The power of parallel computation
D. J. Bernstein

Thanks to:
University of Illinois at Chicago NSF CCR-9983950
Alfred P. Sloan Foundation

How fast is sorting?
Input: array of n numbers.
Each number in $\left\{1,2, \ldots, n^{2}\right\}$, represented in binary.

Output: array of n numbers, in increasing order, represented in binary; same multiset as input.

A machine is given the input and computes the output. How much time does it use?

How fast is sorting?
Input: array of n numbers.
Each number in $\left\{1,2, \ldots, n^{2}\right\}$, represented in binary.

Output: array of n numbers, in increasing order, represented in binary; same multiset as input.

A machine is given the input and computes the output. How much time does it use?

The answer depen how the machine

Possibility 1: The
"1-tape Turing ma using selection sor

Specifically: The a 1-dimensional ar containing $\Theta(n)$ Each cell stores Θ Input and output stored in these cel

How fast is sorting?
Input: array of n numbers.
Each number in $\left\{1,2, \ldots, n^{2}\right\}$, represented in binary.

Output: array of n numbers, in increasing order, represented in binary; same multiset as input.

A machine is given the input and computes the output. How much time does it use?

The answer depends on how the machine works.

Possibility 1: The machine is a "1-tape Turing machine using selection sort."

Specifically: The machine has
a 1-dimensional array containing $\Theta(n)$ "cells."
Each cell stores $\Theta(\lg n)$ bits.
Input and output are stored in these cells.

The answer depends on how the machine works.

Possibility 1: The machine is a "1-tape Turing machine using selection sort."

Specifically: The machine has
a 1-dimensional array
containing $\Theta(n)$ "cells."
Each cell stores $\Theta(\lg n)$ bits.
Input and output are stored in these cells.

The machine also "head" moving th Head contains $\Theta($

Head can see the its current array p perform arithmetic move to adjacent

Selection sort: He looks at each arra picks up the larges moves it to the en picks up the secon etc.

The answer depends on how the machine works.

Possibility 1: The machine is a
"1-tape Turing machine using selection sort."

Specifically: The machine has
a 1-dimensional array containing $\Theta(n)$ "cells."
Each cell stores $\Theta(\lg n)$ bits.
Input and output are stored in these cells.

The machine also has a "head" moving through array. Head contains $\Theta(1)$ cells.

Head can see the cell at its current array position; perform arithmetic etc.; move to adjacent array position.

Selection sort: Head looks at each array position, picks up the largest number, moves it to the end of the array, picks up the second largest, etc.
ds on works.
machine is a
achine
nachine has
ray
cells."
$(\lg n)$ bits.
are
Is.

The machine also has a "head" moving through array. Head contains $\Theta(1)$ cells.

Head can see the cell at its current array position; perform arithmetic etc.; move to adjacent array position.

Selection sort: Head looks at each array position, picks up the largest number, moves it to the end of the array, picks up the second largest, etc.

Moving to adjacer takes $n^{o(1)}$ second

Moving a number takes $n^{1+o(1)}$ seco Same for comparis

Total sorting time $n^{2+o(1)}$ seconds.

Cost of machine: $n^{1+o(1)}$ Euros for $n^{1+o(1)}$ cells. Negligible extra cc

The machine also has a "head" moving through array. Head contains $\Theta(1)$ cells. Head can see the cell at its current array position; perform arithmetic etc.; move to adjacent array position.

Selection sort: Head looks at each array position, picks up the largest number, moves it to the end of the array, picks up the second largest, etc.

Moving to adjacent array position takes $n^{o(1)}$ seconds.

Moving a number to end of array takes $n^{1+o(1)}$ seconds.
Same for comparisons etc.
Total sorting time:
$n^{2+o(1)}$ seconds.
Cost of machine:
$n^{1+o(1)}$ Euros
for $n^{1+o(1)}$ cells.
Negligible extra cost for head.
has a
rough array.

1) cells.
cell at
osition;
: etc.;
array position.
ad
y position,
it number,
d of the array,
d largest,

Moving to adjacent array position takes $n^{o(1)}$ seconds.

Moving a number to end of array takes $n^{1+o(1)}$ seconds.
Same for comparisons etc.
Total sorting time:
$n^{2+o(1)}$ seconds.
Cost of machine:
$n^{1+o(1)}$ Euros
for $n^{1+o(1)}$ cells.
Negligible extra cost for head.

Possibility 2: The "2-dimensional RA using merge sort."

Machine has $\Theta(n)$ in a 2-dimensional $\Theta(\sqrt{n})$ rows, $\Theta(v$ Machine also has

Merge sort: Head sorts first $\lfloor n / 2\rfloor \mathrm{n}$ sorts last $\lceil n / 2\rceil \mathrm{n}$ merges the sorted

Moving to adjacent array position takes $n^{o(1)}$ seconds.

Moving a number to end of array takes $n^{1+o(1)}$ seconds.
Same for comparisons etc.
Total sorting time:
$n^{2+o(1)}$ seconds.
Cost of machine:
$n^{1+o(1)}$ Euros
for $n^{1+o(1)}$ cells.
Negligible extra cost for head.

Possibility 2: The machine is a "2-dimensional RAM using merge sort."

Machine has $\Theta(n)$ cells in a 2-dimensional array:
$\Theta(\sqrt{n})$ rows, $\Theta(\sqrt{n})$ columns. Machine also has a head.

Merge sort: Head recursively sorts first $\lfloor n / 2\rfloor$ numbers; sorts last $\lceil n / 2\rceil$ numbers; merges the sorted lists.
t array position
s.
to end of array nds.
ons etc.
st for head.

Possibility 2: The machine is a "2-dimensional RAM using merge sort."

Machine has $\Theta(n)$ cells in a 2-dimensional array:
$\Theta(\sqrt{n})$ rows, $\Theta(\sqrt{n})$ columns.
Machine also has a head.
Merge sort: Head recursively sorts first $\lfloor n / 2\rfloor$ numbers; sorts last $\lceil n / 2\rceil$ numbers; merges the sorted lists.

Merging requires r to "random" array
Average jump: n^{0} to adjacent array

Each move takes
Total sorting time $n^{1.5+o(1)}$ seconds.

Cost of machine: $n^{1+o(1)}$ Euros.

Possibility 2: The machine is a "2-dimensional RAM using merge sort."

Machine has $\Theta(n)$ cells in a 2-dimensional array:
$\Theta(\sqrt{n})$ rows, $\Theta(\sqrt{n})$ columns. Machine also has a head.

Merge sort: Head recursively sorts first $\lfloor n / 2\rfloor$ numbers; sorts last $\lceil n / 2\rceil$ numbers; merges the sorted lists.

Merging requires $n^{1+o(1)}$ jumps to "random" array positions.

Average jump: $n^{0.5+o(1)}$ moves to adjacent array positions.

Each move takes $n^{o(1)}$ seconds.
Total sorting time:
$n^{1.5+o(1)}$ seconds.
Cost of machine: once again $n^{1+o(1)}$ Euros.
machine is a M

cells

array:
\sqrt{n}) columns. a head.
recursively
umbers;
umbers;
lists.

Merging requires $n^{1+o(1)}$ jumps to "random" array positions.

Average jump: $n^{0.5+o(1)}$ moves to adjacent array positions.

Each move takes $n^{o(1)}$ seconds.
Total sorting time:
$n^{1.5+o(1)}$ seconds.
Cost of machine: once again $n^{1+o(1)}$ Euros.

Possibility 3: The "pipelined 2-dimer using radix-2 sort.

Machine has $\Theta(n)$ in a 2-dimensional Each cell in the ar network links to th cells in the same Each cell in the to network links to th cells in the top rov

Machine also has attached to top-le

Merging requires $n^{1+o(1)}$ jumps to "random" array positions.

Average jump: $n^{0.5+o(1)}$ moves to adjacent array positions.

Each move takes $n^{o(1)}$ seconds.
Total sorting time:
$n^{1.5+o(1)}$ seconds.
Cost of machine: once again $n^{1+o(1)}$ Euros.

Possibility 3: The machine is a "pipelined 2-dimensional RAM using radix-2 sort."

Machine has $\Theta(n)$ cells in a 2-dimensional array. Each cell in the array has network links to the 2 adjacent cells in the same column. Each cell in the top row has network links to the 2 adjacent cells in the top row.

Machine also has a CPU attached to top-left cell.
$2^{1+o(1)}$ jumps positions.
$.5+o(1)$ moves oositions.
$\imath^{o(1)}$ seconds.
once again

Possibility 3: The machine is a "pipelined 2-dimensional RAM using radix-2 sort."

Machine has $\Theta(n)$ cells in a 2-dimensional array. Each cell in the array has network links to the 2 adjacent cells in the same column.
Each cell in the top row has network links to the 2 adjacent cells in the top row.

Machine also has a CPU attached to top-left cell.

Radix-2 sort: CPL shuffles array usin even numbers bef $31415926 \mapsto$ 42631159.

Then using bit 1 : 41159263.

Then using bit 2 : 11923456.

Then using bit 3 :
11234569.
etc. $\Theta(\lg n)$ bits.

Possibility 3: The machine is a "pipelined 2-dimensional RAM using radix-2 sort."

Machine has $\Theta(n)$ cells in a 2-dimensional array. Each cell in the array has network links to the 2 adjacent cells in the same column.
Each cell in the top row has
network links to the 2 adjacent cells in the top row.

Machine also has a CPU
attached to top-left cell.

Radix-2 sort: CPU shuffles array using bit 0 , even numbers before odd.
$31415926 \mapsto$
42631159.

Then using bit 1 :
41159263.

Then using bit 2 :
11923456.

Then using bit 3 :
11234569 .
etc. $\Theta(\lg n)$ bits.
machine is a isional RAM

cells

array.
ray has
e 2 adjacent
olumn.
p row has
e 2 adjacent
v.
a CPU
ft cell.

Radix-2 sort: CPU
shuffles array using bit 0 , even numbers before odd.
$31415926 \mapsto$
42631159.

Then using bit 1 :
41159263.

Then using bit 2 :
11923456.

Then using bit 3 :
11234569.
etc. $\Theta(\lg n)$ bits.

CPU can read/wri sending request th Does not need to before sending nex CPU can read an of $n^{0.5+o(1)}$ cells in $n^{0.5+o(1)}$ secon Sends all requests, then receives resp

Total sorting time $n^{1+o(1)}$ seconds.

Cost of machine: $n^{1+o(1)}$ Euros.

Radix-2 sort: CPU shuffles array using bit 0 , even numbers before odd.
$31415926 \mapsto$
42631159.

Then using bit 1 :
41159263.

Then using bit 2 :
11923456.

Then using bit 3 :
11234569 .
etc. $\Theta(\lg n)$ bits.

CPU can read/write any cell by sending request through network.
Does not need to wait for response before sending next request.

CPU can read an entire row of $n^{0.5+o(1)}$ cells in $n^{0.5+o(1)}$ seconds.
Sends all requests, then receives responses.

Total sorting time: $n^{1+o(1)}$ seconds.

Cost of machine: once again $n^{1+o(1)}$ Euros.

CPU can read/write any cell by sending request through network.
Does not need to wait for response before sending next request.

CPU can read an entire row of $n^{0.5+o(1)}$ cells in $n^{0.5+o(1)}$ seconds.
Sends all requests, then receives responses.

Total sorting time:
$n^{1+o(1)}$ seconds.
Cost of machine: once again $n^{1+o(1)}$ Euros.

Possibility 4: The "2-dimensional me using Schimmler s

Machine has $\Theta(n)$ in a 2-dimensional Each cell has netw to the 4 adjacent

Machine also has attached to top-le CPU broadcasts in to all of the cells, cells do most of th

CPU can read/write any cell by sending request through network. Does not need to wait for response before sending next request.

CPU can read an entire row of $n^{0.5+o(1)}$ cells in $n^{0.5+o(1)}$ seconds.
Sends all requests, then receives responses.

Total sorting time:
$n^{1+o(1)}$ seconds.
Cost of machine: once again $n^{1+o(1)}$ Euros.

Possibility 4: The machine is a "2-dimensional mesh using Schimmler sort."

Machine has $\Theta(n)$ cells in a 2-dimensional array.
Each cell has network links to the 4 adjacent cells.

Machine also has a CPU
attached to top-left cell.
CPU broadcasts instructions
to all of the cells, but
cells do most of the processing.
te any cell by rough network. wait for response t request.
entire row
ds.
onses.
once again

Possibility 4: The machine is a "2-dimensional mesh using Schimmler sort."

Machine has $\Theta(n)$ cells in a 2-dimensional array.
Each cell has network links to the 4 adjacent cells.

Machine also has a CPU attached to top-left cell.
CPU broadcasts instructions
to all of the cells, but
cells do most of the processing.

Schimmler sort:
Recursively sort q in parallel. Then f Sort each column Sort each row in p Sort each column Sort each row in p

With proper choic left-to-right/rightfor each row, can that this sorts who

Possibility 4: The machine is a "2-dimensional mesh using Schimmler sort."

Machine has $\Theta(n)$ cells in a 2-dimensional array.
Each cell has network links to the 4 adjacent cells.

Machine also has a CPU attached to top-left cell. CPU broadcasts instructions
to all of the cells, but
cells do most of the processing.

Schimmler sort:
Recursively sort quadrants in parallel. Then four steps:
Sort each column in parallel.
Sort each row in parallel.
Sort each column in parallel.
Sort each row in parallel.
With proper choice of left-to-right/right-to-left for each row, can prove that this sorts whole array.
machine is a sh
ort."
cells
array.
ork links
cells.

a CPU

ft cell.
structions
but
e processing.

Schimmler sort:

Recursively sort quadrants in parallel. Then four steps:

Sort each column in parallel.

Sort each row in parallel.
Sort each column in parallel.
Sort each row in parallel.
With proper choice of left-to-right/right-to-left for each row, can prove that this sorts whole array.

To sort one row:
Sort each pair in
$31415926 \mapsto$ 13145926

Sort alternate pair $13145926 \mapsto$ 11345296

Repeat.
Can prove that ro when number of s equals row length.

Schimmler sort:
Recursively sort quadrants in parallel. Then four steps:
Sort each column in parallel.
Sort each row in parallel.
Sort each column in parallel.
Sort each row in parallel.
With proper choice of
left-to-right/right-to-left for each row, can prove that this sorts whole array.

To sort one row:
Sort each pair in parallel.
31415926 \mapsto
13145926
Sort alternate pairs in parallel.
$13145926 \mapsto$
11345296
Repeat.
Can prove that row is sorted when number of steps equals row length.

To sort one row:
Sort each pair in parallel.
31415926 \mapsto
13145926
Sort alternate pairs in parallel.
$13145926 \mapsto$
11345296
Repeat.
Can prove that row is sorted when number of steps equals row length.

Sort one row in $n^{0.5+o(1)}$ secon

All rows in paralle $n^{0.5+o(1)}$ seconds.

Total sorting time $n^{0.5+o(1)}$ seconds.

Cost of machine: $n^{1+o(1)}$ Euros.

To sort one row:
Sort each pair in parallel.
31415926 \mapsto
13145926
Sort alternate pairs in parallel.
$13145926 \mapsto$
11345296
Repeat.
Can prove that row is sorted when number of steps equals row length.

Sort one row
in $n^{0.5+o(1)}$ seconds.
All rows in parallel:
$n^{0.5+o(1)}$ seconds.
Total sorting time:
$n^{0.5+o(1)}$ seconds.
Cost of machine: once again $n^{1+o(1)}$ Euros.
arallel.
s in parallel.
v is sorted teps

Sort one row in $n^{0.5+o(1)}$ seconds.

All rows in parallel:
$n^{0.5+o(1)}$ seconds.
Total sorting time:
$n^{0.5+o(1)}$ seconds.
Cost of machine: once again $n^{1+o(1)}$ Euros.

Some philosophica
1-tape Turing mac RAMs, 2-dimensio compute the same

Prove this by prov each machine can computations on t
(We believe that reasonable model can be simulated 1-tape Turing mac "Church-Turing th

Sort one row
in $n^{0.5+o(1)}$ seconds.
All rows in parallel:
$n^{0.5+o(1)}$ seconds.
Total sorting time:
$n^{0.5+o(1)}$ seconds.
Cost of machine: once again $n^{1+o(1)}$ Euros.

Some philosophical notes

1-tape Turing machines, RAMs, 2-dimensional meshes compute the same functions.

Prove this by proving that each machine can simulate computations on the others.
(We believe that every
reasonable model of computation
can be simulated by a
1-tape Turing machine.
"Church-Turing thesis.")

Some philosophical notes

ds.
once again

1-tape Turing machines, RAMs, 2-dimensional meshes compute the same functions.

Prove this by proving that each machine can simulate computations on the others.
(We believe that every
reasonable model of computation can be simulated by a
1-tape Turing machine.
"Church-Turing thesis.")

1-tape Turing mac RAMs, 2-dimensio compute the same in polynomial time at polynomial cost

Prove this by prov simulations are po
(Is this true for ev reasonable model

Consider quantum

Some philosophical notes

1-tape Turing machines, RAMs, 2-dimensional meshes compute the same functions.

Prove this by proving that each machine can simulate computations on the others.
(We believe that every
reasonable model of computation can be simulated by a
1-tape Turing machine.
"Church-Turing thesis.")

1-tape Turing machines, RAMs, 2-dimensional meshes compute the same functions in polynomial time at polynomial cost.

Prove this by proving that simulations are polynomial.
(Is this true for every
reasonable model of computation?
Consider quantum computers.)

I notes

hines, nal meshes
functions.
ing that
simulate
he others.
very
of computation
оу a
hine.
esis.")

1-tape Turing machines,
RAMs, 2-dimensional meshes
compute the same functions
in polynomial time at polynomial cost.

Prove this by proving that simulations are polynomial.
(Is this true for every reasonable model of computation?
Consider quantum computers.)

1-tape Turing mac RAMs, 2-dimensio do not compute the same function within, e.g., time and cost $n^{1+o(1)}$.

Example: 1-tape cannot sort in tim Too loca!!

Example: 2-dimen cannot sort in tim Too sequential!

1-tape Turing machines, RAMs, 2-dimensional meshes compute the same functions in polynomial time at polynomial cost.

Prove this by proving that simulations are polynomial.
(Is this true for every
reasonable model of computation?
Consider quantum computers.)

1-tape Turing machines, RAMs, 2-dimensional meshes do not compute the same functions
within, e.g., time $n^{1+o(1)}$ and cost $n^{1+o(1)}$.

Example: 1-tape Turing machine cannot sort in time $n^{1+o(1)}$.
Too loca!!
Example: 2-dimensional RAM
cannot sort in time $n^{0.5+o(1)}$.
Too sequential!
hines,
nal meshes
functions
ing that
lynomial.
ery
of computation?
computers.)

1-tape Turing machines,
RAMs, 2-dimensional meshes
do not compute the same functions
within, e.g., time $n^{1+o(1)}$
and cost $n^{1+o(1)}$.
Example: 1-tape Turing machine cannot sort in time $n^{1+o(1)}$.
Too loca!!
Example: 2-dimensional RAM
cannot sort in time $n^{0.5+o(1)}$.
Too sequential!
$o(1)$ is asymptotic Speedup factor su might not be a sp for small values of

When n is small, RAM might seem sensible machine c

But, for large n, having a huge mer waiting for a singl is a silly machine

1-tape Turing machines, RAMs, 2-dimensional meshes
do not compute
the same functions
within, e.g., time $n^{1+o(1)}$
and cost $n^{1+o(1)}$.
Example: 1-tape Turing machine cannot sort in time $n^{1+o(1)}$.
Too loca!!
Example: 2-dimensional RAM
cannot sort in time $n^{0.5+o(1)}$.
Too sequential!
$o(1)$ is asymptotic.
Speedup factor such as $n^{0.5+o(1)}$
might not be a speedup for small values of n.

When n is small,
RAM might seem to be a sensible machine design.

But, for large n, having a huge memory waiting for a single CPU is a silly machine design.
hines,
nal meshes
$n^{1+o(1)}$

「uring machine e $n^{1+o(1)}$.
sional RAM
e $n^{0.5+o(1)}$.
$o(1)$ is asymptotic.
Speedup factor such as $n^{0.5+o(1)}$
might not be a speedup for small values of n.

When n is small,
RAM might seem to be a sensible machine design.

But, for large n, having a huge memory waiting for a single CPU is a silly machine design.

Myth:
Parallel computati improve price-perf
p parallel compute may reduce time but increase cost

Reality: Can often a large serial com into p small parall so cost does not increase by factor
$o(1)$ is asymptotic.
Speedup factor such as $n^{0.5+o(1)}$
might not be a speedup
for small values of n.
When n is small,
RAM might seem to be a sensible machine design.

But, for large n, having a huge memory
waiting for a single CPU is a silly machine design.

Myth:

Parallel computation cannot improve price-performance ratio;
p parallel computers
may reduce time by factor p but increase cost by factor p.

Reality: Can often convert a large serial computer into p small parallel cells, so cost does not increase by factor p.
ch as $n^{0.5+o(1)}$ eedup
n.
to be a
lesign.
nory
e CPU
design.

Myth:

Parallel computation cannot

 improve price-performance ratio;p parallel computers may reduce time by factor p but increase cost by factor p.

Reality: Can often convert a large serial computer into p small parallel cells, so cost does not increase by factor p.

Myth: Designing cannot produce m small constant-fac compared to, e.g., What matters is s streamlining, such instruction-decodi

Reality: In 1997, was 1000 times fa set of Pentiums at What matters is p

Myth:

Parallel computation cannot improve price-performance ratio;
p parallel computers
may reduce time by factor p but increase cost by factor p.

Reality: Can often convert a large serial computer into p small parallel cells, so cost does not increase by factor p.

Myth: Designing a new machine cannot produce more than a small constant-factor improvement compared to, e.g., a Pentium.
What matters is special-purpose streamlining, such as reducing instruction-decoding costs.

Reality: In 1997, DES Cracker was 1000 times faster than a set of Pentiums at the same price.
What matters is parallelism.
on cannot ormance ratio;
y factor p
y factor p.
convert
uter
el cells,

p.

Myth: Designing a new machine cannot produce more than a small constant-factor improvement compared to, e.g., a Pentium. What matters is special-purpose streamlining, such as reducing instruction-decoding costs.

Reality: In 1997, DES Cracker was 1000 times faster than a set of Pentiums at the same price. What matters is parallelism.

Future computers massively parallel Computer designe today's RAM-style just as we laugh a a 1-tape Turing m

Algorithm experts today's dominant algorithm analysis count CPU "opera view memory acce

Myth: Designing a new machine cannot produce more than a small constant-factor improvement compared to, e.g., a Pentium. What matters is special-purpose streamlining, such as reducing instruction-decoding costs.

Reality: In 1997, DES Cracker was 1000 times faster than a set of Pentiums at the same price. What matters is parallelism.

Future computers will be massively parallel meshes.

Computer designers will laugh at today's RAM-style machines, just as we laugh at a 1-tape Turing machine.

Algorithm experts will laugh at today's dominant style of algorithm analysis, where we count CPU "operations" and view memory access as free.
new machine ore than a tor improvement
a Pentium.
oecial-purpose as reducing ng costs.

DES Cracker ster than a the same price. arallelism.

Future computers will be massively parallel meshes.

Computer designers will laugh at today's RAM-style machines, just as we laugh at a 1-tape Turing machine.

Algorithm experts will laugh at today's dominant style of algorithm analysis, where we count CPU "operations" and view memory access as free.

Brute-force search

For each 128-bit A define $H(k)=\mathrm{AE}$

Typical known-pla given $H(k)$; want

Cryptanalyst build p parallel AES circ each guessing $n \mathrm{k}$ for a total of $p n k$

Time: n AES eval Cost: p AES circu Success chance:

Future computers will be massively parallel meshes.

Computer designers will laugh at today's RAM-style machines, just as we laugh at a 1-tape Turing machine.

Algorithm experts will laugh at today's dominant style of algorithm analysis, where we count CPU "operations" and view memory access as free.

Brute-force searches

For each 128-bit AES key k define $H(k)=\mathrm{AES}_{k}(0)$.

Typical known-plaintext attack: given $H(k)$; want to find k.

Cryptanalyst builds machine with p parallel AES circuits, each guessing n keys, for a total of $p n$ keys.

Time: n AES evaluations.
Cost: p AES circuits. Success chance: $p n / 2^{128}$.
will be meshes.
s will laugh at machines,
achine.
will laugh at
style of
where we tions" and ss as free.

Brute-force searches

For each 128-bit AES key k define $H(k)=\operatorname{AES}_{k}(0)$.

Typical known-plaintext attack: given $H(k)$; want to find k.

Cryptanalyst builds machine with p parallel AES circuits, each guessing n keys, for a total of $p n$ keys.

Time: n AES evaluations.
Cost: p AES circuits.
Success chance: $p n / 2^{128}$.

Cryptanalyst is ac attacking many A Wants to find k_{1}, given $H\left(k_{1}\right), H\left(k_{2}\right.$

Rivest's "time-me using distinguishec merges these com

For any 128-bit r : $H(r), H(H(r))$, finding string that with 30 zero bits.
Call that string Z

Brute-force searches

For each 128-bit AES key k define $H(k)=\operatorname{AES}_{k}(0)$.

Typical known-plaintext attack: given $H(k)$; want to find k.

Cryptanalyst builds machine with p parallel AES circuits, each guessing n keys, for a total of $p n$ keys.

Time: n AES evaluations.
Cost: p AES circuits.
Success chance: $p n / 2^{128}$.

Cryptanalyst is actually attacking many AES keys.
Wants to find k_{1}, k_{2}, \ldots given $H\left(k_{1}\right), H\left(k_{2}\right), \ldots$

Rivest's "time-memory tradeoff using distinguished points" merges these computations.

For any 128-bit r : Compute $H(r), H(H(r)), \ldots$ until finding string that begins with 30 zero bits.
Call that string $Z(r)$.

ES key k
$S_{k}(0)$.
intext attack:
to find k.
s machine with uits,
eys,
eys.
uations.
its.
$n / 2^{128}$

Cryptanalyst is actually attacking many AES keys.
Wants to find k_{1}, k_{2}, \ldots
given $H\left(k_{1}\right), H\left(k_{2}\right), \ldots$
Rivest's "time-memory tradeoff using distinguished points" merges these computations.

For any 128-bit r : Compute $H(r), H(H(r)), \ldots$ until
finding string that begins with 30 zero bits.
Call that string $Z(r)$.

Given $H\left(k_{1}\right), H(k$
Choose random r_{1} Store $Z\left(r_{1}\right), Z\left(r_{2}\right.$ in an array in RA।

Compute each Z (look up $Z\left(H\left(k_{i}\right)\right)$

If $Z\left(H\left(k_{i}\right)\right)=Z($ check whether $H($ any of $H\left(r_{j}\right), H(\digamma$

Details: avoid infi handle multiple co

Cryptanalyst is actually attacking many AES keys.
Wants to find k_{1}, k_{2}, \ldots
given $H\left(k_{1}\right), H\left(k_{2}\right), \ldots$
Rivest's "time-memory tradeoff using distinguished points" merges these computations.

For any 128-bit r : Compute $H(r), H(H(r)), \ldots$ until finding string that begins with 30 zero bits.
Call that string $Z(r)$.

Given $H\left(k_{1}\right), H\left(k_{2}\right), \ldots, H\left(k_{p}\right)$:
Choose random $r_{1}, r_{2}, \ldots, r_{p}$. Store $Z\left(r_{1}\right), Z\left(r_{2}\right), \ldots, Z\left(r_{p}\right)$ in an array in RAM.

Compute each $Z\left(H\left(k_{i}\right)\right)$; look up $Z\left(H\left(k_{i}\right)\right)$ in the array.

If $Z\left(H\left(k_{i}\right)\right)=Z\left(r_{j}\right)$,
check whether $H\left(k_{i}\right)$ matches any of $H\left(r_{j}\right), H\left(H\left(r_{j}\right)\right), \ldots$

Details: avoid infinite loops; handle multiple collisions.
cually
ES keys.
k_{2}, \ldots
),
nory tradeoff
points" outations.

Compute until begins
(r).

Given $H\left(k_{1}\right), H\left(k_{2}\right), \ldots, H\left(k_{p}\right)$:
Choose random $r_{1}, r_{2}, \ldots, r_{p}$. Store $Z\left(r_{1}\right), Z\left(r_{2}\right), \ldots, Z\left(r_{p}\right)$ in an array in RAM.

Compute each $Z\left(H\left(k_{i}\right)\right)$; look up $Z\left(H\left(k_{i}\right)\right)$ in the array.

If $Z\left(H\left(k_{i}\right)\right)=Z\left(r_{j}\right)$,
check whether $H\left(k_{i}\right)$ matches any of $H\left(r_{j}\right), H\left(H\left(r_{j}\right)\right), \ldots$

Details: avoid infinite loops; handle multiple collisions.

Heuristic analysis: $Z\left(r_{1}\right), Z\left(r_{2}\right), \ldots$, involves $\approx 2^{30}$ out

If any of the input then we'll find k_{1}. Chance $\approx 2^{30} p / 2^{1}$ Same for k_{2}, k_{3}, \ldots Total chance $\approx 2^{3}$ of finding at least

On a serial compu $\approx 2^{31} p$ AES evalu Cost: $\approx 128 p$ bits

Given $H\left(k_{1}\right), H\left(k_{2}\right), \ldots, H\left(k_{p}\right)$:
Choose random $r_{1}, r_{2}, \ldots, r_{p}$. Store $Z\left(r_{1}\right), Z\left(r_{2}\right), \ldots, Z\left(r_{p}\right)$ in an array in RAM.

Compute each $Z\left(H\left(k_{i}\right)\right)$; look up $Z\left(H\left(k_{i}\right)\right)$ in the array.

If $Z\left(H\left(k_{i}\right)\right)=Z\left(r_{j}\right)$,
check whether $H\left(k_{i}\right)$ matches any of $H\left(r_{j}\right), H\left(H\left(r_{j}\right)\right), \ldots$

Details: avoid infinite loops; handle multiple collisions.

Heuristic analysis: Computing $Z\left(r_{1}\right), Z\left(r_{2}\right), \ldots, Z\left(r_{p}\right)$ involves $\approx 2^{30}$ outputs of H.

If any of the inputs match k_{1} then we'll find k_{1}.
Chance $\approx 2^{30} p / 2^{128}$.
Same for k_{2}, k_{3}, \ldots.
Total chance $\approx 2^{30} p^{2} / 2^{128}$ of finding at least one key.

On a serial computer, $\approx 2{ }^{31} p$ AES evaluations.
Cost: $\approx 128 p$ bits of memory.
2), $\ldots, H\left(k_{p}\right)$:

$$
, r_{2}, \ldots, r_{p}
$$

$, \ldots, Z\left(r_{p}\right)$
1.
$\left.H\left(k_{i}\right)\right)$;
in the array.
$\left.{ }^{(}\right)$,
k_{i}) matches $\left.\left(r_{j}\right)\right), \ldots$
nite loops;
Ilisions.

Heuristic analysis: Computing $Z\left(r_{1}\right), Z\left(r_{2}\right), \ldots, Z\left(r_{p}\right)$ involves $\approx 2^{30}$ outputs of H.

If any of the inputs match k_{1} then we'll find k_{1}.
Chance $\approx 2^{30} p / 2^{128}$.
Same for k_{2}, k_{3}, \ldots.
Total chance $\approx 2^{30} p^{2} / 2^{128}$
of finding at least one key.
On a serial computer,
$\approx 2{ }^{31} p$ AES evaluations.
Cost: $\approx 128 p$ bits of memory.

Much better: Mas
Compute all Z val using p AES circu Use Schimmler sor collisions $Z\left(H\left(k_{i}\right)\right.$

Time: $\approx 2^{31} \mathrm{AES}$ plus $\approx 8 \sqrt{p}$ Schim About p times fas

Cost: p AES circu plus network links Maybe 100 times than serial. Can r

Heuristic analysis: Computing $Z\left(r_{1}\right), Z\left(r_{2}\right), \ldots, Z\left(r_{p}\right)$ involves $\approx 2^{30}$ outputs of H.

If any of the inputs match k_{1} then we'll find k_{1}.
Chance $\approx 2^{30} p / 2^{128}$.
Same for k_{2}, k_{3}, \ldots.
Total chance $\approx 2^{30} p^{2} / 2^{128}$ of finding at least one key.

On a serial computer, $\approx 2{ }^{31} p$ AES evaluations.
Cost: $\approx 128 p$ bits of memory.

Much better: Massive parallelism.
Compute all Z values in parallel, using p AES circuits.
Use Schimmler sort to find collisions $Z\left(H\left(k_{i}\right)\right)=Z\left(r_{j}\right)$.

Time: $\approx 2^{31}$ AES evaluations, plus $\approx 8 \sqrt{p}$ Schimmler steps. About p times faster than serial.

Cost: p AES circuits, plus network links. Maybe 100 times more expensive than serial. Can reduce the 100 .

Computing

 $Z\left(r_{p}\right)$puts of H.
s match k_{1}
ter,
ations.
of memory.

Much better: Massive parallelism.
Compute all Z values in parallel, using p AES circuits.
Use Schimmler sort to find collisions $Z\left(H\left(k_{i}\right)\right)=Z\left(r_{j}\right)$.
Time: $\approx 2^{31}$ AES evaluations, plus $\approx 8 \sqrt{p}$ Schimmler steps. About p times faster than serial.

Cost: p AES circuits, plus network links.
Maybe 100 times more expensive than serial. Can reduce the 100 .

Sieving

The "number-field is today's fastest r to factor a big RS

Most important N find small prime d of $x, x+1, x+2$,

1000002: divisible 1000003:
1000004: divisible 1000005: divisible 1000006: divisible

Much better: Massive parallelism.
Compute all Z values in parallel, using p AES circuits.
Use Schimmler sort to find collisions $Z\left(H\left(k_{i}\right)\right)=Z\left(r_{j}\right)$.

Time: $\approx 2^{31}$ AES evaluations, plus $\approx 8 \sqrt{p}$ Schimmler steps.
About p times faster than serial.
Cost: p AES circuits, plus network links.
Maybe 100 times more expensive than serial. Can reduce the 100 .

Sieving

The "number-field sieve" (NFS) is today's fastest method to factor a big RSA key n.

Most important NFS bottleneck: find small prime divisors of $x, x+1, x+2, \ldots, x+y$.

1000002: divisible by 23
1000003:
1000004: divisible by 22
1000005: divisible by 35
1000006: divisible by 27
$)=Z\left(r_{j}\right)$.
evaluations,
mler steps.
ter than serial.
its,
more expensive educe the 100 .

Sieving

The "number-field sieve" (NFS) is today's fastest method to factor a big RSA key n.

Most important NFS bottleneck:
find small prime divisors
of $x, x+1, x+2, \ldots, x+y$.
1000002: divisible by 23
1000003:
1000004: divisible by 22
1000005: divisible by 35
1000006: divisible by 27

Conventional sievi (e.g. 2000 Silverm 2000 Lenstra Shar

Generate pairs (2, $(2,1000004),(2,1$ $(3,1000002),(3,1$ etc.

Use distribution sc to sort by second $y^{1+o(1)}$ pairs.
Sorting time y^{1+o} machine cost y^{1+c}

Sieving

The "number-field sieve" (NFS) is today's fastest method to factor a big RSA key n.

Most important NFS bottleneck:
find small prime divisors
of $x, x+1, x+2, \ldots, x+y$.
1000002: divisible by 23
1000003:
1000004: divisible by 22
1000005: divisible by 35
1000006: divisible by 27

Conventional sieving/TWINKLE (e.g. 2000 Silverman, 2000 Lenstra Shamir):

Generate pairs $(2,1000002)$, $(2,1000004),(2,1000006), \ldots$, $(3,1000002),(3,1000005), \ldots$, etc.
Use distribution sort
to sort by second component.
$y^{1+o(1)}$ pairs.
Sorting time $y^{1+o(1) ; ~}$
machine cost $y^{1+o(1)}$.
nethod
A key n.
FS bottleneck:
ivisors
$\ldots, x+y$.
by 23
by 22
by 35
by 27

Conventional sieving/TWINKLE (e.g. 2000 Silverman, 2000 Lenstra Shamir):

Generate pairs (2,1000002), (2, 1000004), (2,1000006), \ldots, $(3,1000002),(3,1000005), \ldots$, etc.
Use distribution sort to sort by second component.
$y^{1+o(1)}$ pairs.
Sorting time $y^{1+o(1) ; ~}$
machine cost $y^{1+o(1)}$.

For same machine achieve much high by massive paralle
e.g. Schimmler sor sorting time $y^{0.5+}$ machine cost y^{1+c}

This drastically re overall NFS time for sufficiently larg (2001 Bernstein)

Conventional sieving/TWINKLE (e.g. 2000 Silverman, 2000 Lenstra Shamir):

Generate pairs $(2,1000002)$, $(2,1000004),(2,1000006), \ldots$, $(3,1000002),(3,1000005), \ldots$, etc.
Use distribution sort to sort by second component.
$y^{1+o(1)}$ pairs.
Sorting time $y^{1+o(1)}$;
machine cost $y^{1+o(1)}$.

For same machine cost, achieve much higher speed by massive parallelism.
e.g. Schimmler sort: sorting time $y^{0.5+o(1) ; ~}$ machine cost $y^{1+o(1)}$.

This drastically reduces overall NFS time for sufficiently large n.
(2001 Bernstein)
an,
nir):
1000002),
000006), ... ,
000005), ... ,
rt
component.
(1);
(1)

For same machine cost, achieve much higher speed by massive parallelism.
e.g. Schimmler sort:
sorting time $y^{0.5+o(1) ; ~}$
machine cost $y^{1+o(1)}$.
This drastically reduces overall NFS time for sufficiently large n. (2001 Bernstein)

Can do even bette low-memory small. algorithms, such a elliptic-curve meth Time only $y^{0+o(1)}$ machine cost y^{1+c}

This further reduc overall NFS time for sufficiently larg (2001 Bernstein)

Can also save tim bottleneck, "linear less important. (2

For same machine cost, achieve much higher speed by massive parallelism.
e.g. Schimmler sort:
sorting time $y^{0.5+o(1) ; ~}$ machine cost $y^{1+o(1)}$.

This drastically reduces overall NFS time for sufficiently large n. (2001 Bernstein)

Can do even better with low-memory small-divisor algorithms, such as the elliptic-curve method (ECM).
Time only $y^{0+o(1) ; ~}$ machine cost $y^{1+o(1)}$.

This further reduces overall NFS time for sufficiently large n. (2001 Bernstein)

Can also save time in another bottleneck, "linear algebra"; less important. (2001 Bernstein)
cost, er speed lism.
$o(1)$;
(1)

duces

e n.

Can do even better with low-memory small-divisor algorithms, such as the elliptic-curve method (ECM).
Time only $y^{0+o(1) ; ~}$ machine cost $y^{1+o(1)}$.

This further reduces overall NFS time for sufficiently large n. (2001 Bernstein)

Can also save time in another bottleneck, "linear algebra"; less important. (2001 Bernstein)

NFS price-perform $\exp ((\beta+o(1)) \sqrt[3]{(l}$ assuming standard

sieving	linear
RAM	RAM
RAM	RAM
Schimmler	RAM
Schimmler	Schim
ECM	RAM
ECM	Schim

(RAM 2.85: stand 2.37, 1.97: 2001.1

RAM 2.76: 2002.1

Can do even better with low-memory small-divisor algorithms, such as the elliptic-curve method (ECM).

Time only $y^{0+o(1) ; ~}$ machine cost $y^{1+o(1)}$.

This further reduces overall NFS time for sufficiently large n. (2001 Bernstein)

Can also save time in another bottleneck, "linear algebra"; less important. (2001 Bernstein)

NFS price-performance ratio is $\exp \left((\beta+o(1)) \sqrt[3]{(\log n)(\log \log n)^{2}}\right)$ assuming standard conjectures.

sieving	linear algebra	β
RAM	RAM	$2.85 \ldots$
RAM	RAM	$2.76 \ldots$
Schimmler	RAM	$2.37 \ldots$
Schimmler	Schimmler	$2.36 \ldots$
ECM	RAM	$2.08 \ldots$
ECM	Schimmler	$1.97 \ldots$

(RAM 2.85: standard;
2.37, 1.97: 2001.11 Bernstein;

RAM 2.76: 2002.04 Pomerance)
r with
-divisor
s the
od (ECM).
(1)
es
e n.
in another
algebra";
001 Bernstein)

NFS price-performance ratio is
$\exp \left((\beta+o(1)) \sqrt[3]{(\log n)(\log \log n)^{2}}\right)$ assuming standard conjectures.

sieving	linear algebra	β
RAM	RAM	$2.85 \ldots$
RAM	RAM	$2.76 \ldots$
Schimmler	RAM	$2.37 \ldots$
Schimmler	Schimmler	$2.36 \ldots$
ECM	RAM	$2.08 \ldots$
ECM	Schimmler	$1.97 \ldots$

(RAM 2.85: standard;
2.37, 1.97: 2001.11 Bernstein;

RAM 2.76: 2002.04 Pomerance)

Switching from R massively parallel produces gigantic for sufficiently larg

Improvement from RAM factorization to best machine, , corresponds to mu number of digits o by $3.009 \ldots+o(1$

NFS price-performance ratio is $\exp \left((\beta+o(1)) \sqrt[3]{(\log n)(\log \log n)^{2}}\right)$ assuming standard conjectures.

sieving	linear algebra	β
RAM	RAM	$2.85 \ldots$
RAM	RAM	$2.76 \ldots$
Schimmler	RAM	$2.37 \ldots$
Schimmler	Schimmler	$2.36 \ldots$
ECM	RAM	$2.08 \ldots$
ECM	Schimmler	$1.97 \ldots$

(RAM 2.85: standard;
2.37, 1.97: 2001.11 Bernstein;

RAM 2.76: 2002.04 Pomerance)

Switching from RAM to a massively parallel machine produces gigantic NFS speedups for sufficiently large n.

Improvement from conventional RAM factorization, $\beta=2.85 \ldots$, to best machine, $\beta=1.97 \ldots$, corresponds to multiplying number of digits of n by $3.009 \ldots+o(1)$.
ance ratio is $\left.\operatorname{og} n)(\log \log n)^{2}\right)$ conjectures.

algebra	β
	$2.85 \ldots$
	$2.76 \ldots$
	$2.37 \ldots$
mler	$2.36 \ldots$
	$2.08 \ldots$
mler	$1.97 \ldots$

ard;
1 Bernstein;
4 Pomerance)

Switching from RAM to a massively parallel machine produces gigantic NFS speedups for sufficiently large n.

Improvement from conventional RAM factorization, $\beta=2.85 \ldots$, to best machine, $\beta=1.97 \ldots$. corresponds to multiplying number of digits of n by $3.009 \ldots+o(1)$.

As always, o(1) is
Situation for smal is much less clear. How expensive is factor 1024-bit RS We still don't kno

Can now find man making wild predic None of the predic can be taken serio

Switching from RAM to a massively parallel machine produces gigantic NFS speedups for sufficiently large n.

Improvement from conventional
RAM factorization, $\beta=2.85 \ldots$, to best machine, $\beta=1.97 \ldots$, corresponds to multiplying number of digits of n by $3.009 \ldots+o(1)$.

As always, o(1) is asymptotic.
Situation for small n
is much less clear.
How expensive is it to factor 1024-bit RSA keys?
We still don't know.
Can now find many papers making wild predictions.
None of the predictions can be taken seriously!

AM to a machine NFS speedups e n.
conventional
, $\beta=2.85 \ldots$.
$3=1.97 \ldots$,
Itiplying
f n
As always, o(1) is asymptotic.
Situation for small n
is much less clear.
How expensive is it to
factor 1024-bit RSA keys?
We still don't know.
Can now find many papers making wild predictions.
None of the predictions
can be taken seriously!

NFS speed is com
Example: NFS fac using an auxiliary
Number of polyno is huge. Effect of takes time to com

Some papers don' effort into polynor so they underestin

Some papers mak optimal-polynomia so they overestima

As always, o(1) is asymptotic.
Situation for small n
is much less clear.
How expensive is it to factor 1024-bit RSA keys?
We still don't know.
Can now find many papers making wild predictions.
None of the predictions can be taken seriously!

NFS speed is complicated.
Example: NFS factors n
using an auxiliary polynomial.
Number of polynomial choices is huge. Effect of polynomial takes time to compute.

Some papers don't put enough effort into polynomial choice, so they underestimate NFS speed.

Some papers make unjustified optimal-polynomial extrapolations, so they overestimate NFS speed.
asymptotic.

NFS speed is complicated.
Example: NFS factors n using an auxiliary polynomial.
Number of polynomial choices is huge. Effect of polynomial takes time to compute.

Some papers don't put enough effort into polynomial choice, so they underestimate NFS speed.

Some papers make unjustified optimal-polynomial extrapolations, so they overestimate NFS speed.

At a lower level, t massively parallel are much less stre than today's Penti

Computer market Massive parallelisn become the de-fac and will be tuned

How much speed Today it's hard to But we'll find out!

NFS speed is complicated.
Example: NFS factors n
using an auxiliary polynomial.
Number of polynomial choices is huge. Effect of polynomial takes time to compute.

Some papers don't put enough effort into polynomial choice, so they underestimate NFS speed.

Some papers make unjustified optimal-polynomial extrapolations, so they overestimate NFS speed.

At a lower level, today's massively parallel computers are much less streamlined than today's Pentiums.

Computer market will evolve. Massive parallelism will become the de-facto standard, and will be tuned carefully.

How much speed will we gain?
Today it's hard to say.
But we'll find out!

