape Turing machines,

RAMs, 2-dimensional meshes

compute the same functions

in polynomial time

at polynomial cost.

Prove this by proving that

simulations are polynomial.

(Is this true for every

reasonable model of computation?

Consider quantum computers.)

1-tape Turing machines,

RAMs, 2-dimensional meshes

do not compute

the same functions

within, e.g., time � 1+ � (1)

and cost � 1+ � (1).

Example: 1-tape Turing machine

cannot sort in time � 1+ � (1).

Too local!

Example: 2-dimensional RAM

cannot sort in time � 0 � 5+ � (1).

Too sequential!

� (1) is asymptotic.

Speedup factor such as � 0 � 5+ � (1)

might not be a speedup

for small values of � .

When � is small,

RAM might seem to be a

sensible machine design.

But, for large � ,

having a huge memory

waiting for a single CPU

is a silly machine design.

1-tape Turing machines,

RAMs, 2-dimensional meshes

do not compute

the same functions

within, e.g., time � 1+ � (1)

and cost � 1+ � (1).

Example: 1-tape Turing machine

cannot sort in time � 1+ � (1).

Too local!

Example: 2-dimensional RAM

cannot sort in time � 0 � 5+ � (1).

Too sequential!

� (1) is asymptotic.

Speedup factor such as � 0 � 5+ � (1)

might not be a speedup

for small values of � .

When � is small,

RAM might seem to be a

sensible machine design.

But, for large � ,

having a huge memory

waiting for a single CPU

is a silly machine design.

1-tape Turing machines,

RAMs, 2-dimensional meshes

do not compute

the same functions

within, e.g., time � 1+ � (1)

and cost � 1+ � (1).

Example: 1-tape Turing machine

cannot sort in time � 1+ � (1).

Too local!

Example: 2-dimensional RAM

cannot sort in time � 0 � 5+ � (1).

Too sequential!

� (1) is asymptotic.

Speedup factor such as � 0 � 5+ � (1)

might not be a speedup

for small values of � .

When � is small,

RAM might seem to be a

sensible machine design.

But, for large � ,

having a huge memory

waiting for a single CPU

is a silly machine design.

Myth:

Parallel computation cannot

improve price-performance ratio;

parallel computers

may reduce time by factor

but increase cost by factor .

Reality: Can often convert

a large serial computer

into small parallel cells,

so cost does not

increase by factor .

� (1) is asymptotic.

Speedup factor such as � 0 � 5+ � (1)

might not be a speedup

for small values of � .

When � is small,

RAM might seem to be a

sensible machine design.

But, for large � ,

having a huge memory

waiting for a single CPU

is a silly machine design.

Myth:

Parallel computation cannot

improve price-performance ratio;

parallel computers

may reduce time by factor

but increase cost by factor .

Reality: Can often convert

a large serial computer

into small parallel cells,

so cost does not

increase by factor .

� (1) is asymptotic.

Speedup factor such as � 0 � 5+ � (1)

might not be a speedup

for small values of � .

When � is small,

RAM might seem to be a

sensible machine design.

But, for large � ,

having a huge memory

waiting for a single CPU

is a silly machine design.

Myth:

Parallel computation cannot

improve price-performance ratio;

parallel computers

may reduce time by factor

but increase cost by factor .

Reality: Can often convert

a large serial computer

into small parallel cells,

so cost does not

increase by factor .

Myth: Designing a new machine

cannot produce more than a

small constant-factor improvement

compared to, e.g., a Pentium.

What matters is special-purpose

streamlining, such as reducing

instruction-decoding costs.

Reality: In 1997, DES Cracker

was 1000 times faster than a

set of Pentiums at the same price.

What matters is parallelism.

Myth:

Parallel computation cannot

improve price-performance ratio;

parallel computers

may reduce time by factor

but increase cost by factor .

Reality: Can often convert

a large serial computer

into small parallel cells,

so cost does not

increase by factor .

Myth: Designing a new machine

cannot produce more than a

small constant-factor improvement

compared to, e.g., a Pentium.

What matters is special-purpose

streamlining, such as reducing

instruction-decoding costs.

Reality: In 1997, DES Cracker

was 1000 times faster than a

set of Pentiums at the same price.

What matters is parallelism.

Myth:

Parallel computation cannot

improve price-performance ratio;

parallel computers

may reduce time by factor

but increase cost by factor .

Reality: Can often convert

a large serial computer

into small parallel cells,

so cost does not

increase by factor .

Myth: Designing a new machine

cannot produce more than a

small constant-factor improvement

compared to, e.g., a Pentium.

What matters is special-purpose

streamlining, such as reducing

instruction-decoding costs.

Reality: In 1997, DES Cracker

was 1000 times faster than a

set of Pentiums at the same price.

What matters is parallelism.

Future computers will be

massively parallel meshes.

Computer designers will laugh at

today’s RAM-style machines,

just as we laugh at

a 1-tape Turing machine.

Algorithm experts will laugh at

today’s dominant style of

algorithm analysis, where we

count CPU “operations” and

view memory access as free.

Myth: Designing a new machine

cannot produce more than a

small constant-factor improvement

compared to, e.g., a Pentium.

What matters is special-purpose

streamlining, such as reducing

instruction-decoding costs.

Reality: In 1997, DES Cracker

was 1000 times faster than a

set of Pentiums at the same price.

What matters is parallelism.

Future computers will be

massively parallel meshes.

Computer designers will laugh at

today’s RAM-style machines,

just as we laugh at

a 1-tape Turing machine.

Algorithm experts will laugh at

today’s dominant style of

algorithm analysis, where we

count CPU “operations” and

view memory access as free.

Myth: Designing a new machine

cannot produce more than a

small constant-factor improvement

compared to, e.g., a Pentium.

What matters is special-purpose

streamlining, such as reducing

instruction-decoding costs.

Reality: In 1997, DES Cracker

was 1000 times faster than a

set of Pentiums at the same price.

What matters is parallelism.

Future computers will be

massively parallel meshes.

Computer designers will laugh at

today’s RAM-style machines,

just as we laugh at

a 1-tape Turing machine.

Algorithm experts will laugh at

today’s dominant style of

algorithm analysis, where we

count CPU “operations” and

view memory access as free.

Brute-force searches

For each 128-bit AES key

define () = AES � (0).

Typical known-plaintext attack:

given (); want to find .

Cryptanalyst builds machine with

parallel AES circuits,

each guessing � keys,

for a total of � keys.

Time: � AES evaluations.

Cost: AES circuits.

Success chance: � 2128.

Future computers will be

massively parallel meshes.

Computer designers will laugh at

today’s RAM-style machines,

just as we laugh at

a 1-tape Turing machine.

Algorithm experts will laugh at

today’s dominant style of

algorithm analysis, where we

count CPU “operations” and

view memory access as free.

Brute-force searches

For each 128-bit AES key

define () = AES � (0).

Typical known-plaintext attack:

given (); want to find .

Cryptanalyst builds machine with

parallel AES circuits,

each guessing � keys,

for a total of � keys.

Time: � AES evaluations.

Cost: AES circuits.

Success chance: � 2128.

Future computers will be

massively parallel meshes.

Computer designers will laugh at

today’s RAM-style machines,

just as we laugh at

a 1-tape Turing machine.

Algorithm experts will laugh at

today’s dominant style of

algorithm analysis, where we

count CPU “operations” and

view memory access as free.

Brute-force searches

For each 128-bit AES key

define () = AES � (0).

Typical known-plaintext attack:

given (); want to find .

Cryptanalyst builds machine with

parallel AES circuits,

each guessing � keys,

for a total of � keys.

Time: � AES evaluations.

Cost: AES circuits.

Success chance: � 2128.

Cryptanalyst is actually

attacking many AES keys.

Wants to find 1 � 2 � � � �

given (1) � (2) � � � � .

Rivest’s “time-memory tradeoff

using distinguished points”

merges these computations.

For any 128-bit � : Compute

(�) � ((�)) � � � � until

finding string that begins

with 30 zero bits.

Call that string (�).

Brute-force searches

For each 128-bit AES key

define () = AES � (0).

Typical known-plaintext attack:

given (); want to find .

Cryptanalyst builds machine with

parallel AES circuits,

each guessing � keys,

for a total of � keys.

Time: � AES evaluations.

Cost: AES circuits.

Success chance: � 2128.

Cryptanalyst is actually

attacking many AES keys.

Wants to find 1 � 2 � � � �

given (1) � (2) � � � � .

Rivest’s “time-memory tradeoff

using distinguished points”

merges these computations.

For any 128-bit � : Compute

(�) � ((�)) � � � � until

finding string that begins

with 30 zero bits.

Call that string (�).

Brute-force searches

For each 128-bit AES key

define () = AES � (0).

Typical known-plaintext attack:

given (); want to find .

Cryptanalyst builds machine with

parallel AES circuits,

each guessing � keys,

for a total of � keys.

Time: � AES evaluations.

Cost: AES circuits.

Success chance: � 2128.

Cryptanalyst is actually

attacking many AES keys.

Wants to find 1 � 2 � � � �

given (1) � (2) � � � � .

Rivest’s “time-memory tradeoff

using distinguished points”

merges these computations.

For any 128-bit � : Compute

(�) � ((�)) � � � � until

finding string that begins

with 30 zero bits.

Call that string (�).

Given (1) � (2) � � � � � (�):

Choose random � 1 � � 2 � � � � � � � .

Store (� 1) � (� 2) � � � � � (� �)

in an array in RAM.

Compute each ((�));

look up ((�)) in the array.

If ((�)) = (� �),

check whether (�) matches

any of (� �) � ((� �)) � � � � .

Details: avoid infinite loops;

handle multiple collisions.

Cryptanalyst is actually

attacking many AES keys.

Wants to find 1 � 2 � � � �

given (1) � (2) � � � � .

Rivest’s “time-memory tradeoff

using distinguished points”

merges these computations.

For any 128-bit � : Compute

(�) � ((�)) � � � � until

finding string that begins

with 30 zero bits.

Call that string (�).

Given (1) � (2) � � � � � (�):

Choose random � 1 � � 2 � � � � � � � .

Store (� 1) � (� 2) � � � � � (� �)

in an array in RAM.

Compute each ((�));

look up ((�)) in the array.

If ((�)) = (� �),

check whether (�) matches

any of (� �) � ((� �)) � � � � .

Details: avoid infinite loops;

handle multiple collisions.

Cryptanalyst is actually

attacking many AES keys.

Wants to find 1 � 2 � � � �

given (1) � (2) � � � � .

Rivest’s “time-memory tradeoff

using distinguished points”

merges these computations.

For any 128-bit � : Compute

(�) � ((�)) � � � � until

finding string that begins

with 30 zero bits.

Call that string (�).

Given (1) � (2) � � � � � (�):

Choose random � 1 � � 2 � � � � � � � .

Store (� 1) � (� 2) � � � � � (� �)

in an array in RAM.

Compute each ((�));

look up ((�)) in the array.

If ((�)) = (� �),

check whether (�) matches

any of (� �) � ((� �)) � � � � .

Details: avoid infinite loops;

handle multiple collisions.

Heuristic analysis: Computing

(� 1) � (� 2) � � � � � (� �)

involves 230 outputs of .

If any of the inputs match 1

then we’ll find 1.

Chance 230 2128.

Same for 2 � 3 � � � � .

Total chance 230 2 2128

of finding at least one key.

On a serial computer,

231 AES evaluations.

Cost: 128 bits of memory.

Given (1) � (2) � � � � � (�):

Choose random � 1 � � 2 � � � � � � � .

Store (� 1) � (� 2) � � � � � (� �)

in an array in RAM.

Compute each ((�));

look up ((�)) in the array.

If ((�)) = (� �),

check whether (�) matches

any of (� �) � ((� �)) � � � � .

Details: avoid infinite loops;

handle multiple collisions.

Heuristic analysis: Computing

(� 1) � (� 2) � � � � � (� �)

involves 230 outputs of .

If any of the inputs match 1

then we’ll find 1.

Chance 230 2128.

Same for 2 � 3 � � � � .

Total chance 230 2 2128

of finding at least one key.

On a serial computer,

231 AES evaluations.

Cost: 128 bits of memory.

Given (1) � (2) � � � � � (�):

Choose random � 1 � � 2 � � � � � � � .

Store (� 1) � (� 2) � � � � � (� �)

in an array in RAM.

Compute each ((�));

look up ((�)) in the array.

If ((�)) = (� �),

check whether (�) matches

any of (� �) � ((� �)) � � � � .

Details: avoid infinite loops;

handle multiple collisions.

Heuristic analysis: Computing

(� 1) � (� 2) � � � � � (� �)

involves 230 outputs of .

If any of the inputs match 1

then we’ll find 1.

Chance 230 2128.

Same for 2 � 3 � � � � .

Total chance 230 2 2128

of finding at least one key.

On a serial computer,

231 AES evaluations.

Cost: 128 bits of memory.

Much better: Massive parallelism.

Compute all values in parallel,

using AES circuits.

Use Schimmler sort to find

collisions ((�)) = (� �).

Time: 231 AES evaluations,

plus 8 Schimmler steps.

About times faster than serial.

Cost: AES circuits,

plus network links.

Maybe 100 times more expensive

than serial. Can reduce the 100.

Heuristic analysis: Computing

(� 1) � (� 2) � � � � � (� �)

involves 230 outputs of .

If any of the inputs match 1

then we’ll find 1.

Chance 230 2128.

Same for 2 � 3 � � � � .

Total chance 230 2 2128

of finding at least one key.

On a serial computer,

231 AES evaluations.

Cost: 128 bits of memory.

Much better: Massive parallelism.

Compute all values in parallel,

using AES circuits.

Use Schimmler sort to find

collisions ((�)) = (� �).

Time: 231 AES evaluations,

plus 8 Schimmler steps.

About times faster than serial.

Cost: AES circuits,

plus network links.

Maybe 100 times more expensive

than serial. Can reduce the 100.

Heuristic analysis: Computing

(� 1) � (� 2) � � � � � (� �)

involves 230 outputs of .

If any of the inputs match 1

then we’ll find 1.

Chance 230 2128.

Same for 2 � 3 � � � � .

Total chance 230 2 2128

of finding at least one key.

On a serial computer,

231 AES evaluations.

Cost: 128 bits of memory.

Much better: Massive parallelism.

Compute all values in parallel,

using AES circuits.

Use Schimmler sort to find

collisions ((�)) = (� �).

Time: 231 AES evaluations,

plus 8 Schimmler steps.

About times faster than serial.

Cost: AES circuits,

plus network links.

Maybe 100 times more expensive

than serial. Can reduce the 100.

Sieving

The “number-field sieve” (NFS)

is today’s fastest method

to factor a big RSA key � .

Most important NFS bottleneck:

find small prime divisors

of � ��� + 1 ��� + 2 � � � � ��� + .

1000002: divisible by 2 3

1000003:

1000004: divisible by 2 2

1000005: divisible by 3 5

1000006: divisible by 2 7

Much better: Massive parallelism.

Compute all values in parallel,

using AES circuits.

Use Schimmler sort to find

collisions ((�)) = (� �).

Time: 231 AES evaluations,

plus 8 Schimmler steps.

About times faster than serial.

Cost: AES circuits,

plus network links.

Maybe 100 times more expensive

than serial. Can reduce the 100.

Sieving

The “number-field sieve” (NFS)

is today’s fastest method

to factor a big RSA key � .

Most important NFS bottleneck:

find small prime divisors

of � ��� + 1 ��� + 2 � � � � ��� + .

1000002: divisible by 2 3

1000003:

1000004: divisible by 2 2

1000005: divisible by 3 5

1000006: divisible by 2 7

Much better: Massive parallelism.

Compute all values in parallel,

using AES circuits.

Use Schimmler sort to find

collisions ((�)) = (� �).

Time: 231 AES evaluations,

plus 8 Schimmler steps.

About times faster than serial.

Cost: AES circuits,

plus network links.

Maybe 100 times more expensive

than serial. Can reduce the 100.

Sieving

The “number-field sieve” (NFS)

is today’s fastest method

to factor a big RSA key � .

Most important NFS bottleneck:

find small prime divisors

of � ��� + 1 ��� + 2 � � � � ��� + .

1000002: divisible by 2 3

1000003:

1000004: divisible by 2 2

1000005: divisible by 3 5

1000006: divisible by 2 7

Conventional sieving/TWINKLE

(e.g. 2000 Silverman,

2000 Lenstra Shamir):

Generate pairs (2 � 1000002),

(2 � 1000004), (2 � 1000006), � � � ,

(3 � 1000002), (3 � 1000005), � � � ,

etc.

Use distribution sort

to sort by second component.

1+ � (1) pairs.

Sorting time 1+ � (1);

machine cost 1+ � (1).

Sieving

The “number-field sieve” (NFS)

is today’s fastest method

to factor a big RSA key � .

Most important NFS bottleneck:

find small prime divisors

of � ��� + 1 ��� + 2 � � � � ��� + .

1000002: divisible by 2 3

1000003:

1000004: divisible by 2 2

1000005: divisible by 3 5

1000006: divisible by 2 7

Conventional sieving/TWINKLE

(e.g. 2000 Silverman,

2000 Lenstra Shamir):

Generate pairs (2 � 1000002),

(2 � 1000004), (2 � 1000006), � � � ,

(3 � 1000002), (3 � 1000005), � � � ,

etc.

Use distribution sort

to sort by second component.

1+ � (1) pairs.

Sorting time 1+ � (1);

machine cost 1+ � (1).

Sieving

The “number-field sieve” (NFS)

is today’s fastest method

to factor a big RSA key � .

Most important NFS bottleneck:

find small prime divisors

of � ��� + 1 ��� + 2 � � � � ��� + .

1000002: divisible by 2 3

1000003:

1000004: divisible by 2 2

1000005: divisible by 3 5

1000006: divisible by 2 7

Conventional sieving/TWINKLE

(e.g. 2000 Silverman,

2000 Lenstra Shamir):

Generate pairs (2 � 1000002),

(2 � 1000004), (2 � 1000006), � � � ,

(3 � 1000002), (3 � 1000005), � � � ,

etc.

Use distribution sort

to sort by second component.

1+ � (1) pairs.

Sorting time 1+ � (1);

machine cost 1+ � (1).

For same machine cost,

achieve much higher speed

by massive parallelism.

e.g. Schimmler sort:

sorting time 0 � 5+ � (1);

machine cost 1+ � (1).

This drastically reduces

overall NFS time

for sufficiently large � .

(2001 Bernstein)

Conventional sieving/TWINKLE

(e.g. 2000 Silverman,

2000 Lenstra Shamir):

Generate pairs (2 � 1000002),

(2 � 1000004), (2 � 1000006), � � � ,

(3 � 1000002), (3 � 1000005), � � � ,

etc.

Use distribution sort

to sort by second component.

1+ � (1) pairs.

Sorting time 1+ � (1);

machine cost 1+ � (1).

For same machine cost,

achieve much higher speed

by massive parallelism.

e.g. Schimmler sort:

sorting time 0 � 5+ � (1);

machine cost 1+ � (1).

This drastically reduces

overall NFS time

for sufficiently large � .

(2001 Bernstein)

Conventional sieving/TWINKLE

(e.g. 2000 Silverman,

2000 Lenstra Shamir):

Generate pairs (2 � 1000002),

(2 � 1000004), (2 � 1000006), � � � ,

(3 � 1000002), (3 � 1000005), � � � ,

etc.

Use distribution sort

to sort by second component.

1+ � (1) pairs.

Sorting time 1+ � (1);

machine cost 1+ � (1).

For same machine cost,

achieve much higher speed

by massive parallelism.

e.g. Schimmler sort:

sorting time 0 � 5+ � (1);

machine cost 1+ � (1).

This drastically reduces

overall NFS time

for sufficiently large � .

(2001 Bernstein)

Can do even better with

low-memory small-divisor

algorithms, such as the

elliptic-curve method (ECM).

Time only 0+ � (1);

machine cost 1+ � (1).

This further reduces

overall NFS time

for sufficiently large � .

(2001 Bernstein)

Can also save time in another

bottleneck, “linear algebra”;

less important. (2001 Bernstein)

For same machine cost,

achieve much higher speed

by massive parallelism.

e.g. Schimmler sort:

sorting time 0 � 5+ � (1);

machine cost 1+ � (1).

This drastically reduces

overall NFS time

for sufficiently large � .

(2001 Bernstein)

Can do even better with

low-memory small-divisor

algorithms, such as the

elliptic-curve method (ECM).

Time only 0+ � (1);

machine cost 1+ � (1).

This further reduces

overall NFS time

for sufficiently large � .

(2001 Bernstein)

Can also save time in another

bottleneck, “linear algebra”;

less important. (2001 Bernstein)

For same machine cost,

achieve much higher speed

by massive parallelism.

e.g. Schimmler sort:

sorting time 0 � 5+ � (1);

machine cost 1+ � (1).

This drastically reduces

overall NFS time

for sufficiently large � .

(2001 Bernstein)

Can do even better with

low-memory small-divisor

algorithms, such as the

elliptic-curve method (ECM).

Time only 0+ � (1);

machine cost 1+ � (1).

This further reduces

overall NFS time

for sufficiently large � .

(2001 Bernstein)

Can also save time in another

bottleneck, “linear algebra”;

less important. (2001 Bernstein)

NFS price-performance ratio is

exp((+ � (1)) 3 (log �)(log log �)2)

assuming standard conjectures.

sieving linear algebra
RAM RAM 2 � 85 � � �

RAM RAM 2 � 76 � � �

Schimmler RAM 2 � 37 � � �

Schimmler Schimmler 2 � 36 � � �

ECM RAM 2 � 08 � � �

ECM Schimmler 1 � 97 � � �

(RAM 2 � 85: standard;

2 � 37, 1 � 97: 2001.11 Bernstein;

RAM 2 � 76: 2002.04 Pomerance)

Can do even better with

low-memory small-divisor

algorithms, such as the

elliptic-curve method (ECM).

Time only 0+ � (1);

machine cost 1+ � (1).

This further reduces

overall NFS time

for sufficiently large � .

(2001 Bernstein)

Can also save time in another

bottleneck, “linear algebra”;

less important. (2001 Bernstein)

NFS price-performance ratio is

exp((+ � (1)) 3 (log �)(log log �)2)

assuming standard conjectures.

sieving linear algebra
RAM RAM 2 � 85 � � �

RAM RAM 2 � 76 � � �

Schimmler RAM 2 � 37 � � �

Schimmler Schimmler 2 � 36 � � �

ECM RAM 2 � 08 � � �

ECM Schimmler 1 � 97 � � �

(RAM 2 � 85: standard;

2 � 37, 1 � 97: 2001.11 Bernstein;

RAM 2 � 76: 2002.04 Pomerance)

Can do even better with

low-memory small-divisor

algorithms, such as the

elliptic-curve method (ECM).

Time only 0+ � (1);

machine cost 1+ � (1).

This further reduces

overall NFS time

for sufficiently large � .

(2001 Bernstein)

Can also save time in another

bottleneck, “linear algebra”;

less important. (2001 Bernstein)

NFS price-performance ratio is

exp((+ � (1)) 3 (log �)(log log �)2)

assuming standard conjectures.

sieving linear algebra
RAM RAM 2 � 85 � � �

RAM RAM 2 � 76 � � �

Schimmler RAM 2 � 37 � � �

Schimmler Schimmler 2 � 36 � � �

ECM RAM 2 � 08 � � �

ECM Schimmler 1 � 97 � � �

(RAM 2 � 85: standard;

2 � 37, 1 � 97: 2001.11 Bernstein;

RAM 2 � 76: 2002.04 Pomerance)

Switching from RAM to a

massively parallel machine

produces gigantic NFS speedups

for sufficiently large � .

Improvement from conventional

RAM factorization, = 2 � 85 � � � ,

to best machine, = 1 � 97 � � � ,

corresponds to multiplying

number of digits of �

by 3 � 009 � � � + � (1).

NFS price-performance ratio is

exp((+ � (1)) 3 (log �)(log log �)2)

assuming standard conjectures.

sieving linear algebra
RAM RAM 2 � 85 � � �

RAM RAM 2 � 76 � � �

Schimmler RAM 2 � 37 � � �

Schimmler Schimmler 2 � 36 � � �

ECM RAM 2 � 08 � � �

ECM Schimmler 1 � 97 � � �

(RAM 2 � 85: standard;

2 � 37, 1 � 97: 2001.11 Bernstein;

RAM 2 � 76: 2002.04 Pomerance)

Switching from RAM to a

massively parallel machine

produces gigantic NFS speedups

for sufficiently large � .

Improvement from conventional

RAM factorization, = 2 � 85 � � � ,

to best machine, = 1 � 97 � � � ,

corresponds to multiplying

number of digits of �

by 3 � 009 � � � + � (1).

NFS price-performance ratio is

exp((+ � (1)) 3 (log �)(log log �)2)

assuming standard conjectures.

sieving linear algebra
RAM RAM 2 � 85 � � �

RAM RAM 2 � 76 � � �

Schimmler RAM 2 � 37 � � �

Schimmler Schimmler 2 � 36 � � �

ECM RAM 2 � 08 � � �

ECM Schimmler 1 � 97 � � �

(RAM 2 � 85: standard;

2 � 37, 1 � 97: 2001.11 Bernstein;

RAM 2 � 76: 2002.04 Pomerance)

Switching from RAM to a

massively parallel machine

produces gigantic NFS speedups

for sufficiently large � .

Improvement from conventional

RAM factorization, = 2 � 85 � � � ,

to best machine, = 1 � 97 � � � ,

corresponds to multiplying

number of digits of �

by 3 � 009 � � � + � (1).

As always, � (1) is asymptotic.

Situation for small �

is much less clear.

How expensive is it to

factor 1024-bit RSA keys?

We still don’t know.

Can now find many papers

making wild predictions.

None of the predictions

can be taken seriously!

Switching from RAM to a

massively parallel machine

produces gigantic NFS speedups

for sufficiently large � .

Improvement from conventional

RAM factorization, = 2 � 85 � � � ,

to best machine, = 1 � 97 � � � ,

corresponds to multiplying

number of digits of �

by 3 � 009 � � � + � (1).

As always, � (1) is asymptotic.

Situation for small �

is much less clear.

How expensive is it to

factor 1024-bit RSA keys?

We still don’t know.

Can now find many papers

making wild predictions.

None of the predictions

can be taken seriously!

Switching from RAM to a

massively parallel machine

produces gigantic NFS speedups

for sufficiently large � .

Improvement from conventional

RAM factorization, = 2 � 85 � � � ,

to best machine, = 1 � 97 � � � ,

corresponds to multiplying

number of digits of �

by 3 � 009 � � � + � (1).

As always, � (1) is asymptotic.

Situation for small �

is much less clear.

How expensive is it to

factor 1024-bit RSA keys?

We still don’t know.

Can now find many papers

making wild predictions.

None of the predictions

can be taken seriously!

NFS speed is complicated.

Example: NFS factors �

using an auxiliary polynomial.

Number of polynomial choices

is huge. Effect of polynomial

takes time to compute.

Some papers don’t put enough

effort into polynomial choice,

so they underestimate NFS speed.

Some papers make unjustified

optimal-polynomial extrapolations,

so they overestimate NFS speed.

As always, � (1) is asymptotic.

Situation for small �

is much less clear.

How expensive is it to

factor 1024-bit RSA keys?

We still don’t know.

Can now find many papers

making wild predictions.

None of the predictions

can be taken seriously!

NFS speed is complicated.

Example: NFS factors �

using an auxiliary polynomial.

Number of polynomial choices

is huge. Effect of polynomial

takes time to compute.

Some papers don’t put enough

effort into polynomial choice,

so they underestimate NFS speed.

Some papers make unjustified

optimal-polynomial extrapolations,

so they overestimate NFS speed.

As always, � (1) is asymptotic.

Situation for small �

is much less clear.

How expensive is it to

factor 1024-bit RSA keys?

We still don’t know.

Can now find many papers

making wild predictions.

None of the predictions

can be taken seriously!

NFS speed is complicated.

Example: NFS factors �

using an auxiliary polynomial.

Number of polynomial choices

is huge. Effect of polynomial

takes time to compute.

Some papers don’t put enough

effort into polynomial choice,

so they underestimate NFS speed.

Some papers make unjustified

optimal-polynomial extrapolations,

so they overestimate NFS speed.

At a lower level, today’s

massively parallel computers

are much less streamlined

than today’s Pentiums.

Computer market will evolve.

Massive parallelism will

become the de-facto standard,

and will be tuned carefully.

How much speed will we gain?

Today it’s hard to say.

But we’ll find out!

NFS speed is complicated.

Example: NFS factors �

using an auxiliary polynomial.

Number of polynomial choices

is huge. Effect of polynomial

takes time to compute.

Some papers don’t put enough

effort into polynomial choice,

so they underestimate NFS speed.

Some papers make unjustified

optimal-polynomial extrapolations,

so they overestimate NFS speed.

At a lower level, today’s

massively parallel computers

are much less streamlined

than today’s Pentiums.

Computer market will evolve.

Massive parallelism will

become the de-facto standard,

and will be tuned carefully.

How much speed will we gain?

Today it’s hard to say.

But we’ll find out!

