Stronger security bounds for Wegman-Carter-Shoup authenticators

D. J. Bernstein

Thanks to: University of Illinois at Chicago NSF CCR-9983950 Alfred P. Sloan Foundation

Standard polynomial-evaluation MAC: sender sends $(1, m_1, m_1(r) + s_1);$ $(2, m_2, m_2(r) + s_2);$ $(3, m_3, m_3(r) + s_3).$

univariate; degree $< 2^{16}$; constant coefficient 0.

r, *s*₁, *s*₂, *s*₃: elements of *F*; secret; known to sender, receiver.

F: field of size 2^{128} .

- m_1, m_2, m_3 : polynomials over F;

oounds r-Shoup

is at Chicago 0 undation Standard polynomial-evaluation MAC: sender sends $(1, m_1, m_1(r) + s_1);$ $(2, m_2, m_2(r) + s_2);$ $(3, m_3, m_3(r) + s_3).$

 m_1, m_2, m_3 : polynomials over F; univariate; degree $\leq 2^{16}$; constant coefficient 0.

 r, s_1, s_2, s_3 : elements of F; secret; known to sender, receiver.

F: field of size 2^{128} .

Wegman-Carter ve (r, s_1, s_2, s_3) is a (random element o 2^{512} possibilities, each equally likely. Wegman-Carter-S $s_1 \neq s_2; s_1 \neq s_3;$ otherwise uniform. $2^{256}(2^{128}-1)(2^{12})$ possibilities, each How secure are th

Standard polynomial-evaluation MAC: sender sends $(1, m_1, m_1(r) + s_1);$ $(2, m_2, m_2(r) + s_2);$ $(3, m_3, m_3(r) + s_3).$

 m_1, m_2, m_3 : polynomials over F; univariate; degree $< 2^{16}$; constant coefficient 0.

 r, s_1, s_2, s_3 : elements of F; secret; known to sender, receiver.

F: field of size 2^{128} .

Wegman-Carter version: (r, s_1, s_2, s_3) is a uniform random element of F^4 . 2^{512} possibilities. each equally likely. Wegman-Carter-Shoup version: $s_1 \neq s_2; s_1 \neq s_3; s_2 \neq s_3;$ otherwise uniform. $2^{256}(2^{128}-1)(2^{128}-2)$ possibilities, each equally likely.

How secure are these MACs?

ial-evaluation

S

- 1); 2);
- 3).

nomials over F; $\leq 2^{16}$; of 0.

ents of F;

ender, receiver.

28

Wegman-Carter version: (r, s_1, s_2, s_3) is a uniform random element of F^4 . 2^{512} possibilities, each equally likely.

Wegman-Carter-Shoup version: $s_1 \neq s_2$; $s_1 \neq s_3$; $s_2 \neq s_3$; otherwise uniform. $2^{256}(2^{128} - 1)(2^{128} - 2)$ possibilities, each equally likely.

How secure are these MACs?

Standard security for Wegman-Carte "Authenticators re no information abo Conditional distrib given $(1, m_1, a_1)$, $(3, m_3, a_3)$, is unif There are 2^{128} pos each consistent wi unique choice of s $s_2 = a_2 - m_2(r),$

Wegman-Carter version: (r, s_1, s_2, s_3) is a uniform random element of F^4 . 2^{512} possibilities, each equally likely.

Wegman-Carter-Shoup version: $s_1 \neq s_2; s_1 \neq s_3; s_2 \neq s_3;$ otherwise uniform. $2^{256}(2^{128}-1)(2^{128}-2)$ possibilities, each equally likely.

How secure are these MACs?

Standard security bounds for Wegman-Carter: "Authenticators reveal no information about r." Conditional distribution of r, given $(1, m_1, a_1)$, $(2, m_2, a_2)$, $(3, m_3, a_3)$, is uniform. There are 2^{128} possible r's, each consistent with a $s_2 = a_2 - m_2(r), \ s_3 = a_3 - m_3(r).$

- unique choice of $s_1 = a_1 m_1(r)$,

ersion: uniform f *F*⁴.

noup version:

 $s_2 \neq s_3;$

⁸ – 2) equally likely.

ese MACs?

Standard security bounds for Wegman-Carter: "Authenticators reveal no information about r." Conditional distribution of r, given $(1, m_1, a_1)$, $(2, m_2, a_2)$, $(3, m_3, a_3)$, is uniform. There are 2^{128} possible r's, each consistent with a unique choice of $s_1 = a_1 - m_1(r)$, $s_2 = a_2 - m_2(r), \ s_3 = a_3 - m_3(r).$

Say attacker atten (1, m, a) with $m = \frac{1}{7}$ m(0) = 0; degree Forgery is successf $a = m(r) + s_1 \iff$ $a = m(r) + a_1 - \frac{1}{7}$ r is a root of m =

 $m-m_1+a_1-a$ polynomial of degrees so it has $\leq 2^{16}$ rooms

Attempted forgery $\leq 2^{16}/2^{128}$ chance

Standard security bounds for Wegman-Carter:

"Authenticators reveal no information about r."

Conditional distribution of r. given $(1, m_1, a_1), (2, m_2, a_2),$ $(3, m_3, a_3)$, is uniform.

There are 2^{128} possible r's, each consistent with a unique choice of $s_1 = a_1 - m_1(r)$, $s_2 = a_2 - m_2(r), \ s_3 = a_3 - m_3(r).$

Say attacker attempts forgery (1, m, a) with $m \neq m_1$; m(0) = 0; degree $< 2^{16}$. Forgery is successful \iff $a=m(r)+s_1\iff$ $a=m(r)+a_1-m_1(r)\iff$ r is a root of $m - m_1 + a_1 - a_1$. $m-m_1+a_1-a$ is a nonzero polynomial of degree $< 2^{16}$ so it has $< 2^{16}$ roots. Attempted forgery has $< 2^{16}/2^{128}$ chance of success.

bounds r:

eveal out *r*."

oution of r, (2, m_2 , a_2), Form.

ssible r's,

th a

 $a_1 = a_1 - m_1(r),$ $s_3 = a_3 - m_3(r).$ Say attacker attempts forgery (1, m, a) with $m \neq m_1$; m(0) = 0; degree $\leq 2^{16}$. Forgery is successful \iff $a = m(r) + s_1 \iff$ $a = m(r) + a_1 - m_1(r) \iff$ r is a root of $m - m_1 + a_1 - a$.

 $m-m_1+a_1-a$ is a nonzero polynomial of degree $\leq 2^{16}$ so it has $\leq 2^{16}$ roots.

Attempted forgery has $\leq 2^{16}/2^{128}$ chance of success.

Original security b for Wegman-Carte "Authenticators re very little informat (1996 Shoup) Stronger security I for Wegman-Carte "Wegman-Carter-S identical to Wegm (bounds, 2004.10 this proof, 2005.03 Warning: careless weaker ("game-pla

Say attacker attempts forgery (1, m, a) with $m \neq m_1$; m(0) = 0; degree $< 2^{16}$.

Forgery is successful \iff $a = m(r) + s_1 \iff$ $a=m(r)+a_1-m_1(r)\iff$ r is a root of $m - m_1 + a_1 - a$.

 $m-m_1+a_1-a$ is a nonzero polynomial of degree $\leq 2^{16}$ so it has $< 2^{16}$ roots.

Attempted forgery has $\leq 2^{16}/2^{128}$ chance of success.

Original security bounds for Wegman-Carter-Shoup: "Authenticators reveal very little information about r." (1996 Shoup) Stronger security bounds for Wegman-Carter-Shoup: "Wegman-Carter-Shoup is almost identical to Wegman-Carter."

(bounds, 2004.10 Bernstein; this proof, 2005.03 Bernstein)

Warning: carelessness leads to weaker ("game-playing") bounds.

npts forgery $\neq m_1;$ $\leq 2^{16}$. $ful \iff$ \Rightarrow $m_1(r) \iff$ $m_1 + a_1 - a_1$ is a nonzero ree $< 2^{16}$ ots. has e of success.

Original security bounds for Wegman-Carter-Shoup: "Authenticators reveal very little information about r." (1996 Shoup) Stronger security bounds for Wegman-Carter-Shoup: "Wegman-Carter-Shoup is almost

identical to Wegman-Carter." (bounds, 2004.10 Bernstein;

this proof, 2005.03 Bernstein)

Warning: carelessness leads to weaker ("game-playing") bounds.

Fix a deterministic generates m_1 ; see generates m_2 ; see generates m_3 ; see generates forgery a (n, m, a) with $n \in$ $m \neq m_n, m(0) =$

(Generalizations: variable # of chose arbitrary order of revariable # of forge Original security bounds for Wegman-Carter-Shoup: "Authenticators reveal very little information about r." (1996 Shoup)

Stronger security bounds for Wegman-Carter-Shoup: "Wegman-Carter-Shoup is almost identical to Wegman-Carter." (bounds, 2004.10 Bernstein; this proof, 2005.03 Bernstein)

Warning: carelessness leads to weaker ("game-playing") bounds.

Fix a deterministic attack A that generates m_1 ; sees $m_1(r) + s_1$; generates m_2 ; sees $m_2(r) + s_2$; generates m_3 ; sees $m_3(r) + s_3$; generates forgery attempt (n, m, a) with $n \in \{1, 2, 3\}$, $m \neq m_n$, m(0) = 0, deg $< 2^{16}$. (Generalizations: randomized A;

arbitrary order of nonces; variable # of forgery attempts.)

- variable # of chosen messages;

ounds r-Shoup: eveal cion about *r*."

- pounds
- r-Shoup:
- Shoup is almost
- an-Carter."
- Bernstein;
- 3 Bernstein)
- ness leads to aying") bounds.

Fix a deterministic attack A that generates m_1 ; sees $m_1(r) + s_1$; generates m_2 ; sees $m_2(r) + s_2$; generates m_3 ; sees $m_3(r) + s_3$; generates forgery attempt (n, m, a) with $n \in \{1, 2, 3\}$, $m \neq m_n, m(0) = 0$, deg $\leq 2^{16}$.

(Generalizations: randomized A; variable # of chosen messages; arbitrary order of nonces; variable # of forgery attempts.)

Fix a deterministic attack A that generates m_1 ; sees $m_1(r) + s_1$; generates m_2 ; sees $m_2(r) + s_2$; generates m_3 ; sees $m_3(r) + s_3$; generates forgery attempt (n, m, a) with $n \in \{1, 2, 3\}$, $m \neq m_n, m(0) = 0, \deg < 2^{16}.$

(Generalizations: randomized A; variable # of chosen messages; arbitrary order of nonces; variable # of forgery attempts.)

Apply A to Wegman-Carter. $\Pr[a = m(r) + s_n] \le 1/2^{112}.$ Proved this earlier. For each $S \in F^3$: Define p(S) as conditional probability that $a = m(r) + s_n$ given that $(s_1, s_2, s_3) = S$. $\Pr[a = m(r) + s_n]$ $= \sum_{S} \Pr[(s_1, s_2, s_3) = S] p(S)$ $=\sum_{S} 2^{-384} p(S).$

- Thus $\sum_{S} 2^{-384} p(S) \le 1/2^{112}$.

c attack A that s $m_1(r) + s_1;$ s $m_2(r) + s_2;$ s $m_3(r) + s_3;$ attempt $\in \{1, 2, 3\},$ 0, deg $\leq 2^{16}$.

randomized A;

en messages;

nonces;

ery attempts.)

Apply A to Wegman-Carter. $\Pr[a = m(r) + s_n] \le 1/2^{112}$. Proved this earlier. For each $S \in F^3$: Define p(S) as conditional probability that $a = m(r) + s_n$

given that $(s_1, s_2, s_3) = S$.

 $Pr[a = m(r) + s_n]$ $= \sum_{S} Pr[(s_1, s_2, s_3) = S]p(S)$ $= \sum_{S} 2^{-384} p(S).$

Thus $\sum_{S} 2^{-384} p(S) \le 1/2^{112}$.

Apply A to Wegm $\Pr[(s_1, s_2, s_3) = S$ $\delta = 2^{384}/2^{128}(2^{128})$ For $S \in F^3$: Cond that a = m(r) + s $(s_1, s_2, s_3) = S$, is so $\Pr[a = m(r) +$ $\leq \sum_{S} 2^{-384} \delta p(S)$ This is the stronge Could take careles use Pr < 1 to get $\Pr < 1/2^{112} + 3/2$

Apply A to Wegman-Carter.

$$\Pr[a = m(r) + s_n] \leq 1/2^{112}.$$

Proved this earlier.

For each $S \in F^3$: Define p(S) as conditional probability that $a = m(r) + s_n$ given that $(s_1, s_2, s_3) = S$.

$$\Pr[a = m(r) + s_n]$$

= $\sum_{S} \Pr[(s_1, s_2, s_3) = S]p(S)$
= $\sum_{S} 2^{-384} p(S).$

Thus $\sum_{S} 2^{-384} p(S) \le 1/2^{112}$.

that $a = m(r) + s_n$, given that $(s_1, s_2, s_3) = S$, is the same p(S), so $\Pr[a = m(r) + s_n]$ $\leq \sum_{S} 2^{-384} \delta p(S) \leq \delta/2^{112}$. Could take careless extra step: use Pr < 1 to get weaker bound $\Pr \le 1/2^{112} + 3/2^{128}$.

- Apply A to Wegman-Carter-Shoup.
- $\Pr[(s_1, s_2, s_3) = S] < 2^{-384} \delta$ where $\delta = \frac{2^{384}}{2^{128}} (2^{128} - 1)(2^{128} - 2).$
- For $S \in F^3$: Conditional probability
- This is the stronger security bound.

an-Carter.

 $] \leq 1/2^{112}.$

Define p(S) as oility

 S_n

 $s_3) = S.$

] $s_3) = S]p(S)$

 $S) \le 1/2^{112}.$

Apply A to Wegman-Carter-Shoup. $\Pr[(s_1, s_2, s_3) = S] < 2^{-384} \delta$ where $\delta = \frac{2^{384}}{2^{128}} (2^{128} - 1)(2^{128} - 2).$ For $S \in F^3$: Conditional probability that $a = m(r) + s_n$, given that $(s_1, s_2, s_3) = S$, is the same p(S), so $\Pr[a = m(r) + s_n]$ $\leq \sum_{\varsigma} 2^{-384} \delta p(S) \leq \delta/2^{112}.$ This is the stronger security bound. Could take careless extra step: use $\Pr \leq 1$ to get weaker bound $\Pr < 1/2^{112} + 3/2^{128}$.

Wegman-Carter-S after 240 chosen n and D forgery atte Stronger: $\leq \approx D/($ Careless: $\leq \approx (D/$ Original: $\leq \approx D/($ 2^{60} instead of 2^{40} : Stronger: $\leq \approx D/($ Careless: $\leq \approx (D/$ Original: $< \approx \infty$.

Apply A to Wegman-Carter-Shoup.

$$\Pr[(s_1, s_2, s_3) = S] \le 2^{-384} \delta$$
 where $\delta = 2^{384}/2^{128}(2^{128}-1)(2^{128}-2).$

For $S \in F^3$: Conditional probability that $a = m(r) + s_n$, given that $(s_1, s_2, s_3) = S$, is the same p(S), so $\Pr[a = m(r) + s_n]$ $\leq \sum_{S} 2^{-384} \delta p(S) \leq \delta/2^{112}$. This is the stronger security bound.

Could take careless extra step: use Pr < 1 to get weaker bound $\Pr < 1/2^{112} + 3/2^{128}$.

Wegman-Carter-Shoup bounds after 2⁴⁰ chosen messages and *D* forgery attempts: Stronger: $< \approx D/(2^{112} - 2^{63})$. Careless: $\leq \approx (D/2^{112}) + (1/2^{49})$. Original: $\leq \approx D/(2^{112} - 2^{79})$. 2^{60} instead of 2^{40} : Stronger: $\leq \approx D/(2^{112} - 2^{103})$. Careless: $<\approx (D/2^{112}) + (1/2^9)$. Original: $\leq \approx \infty$.

an-Carter-Shoup.

 $[S] \leq 2^{-384} \delta$ where $[S^8 - 1)(2^{128} - 2).$

itional probability s_n , given that the same p(S), s_n] $\leq \delta/2^{112}$.

er security bound.

s extra step: weaker bound

Wegman-Carter-Shoup bounds after 2⁴⁰ chosen messages and *D* forgery attempts: Stronger: $< \approx D/(2^{112} - 2^{63})$. Careless: $\leq \approx (D/2^{112}) + (1/2^{49})$. Original: $\leq \approx D/(2^{112} - 2^{79})$. 2^{60} instead of 2^{40} : Stronger: $\leq \approx D/(2^{112} - 2^{103})$. Careless: $\leq \approx (D/2^{112}) + (1/2^9)$. Original: $< \approx \infty$.

Generalize $m_i(r)$ $h(m_i) + s_i$ where small differential p $\Pr[h(m) - h(m')]$

Original bound \approx for *C* as large as $\sqrt{}$ where *C* is # chose Proof strategy is c for larger *C*.

Stronger bound \approx for *C* as large as $\sqrt{}$ Careless bound \approx Wegman-Carter-Shoup bounds after 2⁴⁰ chosen messages and D forgery attempts: Stronger: $< \approx D/(2^{112} - 2^{63})$. Careless: $\leq \approx (D/2^{112}) + (1/2^{49})$. Original: $\leq \approx D/(2^{112} - 2^{79})$. 2^{60} instead of 2^{40} : Stronger: $< \approx D/(2^{112} - 2^{103})$. Careless: $<\approx (D/2^{112}) + (1/2^9)$. Original: $< \approx \infty$.

Generalize $m_i(r) + s_i$ to any $h(m_i) + s_i$ where h has small differential probabilities: $\Pr[h(m) - h(m') = g] \leq \epsilon.$ Original bound $\approx D\epsilon$ for C as large as $\sqrt{1/\epsilon}$, where C is # chosen messages. Proof strategy is doomed for larger C.

Stronger bound $\approx D\epsilon$ for C as large as $\sqrt{2^{128}}$.

Careless bound $\approx D\epsilon + C^2/2^{129}$.

noup bounds

nessages

empts:

 $(2^{112} - 2^{63}).$ $(2^{112}) + (1/2^{49}).$ $(2^{112} - 2^{79}).$

 $(2^{112} - 2^{103}).$ $(2^{112}) + (1/2^9).$ Generalize $m_i(r) + s_i$ to any $h(m_i) + s_i$ where h has small differential probabilities: $\Pr[h(m) - h(m') = g] \le \epsilon.$

Original bound $\approx D\epsilon$ for *C* as large as $\sqrt{1/\epsilon}$, where *C* is # chosen messages. Proof strategy is doomed for larger *C*.

Stronger bound $\approx D\epsilon$ for *C* as large as $\sqrt{2^{128}}$.

Careless bound $\approx D\epsilon + C^2/2^{129}$.

Wegman-Carter-S implies $h(m_i) + A$ if AES is secure. Explicit AES secur $AES_k(1), AES_k(2)$ indistinguishable f **Not** true for Weg i.e., not true with conditions $s_1 \neq s_2$ Wegman-Carter s₁ often collide for la

Generalize $m_i(r) + s_i$ to any $h(m_i) + s_i$ where h has small differential probabilities: $\Pr[h(m) - h(m') = g] \leq \epsilon.$

Original bound $\approx D\epsilon$ for C as large as $\sqrt{1/\epsilon}$, where C is # chosen messages. Proof strategy is doomed for larger C.

Stronger bound $\approx D\epsilon$ for C as large as $\sqrt{2^{128}}$.

Careless bound $\approx D\epsilon + C^2/2^{129}$.

Wegman-Carter-Shoup security implies $h(m_i) + AES_k(i)$ security if AES is secure.

Explicit AES security goal: $AES_k(1), AES_k(2), ...$ indistinguishable from s_1, s_2, \ldots

Not true for Wegman-Carter: i.e., **not** true without conditions $s_1 \neq s_2$ etc. Wegman-Carter s_1, s_2, \ldots, s_C often collide for large C.

 $+ s_i$ to any

h has

robabilities:

 $=g]\leq\epsilon$.

 $D\epsilon$ $/1/\epsilon$,

sen messages. Ioomed

 $D\epsilon$ $/2^{128}$.

 $D\epsilon + C^2/2^{129}$.

Wegman-Carter-Shoup security implies $h(m_i) + AES_k(i)$ security if AES is secure.

Explicit AES security goal: AES_k(1), AES_k(2), ... indistinguishable from $s_1, s_2, ...$

Not true for Wegman-Carter: i.e., not true without conditions $s_1 \neq s_2$ etc. Wegman-Carter s_1, s_2, \ldots, s_C often collide for large *C*.

MAC speed leader http://cr.yp.to Poly1305-AES bou is $[L/16]/2^{103}$ for L-byte message e.g., $\epsilon \leq 2^{-92}$ for Security gap comp $< 1.7D/2^{92}$ if C \leq With old security C was limited to a

Wegman-Carter-Shoup security implies $h(m_i) + AES_k(i)$ security if AES is secure.

Explicit AES security goal: $AES_k(1), AES_k(2), ...$ indistinguishable from s_1, s_2, \ldots

Not true for Wegman-Carter: i.e., **not** true without conditions $s_1 \neq s_2$ etc. Wegman-Carter s_1, s_2, \ldots, s_C often collide for large C.

http://cr.yp.to/mac.html. Poly1305-AES bound on ϵ is $[L/16]/2^{103}$ for *L*-byte messages. e.g., $\epsilon < 2^{-92}$ for L = 2048. Security gap compared to AES $< 1.7D/2^{92}$ if $C < 2^{64}$. With old security bound, C was limited to about 2^{46} .

- MAC speed leader: Poly1305-AES,

```
houp security \mathsf{ES}_k(i) security
```

- ity goal:
- , - -
- rom $s_1, s_2, ...$
- man-Carter:
- out
- etc.
- s_2, \ldots, s_C rge C.

MAC speed leader: Poly1305-AES, http://cr.yp.to/mac.html.

Poly1305-AES bound on ϵ is $\lceil L/16 \rceil / 2^{103}$ for *L*-byte messages.

e.g., $\epsilon \leq 2^{-92}$ for L = 2048.

Security gap compared to AES $< 1.7D/2^{92}$ if $C \le 2^{64}$. With old security bound, C was limited to about 2^{46} .

Improved security apply far beyond t "Stronger security permutations": ht /papers.html#pe Stronger than "ga Another application is provably stronge /papers.html#co coming soon.

MAC speed leader: Poly1305-AES, http://cr.yp.to/mac.html.

Poly1305-AES bound on ϵ is $[L/16]/2^{103}$ for *L*-byte messages.

e.g., $\epsilon < 2^{-92}$ for L = 2048.

Security gap compared to AES $< 1.7D/2^{92}$ if $C < 2^{64}$. With old security bound, C was limited to about 2^{46} .

Improved security bounds

/papers.html#permutations

Stronger than "game-playing."

is provably stronger than CBC.

/papers.html#countermode, coming soon.

apply far beyond the MAC context.

"Stronger security bounds for

- permutations": http://cr.yp.to
- Another application: Counter mode

: Poly1305-AES, p/mac.html.

and on ϵ

es.

L = 2048.

eared to AES $\leq 2^{64}$.

bound,

bout 2⁴⁶.

Improved security bounds apply far beyond the MAC context. "Stronger security bounds for permutations": http://cr.yp.to /papers.html#permutations Stronger than "game-playing." Another application: Counter mode is provably stronger than CBC. /papers.html#countermode, coming soon.

AES security problem 16-byte block inverse Partly fixed in this but still annoying.

AES security probles secret-index table

"Not vulnerable to

- was wrong. Very I
- without extreme s

/papers.html#ca

Many fast stream don't have these p Do we want to kee Improved security bounds apply far beyond the MAC context.

"Stronger security bounds for permutations": http://cr.yp.to /papers.html#permutations

Stronger than "game-playing."

Another application: Counter mode is provably stronger than CBC. /papers.html#countermode, coming soon.

AES security problems from 16-byte block invertibility: Partly fixed in this talk, but still annoying.

AES security problems from secret-index table lookups: was wrong. Very hard to fix without extreme slowdowns. /papers.html#cachetiming

Many fast stream ciphers don't have these problems. Do we want to keep AES?

- "Not vulnerable to timing attacks"