Stronger security bounds for Wegman-Carter-Shoup authenticators
D. J. Bernstein

Thanks to:
University of Illinois at Chicago NSF CCR-9983950
Alfred P. Sloan Foundation

Standard polynomial-evaluation MAC: sender sends
$\left(1, m_{1}, m_{1}(r)+s_{1}\right)$;
$\left(2, m_{2}, m_{2}(r)+s_{2}\right)$;
$\left(3, m_{3}, m_{3}(r)+s_{3}\right)$.
m_{1}, m_{2}, m_{3} : polynomials over F; univariate; degree $\leq 2^{16}$;
constant coefficient 0 .
r, s_{1}, s_{2}, s_{3} : elements of F;
secret; known to sender, receiver.
F : field of size 2^{128}.
ounds
r-Shoup
is at Chicago
undation

Standard polynomial-evaluation
MAC: sender sends
$\left(1, m_{1}, m_{1}(r)+s_{1}\right)$;
$\left(2, m_{2}, m_{2}(r)+s_{2}\right)$;
$\left(3, m_{3}, m_{3}(r)+s_{3}\right)$.
m_{1}, m_{2}, m_{3} : polynomials over F; univariate; degree $\leq 2^{16}$;
constant coefficient 0 .
r, s_{1}, s_{2}, s_{3} : elements of F;
secret; known to sender, receiver.
F : field of size 2^{128}.

Wegman-Carter ve $\left(r, s_{1}, s_{2}, s_{3}\right)$ is a random elemento 2^{512} possibilities, each equally likely.

Wegman-Carter-SI
$s_{1} \neq s_{2} ; s_{1} \neq s_{3}$; otherwise uniform. $2^{256}\left(2^{128}-1\right)\left(2^{12}\right.$ possibilities, each

How secure are th

Standard polynomial-evaluation MAC: sender sends
$\left(1, m_{1}, m_{1}(r)+s_{1}\right)$;
$\left(2, m_{2}, m_{2}(r)+s_{2}\right)$;
$\left(3, m_{3}, m_{3}(r)+s_{3}\right)$.
m_{1}, m_{2}, m_{3} : polynomials over F; univariate; degree $\leq 2^{16}$;
constant coefficient 0 .
r, s_{1}, s_{2}, s_{3} : elements of F; secret; known to sender, receiver.
F : field of size 2^{128}.

Wegman-Carter version:
$\left(r, s_{1}, s_{2}, s_{3}\right)$ is a uniform random element of F^{4}. 2^{512} possibilities, each equally likely.

Wegman-Carter-Shoup version:
$s_{1} \neq s_{2} ; s_{1} \neq s_{3} ; s_{2} \neq s_{3} ;$
otherwise uniform.
$2^{256}\left(2^{128}-1\right)\left(2^{128}-2\right)$
possibilities, each equally likely.
How secure are these MACs?
ial-evaluation
nomials over F;
$\leq 2^{16}$;
t 0 .
nts of F;
ender, receiver.
28

Wegman-Carter version:
$\left(r, s_{1}, s_{2}, s_{3}\right)$ is a uniform
random element of F^{4}.
2^{512} possibilities,
each equally likely.
Wegman-Carter-Shoup version:
$s_{1} \neq s_{2} ; s_{1} \neq s_{3} ; s_{2} \neq s_{3} ;$
otherwise uniform.
$2^{256}\left(2^{128}-1\right)\left(2^{128}-2\right)$
possibilities, each equally likely.
How secure are these MACs?

Standard security for Wegman-Carte
"Authenticators re no information ab

Conditional distrib given ($1, m_{1}, a_{1}$), $\left(3, m_{3}, a_{3}\right)$, is unif

There are 2^{128} po each consistent wi unique choice of s $s_{2}=a_{2}-m_{2}(r)$,

Wegman-Carter version:
$\left(r, s_{1}, s_{2}, s_{3}\right)$ is a uniform random element of F^{4}.
2^{512} possibilities, each equally likely.

Wegman-Carter-Shoup version:
$s_{1} \neq s_{2} ; s_{1} \neq s_{3} ; s_{2} \neq s_{3} ;$
otherwise uniform.
$2^{256}\left(2^{128}-1\right)\left(2^{128}-2\right)$
possibilities, each equally likely.
How secure are these MACs?

Standard security bounds for Wegman-Carter:
"Authenticators reveal no information about r."

Conditional distribution of r, given $\left(1, m_{1}, a_{1}\right),\left(2, m_{2}, a_{2}\right)$, $\left(3, m_{3}, a_{3}\right)$, is uniform.

There are 2^{128} possible r 's, each consistent with a unique choice of $s_{1}=a_{1}-m_{1}(r)$, $s_{2}=a_{2}-m_{2}(r), s_{3}=a_{3}-m_{3}(r)$.
rsion:
uniform
f F^{4}.
noup version:
$s_{2} \neq s_{3} ;$
$8-2)$
equally likely.
ese MACs?

Standard security bounds for Wegman-Carter:
"Authenticators reveal
no information about r."
Conditional distribution of r, given $\left(1, m_{1}, a_{1}\right),\left(2, m_{2}, a_{2}\right)$, $\left(3, m_{3}, a_{3}\right)$, is uniform.

There are 2^{128} possible r 's, each consistent with a unique choice of $s_{1}=a_{1}-m_{1}(r)$,
$s_{2}=a_{2}-m_{2}(r), s_{3}=a_{3}-m_{3}(r)$.

Say attacker atten $(1, m, a)$ with $m=$ $m(0)=0$; degree

Forgery is success $a=m(r)+s_{1}$
$a=m(r)+a_{1}-$ r is a root of m -$m-m_{1}+a_{1}-a$ polynomial of deg so it has $\leq 2^{16}$ ro

Attempted forgery $\leq 2^{16} / 2^{128}$ chanc

Standard security bounds for Wegman-Carter:
"Authenticators reveal no information about r."

Conditional distribution of r, given $\left(1, m_{1}, a_{1}\right),\left(2, m_{2}, a_{2}\right)$, $\left(3, m_{3}, a_{3}\right)$, is uniform.

There are 2^{128} possible r 's, each consistent with a unique choice of $s_{1}=a_{1}-m_{1}(r)$, $s_{2}=a_{2}-m_{2}(r), s_{3}=a_{3}-m_{3}(r)$.

Say attacker attempts forgery
$(1, m, a)$ with $m \neq m_{1}$;
$m(0)=0$; degree $\leq 2^{16}$.
Forgery is successful

$a=m(r)+s_{1}$
$a=m(r)+a_{1}-m_{1}(r)$
r is a root of $m-m_{1}+a_{1}-a$.
$m-m_{1}+a_{1}-a$ is a nonzero polynomial of degree $\leq 2^{16}$
so it has $\leq 2^{16}$ roots.
Attempted forgery has
$\leq 2^{16} / 2^{128}$ chance of success.
bounds
veal out r."
ution of r,
$\left(2, m_{2}, a_{2}\right)$
orm.
ssible r 's,
th a
$1=a_{1}-m_{1}(r)$,
$s_{3}=a_{3}-m_{3}(r)$.

Say attacker attempts forgery
$(1, m, a)$ with $m \neq m_{1}$;
$m(0)=0$; degree $\leq 2^{16}$.
Forgery is successful

$a=m(r)+s_{1}$

$a=m(r)+a_{1}-m_{1}(r)$

r is a root of $m-m_{1}+a_{1}-a$.
$m-m_{1}+a_{1}-a$ is a nonzero polynomial of degree $\leq 2^{16}$
so it has $\leq 2^{16}$ roots.
Attempted forgery has
$\leq 2^{16} / 2^{128}$ chance of success.

Original security b for Wegman-Carte
"Authenticators re very little informat (1996 Shoup)

Stronger security for Wegman-Carte "Wegman-Carteridentical to Wegm (bounds, 2004.10 this proof, 2005.0

Warning: careless weaker ("game-pla

Say attacker attempts forgery
$(1, m, a)$ with $m \neq m_{1}$;
$m(0)=0$; degree $\leq 2^{16}$.
Forgery is successful \Longleftrightarrow
$a=m(r)+s_{1}$
$a=m(r)+a_{1}-m_{1}(r)$
r is a root of $m-m_{1}+a_{1}-a$.
$m-m_{1}+a_{1}-a$ is a nonzero
polynomial of degree $\leq 2^{16}$
so it has $\leq 2^{16}$ roots.
Attempted forgery has
$\leq 2^{16} / 2^{128}$ chance of success.

Original security bounds for Wegman-Carter-Shoup:
"Authenticators reveal
very little information about r." (1996 Shoup)

Stronger security bounds for Wegman-Carter-Shoup: "Wegman-Carter-Shoup is almost identical to Wegman-Carter." (bounds, 2004.10 Bernstein; this proof, 2005.03 Bernstein)

Warning: carelessness leads to weaker ("game-playing") bounds.
ipts forgery
$\neq m_{1}$;
$\leq 2^{16}$.

$m_{1}(r) \Longleftrightarrow$ $m_{1}+a_{1}-a$.
is a nonzero
ee $\leq 2^{16}$
ots.
has
of success.

Original security bounds for Wegman-Carter-Shoup:
"Authenticators reveal
very little information about r."
(1996 Shoup)
Stronger security bounds for Wegman-Carter-Shoup: "Wegman-Carter-Shoup is almost identical to Wegman-Carter." (bounds, 2004.10 Bernstein; this proof, 2005.03 Bernstein)

Warning: carelessness leads to weaker ("game-playing") bounds.

Fix a deterministic generates m_{1}; see generates m_{2}; see generates m_{3}; see generates forgery (n, m, a) with $n \in$ $m \neq m_{n}, m(0)=$ (Generalizations: variable \# of chos arbitrary order of variable \# of forg

Original security bounds for Wegman-Carter-Shoup:
"Authenticators reveal
very little information about r." (1996 Shoup)

Stronger security bounds for Wegman-Carter-Shoup:
"Wegman-Carter-Shoup is almost identical to Wegman-Carter." (bounds, 2004.10 Bernstein; this proof, 2005.03 Bernstein)

Warning: carelessness leads to weaker ("game-playing") bounds.

Fix a deterministic attack A that generates m_{1}; sees $m_{1}(r)+s_{1}$; generates m_{2}; sees $m_{2}(r)+s_{2}$; generates m_{3}; sees $m_{3}(r)+s_{3}$; generates forgery attempt (n, m, a) with $n \in\{1,2,3\}$, $m \neq m_{n}, m(0)=0, \operatorname{deg} \leq 2^{16}$.
(Generalizations: randomized A; variable \# of chosen messages; arbitrary order of nonces; variable \# of forgery attempts.)
ounds
r-Shoup:
veal
ion about r."
ounds
r-Shoup:
Shoup is almost
an-Carter."
Bernstein;
3 Bernstein)
ness leads to
ying"') bounds.

Fix a deterministic attack A that generates m_{1}; sees $m_{1}(r)+s_{1}$; generates m_{2}; sees $m_{2}(r)+s_{2}$; generates m_{3}; sees $m_{3}(r)+s_{3}$; generates forgery attempt (n, m, a) with $n \in\{1,2,3\}$, $m \neq m_{n}, m(0)=0, \operatorname{deg} \leq 2^{16}$.
(Generalizations: randomized A; variable \# of chosen messages; arbitrary order of nonces; variable \# of forgery attempts.)

Apply A to Wegm
$\operatorname{Pr}\left[a=m(r)+s_{n}\right.$ Proved this earlier

For each $S \in F^{3}$: conditional probab that $a=m(r)+$ given that $\left(s_{1}, s_{2}\right.$,
$\operatorname{Pr}\left[a=m(r)+s_{n}\right.$
$=\sum_{s} \operatorname{Pr}\left[\left(s_{1}, s_{2}, s\right.\right.$
$=\sum s 2^{-384} p(S)$.
Thus $\sum s 2^{-384} p($

Fix a deterministic attack A that generates m_{1}; sees $m_{1}(r)+s_{1}$; generates m_{2}; sees $m_{2}(r)+s_{2}$; generates m_{3}; sees $m_{3}(r)+s_{3}$; generates forgery attempt (n, m, a) with $n \in\{1,2,3\}$, $m \neq m_{n}, m(0)=0, \operatorname{deg} \leq 2^{16}$.
(Generalizations: randomized A; variable \# of chosen messages; arbitrary order of nonces; variable \# of forgery attempts.)

Apply A to Wegman-Carter.
$\operatorname{Pr}\left[a=m(r)+s_{n}\right] \leq 1 / 2^{112}$.
Proved this earlier.
For each $S \in F^{3}$: Define $p(S)$ as conditional probability that $a=m(r)+s_{n}$ given that $\left(s_{1}, s_{2}, s_{3}\right)=S$.
$\operatorname{Pr}\left[a=m(r)+s_{n}\right]$
$=\sum_{s} \operatorname{Pr}\left[\left(s_{1}, s_{2}, s_{3}\right)=S\right] p(S)$
$=\sum S 2^{-384} p(S)$.
Thus $\sum s 2^{-384} p(S) \leq 1 / 2^{112}$.
attack A that
$s m_{1}(r)+s_{1}$;
$m_{2}(r)+s_{2}$ $m_{3}(r)+s_{3} ;$ attempt
$=\{1,2,3\}$,
$0, \operatorname{deg} \leq 2^{16}$
randomized A;
en messages;
nonces;
ery attempts.)

Apply A to Wegman-Carter.
$\operatorname{Pr}\left[a=m(r)+s_{n}\right] \leq 1 / 2^{112}$.
Proved this earlier.
For each $S \in F^{3}$: Define $p(S)$ as conditional probability that $a=m(r)+s_{n}$ given that $\left(s_{1}, s_{2}, s_{3}\right)=S$.

$$
\begin{aligned}
& \operatorname{Pr}\left[a=m(r)+s_{n}\right] \\
& =\sum s \operatorname{Pr}\left[\left(s_{1}, s_{2}, s_{3}\right)=S\right] p(S) \\
& =\sum s^{2-384} p(S) .
\end{aligned}
$$

Thus $\sum s 2^{-384} p(S) \leq 1 / 2^{112}$.

Apply A to Wegm
$\operatorname{Pr}\left[\left(s_{1}, s_{2}, s_{3}\right)=S\right.$
$\delta=2^{384} / 2^{128}\left(2^{12}\right.$
For $S \in F^{3}$: Cond that $a=m(r)+$ $\left(s_{1}, s_{2}, s_{3}\right)=S$, is so $\operatorname{Pr}[a=m(r)+$
$\leq \sum s 2^{-384} \delta p(S)$
This is the strong
Could take careles use $\operatorname{Pr} \leq 1$ to get $\operatorname{Pr} \leq 1 / 2^{112}+3 / 2$

Apply A to Wegman-Carter.
$\operatorname{Pr}\left[a=m(r)+s_{n}\right] \leq 1 / 2^{112}$.
Proved this earlier.
For each $S \in F^{3}$: Define $p(S)$ as conditional probability
that $a=m(r)+s_{n}$
given that $\left(s_{1}, s_{2}, s_{3}\right)=S$.
$\operatorname{Pr}\left[a=m(r)+s_{n}\right]$
$=\sum_{s} \operatorname{Pr}\left[\left(s_{1}, s_{2}, s_{3}\right)=S\right] p(S)$
$=\sum s 2^{-384} p(S)$.
Thus $\sum s 2^{-384} p(S) \leq 1 / 2^{112}$.

Apply A to Wegman-Carter-Shoup.
$\operatorname{Pr}\left[\left(s_{1}, s_{2}, s_{3}\right)=S\right] \leq 2^{-384} \delta$ where
$\delta=2^{384} / 2^{128}\left(2^{128}-1\right)\left(2^{128}-2\right)$.
For $S \in F^{3}$: Conditional probability that $a=m(r)+s_{n}$, given that $\left(s_{1}, s_{2}, s_{3}\right)=S$, is the same $p(S)$,
so $\operatorname{Pr}\left[a=m(r)+s_{n}\right]$
$\leq \sum_{S} 2^{-384} \delta p(S) \leq \delta / 2^{112}$.
This is the stronger security bound.
Could take careless extra step: use $\operatorname{Pr} \leq 1$ to get weaker bound $\operatorname{Pr} \leq 1 / 2^{112}+3 / 2^{128}$.
an-Carter.
$\leq 1 / 2^{112}$.

Define $p(S)$ as ility
in
$\left.s_{3}\right)=S$.
$3)=S] p(S)$
$S) \leq 1 / 2^{112}$.

Apply A to Wegman-Carter-Shoup.

$$
\begin{aligned}
& \operatorname{Pr}\left[\left(s_{1}, s_{2}, s_{3}\right)=S\right] \leq 2^{-384} \delta \text { where } \\
& \delta=2^{384} / 2^{128}\left(2^{128}-1\right)\left(2^{128}-2\right)
\end{aligned}
$$

For $S \in F^{3}$: Conditional probability that $a=m(r)+s_{n}$, given that $\left(s_{1}, s_{2}, s_{3}\right)=S$, is the same $p(S)$,
so $\operatorname{Pr}\left[a=m(r)+s_{n}\right]$
$\leq \sum s 2^{-384} \delta p(S) \leq \delta / 2^{112}$.
This is the stronger security bound.
Could take careless extra step: use $\operatorname{Pr} \leq 1$ to get weaker bound $\operatorname{Pr} \leq 1 / 2^{112}+3 / 2^{128}$.

Wegman-Carter-S after 2^{40} chosen n and D forgery atte Stronger: $\leq \approx D /($ Careless: $\leq \approx(D)$ Original: $\leq \approx D /$ 2^{60} instead of 2^{40} Stronger: $\leq \approx D /($
Careless: $\leq \approx(D)$ Original: $\leq \approx \infty$.

Apply A to Wegman-Carter-Shoup.
$\operatorname{Pr}\left[\left(s_{1}, s_{2}, s_{3}\right)=S\right] \leq 2^{-384} \delta$ where $\delta=2^{384} / 2^{128}\left(2^{128}-1\right)\left(2^{128}-2\right)$.

For $S \in F^{3}$: Conditional probability that $a=m(r)+s_{n}$, given that $\left(s_{1}, s_{2}, s_{3}\right)=S$, is the same $p(S)$,
so $\operatorname{Pr}\left[a=m(r)+s_{n}\right]$
$\leq \sum_{S} 2^{-384} \delta p(S) \leq \delta / 2^{112}$.
This is the stronger security bound.
Could take careless extra step:
use $\operatorname{Pr} \leq 1$ to get weaker bound $\operatorname{Pr} \leq 1 / 2^{112}+3 / 2^{128}$.

Wegman-Carter-Shoup bounds after 2^{40} chosen messages and D forgery attempts:
Stronger: $\leq \approx D /\left(2^{112}-2^{63}\right)$.
Careless: $\leq \approx\left(D / 2^{112}\right)+\left(1 / 2^{49}\right)$.
Original: $\leq \approx D /\left(2^{112}-2^{79}\right)$.
2^{60} instead of 2^{40} :
Stronger: $\leq \approx D /\left(2^{112}-2^{103}\right)$.
Careless: $\leq \approx\left(D / 2^{112}\right)+\left(1 / 2^{9}\right)$.
Original: $\leq \approx \infty$.
an-Carter-Shoup.
$\leq 2^{-384} \delta$ where
$8-1)\left(2^{128}-2\right)$.
itional probability
${ }_{n}$, given that the same $p(S)$,
$\left.s_{n}\right]$
$\leq \delta / 2^{112}$
er security bound.
s extra step:
weaker bound ,128

Wegman-Carter-Shoup bounds after 2^{40} chosen messages and D forgery attempts:
Stronger: $\leq \approx D /\left(2^{112}-2^{63}\right)$.
Careless: $\leq \approx\left(D / 2^{112}\right)+\left(1 / 2^{49}\right)$.
Original: $\leq \approx D /\left(2^{112}-2^{79}\right)$.
2^{60} instead of 2^{40} :
Stronger: $\leq \approx D /\left(2^{112}-2^{103}\right)$.
Careless: $\leq \approx\left(D / 2^{112}\right)+\left(1 / 2^{9}\right)$.
Original: $\leq \approx \infty$.

Generalize $m_{i}(r)$ $h\left(m_{i}\right)+s_{i}$ where small differential p
$\operatorname{Pr}\left[h(m)-h\left(m^{\prime}\right)\right.$
Original bound \approx for C as large as where C is \# chos Proof strategy is c for larger C.

Stronger bound \approx for C as large as

Careless bound \approx

Wegman-Carter-Shoup bounds after 2^{40} chosen messages and D forgery attempts:
Stronger: $\leq \approx D /\left(2^{112}-2^{63}\right)$.
Careless: $\leq \approx\left(D / 2^{112}\right)+\left(1 / 2^{49}\right)$.
Original: $\leq \approx D /\left(2^{112}-2^{79}\right)$.
2^{60} instead of 2^{40} :
Stronger: $\leq \approx D /\left(2^{112}-2^{103}\right)$.
Careless: $\leq \approx\left(D / 2^{112}\right)+\left(1 / 2^{9}\right)$.
Original: $\leq \approx \infty$.

Generalize $m_{i}(r)+s_{i}$ to any $h\left(m_{i}\right)+s_{i}$ where h has small differential probabilities:
$\operatorname{Pr}\left[h(m)-h\left(m^{\prime}\right)=g\right] \leq \epsilon$.
Original bound $\approx D \epsilon$ for C as large as $\sqrt{1 / \epsilon}$, where C is $\#$ chosen messages.
Proof strategy is doomed for larger C.

Stronger bound $\approx D \epsilon$
for C as large as $\sqrt{2^{128}}$.
Careless bound $\approx D \epsilon+C^{2} / 2^{129}$.
noup bounds
essages
mpts:
$\left.2^{112}-2^{63}\right)$.
$\left.2^{112}\right)+\left(1 / 2^{49}\right)$.
$\left.2^{112}-2^{79}\right)$.
$\left.2^{112}-2^{103}\right)$.
$\left.2^{112}\right)+\left(1 / 2^{9}\right)$.

Generalize $m_{i}(r)+s_{i}$ to any $h\left(m_{i}\right)+s_{i}$ where h has small differential probabilities:

$$
\operatorname{Pr}\left[h(m)-h\left(m^{\prime}\right)=g\right] \leq \epsilon
$$

Original bound $\approx D \epsilon$ for C as large as $\sqrt{1 / \epsilon}$, where C is \# chosen messages.
Proof strategy is doomed for larger C.

Stronger bound $\approx D \epsilon$
for C as large as $\sqrt{2^{128}}$.
Careless bound $\approx D \epsilon+C^{2} / 2^{129}$.

Wegman-Carter-S implies $h\left(m_{i}\right)+\mathrm{A}$ if AES is secure.

Explicit AES secur

 $\mathrm{AES}_{k}(1), \mathrm{AES}_{k}(2)$ indistinguishable fNot true for Weg
i.e., not true with conditions $s_{1} \neq s_{2}$ Wegman-Carter s often collide for la

Generalize $m_{i}(r)+s_{i}$ to any $h\left(m_{i}\right)+s_{i}$ where h has small differential probabilities:
$\operatorname{Pr}\left[h(m)-h\left(m^{\prime}\right)=g\right] \leq \epsilon$.
Original bound $\approx D \epsilon$ for C as large as $\sqrt{1 / \epsilon}$, where C is $\#$ chosen messages.
Proof strategy is doomed for larger C.

Stronger bound $\approx D \epsilon$
for C as large as $\sqrt{2^{128}}$.
Careless bound $\approx D \epsilon+C^{2} / 2^{129}$.

Wegman-Carter-Shoup security implies $h\left(m_{i}\right)+\mathrm{AES}_{k}(i)$ security if AES is secure.

Explicit AES security goal:
$\mathrm{AES}_{k}(1), \mathrm{AES}_{k}(2), \ldots$ indistinguishable from s_{1}, s_{2}, \ldots.

Not true for Wegman-Carter:
i.e., not true without conditions $s_{1} \neq s_{2}$ etc.
Wegman-Carter $s_{1}, s_{2}, \ldots, s_{C}$ often collide for large C.
$+s_{i}$ to any
h has
robabilities:
$=g] \leq \epsilon$.
$D \epsilon$
$\sqrt{1 / \epsilon}$,
jen messages.
loomed
$D \epsilon$
2^{128}
$D \epsilon+C^{2} / 2^{129}$.

Wegman-Carter-Shoup security implies $h\left(m_{i}\right)+\mathrm{AES}_{k}(i)$ security if AES is secure.

Explicit AES security goal: $\mathrm{AES}_{k}(1), \mathrm{AES}_{k}(2), \ldots$
indistinguishable from s_{1}, s_{2}, \ldots.
Not true for Wegman-Carter:
i.e., not true without conditions $s_{1} \neq s_{2}$ etc.
Wegman-Carter $s_{1}, s_{2}, \ldots, s_{C}$ often collide for large C.

MAC speed leader http://cr.yp.tc

Poly1305-AES bo is $\lceil L / 16\rceil / 2^{103}$
for L-byte messag
e.g., $\epsilon \leq 2^{-92}$ for

Security gap comp $<1.7 D / 2^{92}$ if $C \leq$
With old security
C was limited to a

Wegman-Carter-Shoup security implies $h\left(m_{i}\right)+\mathrm{AES}_{k}(i)$ security if AES is secure.

Explicit AES security goal:
$\mathrm{AES}_{k}(1), \mathrm{AES}_{k}(2), \ldots$
indistinguishable from s_{1}, s_{2}, \ldots.
Not true for Wegman-Carter:
i.e., not true without conditions $s_{1} \neq s_{2}$ etc.
Wegman-Carter $s_{1}, s_{2}, \ldots, s_{C}$ often collide for large C.

MAC speed leader: Poly1305-AES, http://cr.yp.to/mac.html.

Poly1305-AES bound on ϵ is $\lceil L / 16\rceil / 2^{103}$ for L-byte messages.
e.g., $\epsilon \leq 2^{-92}$ for $L=2048$.

Security gap compared to AES
$<1.7 D / 2^{92}$ if $C \leq 2^{64}$.
With old security bound,
C was limited to about 2^{46}.
oup security
$\mathrm{ES}_{k}(i)$ security
ity goal:
rom s_{1}, s_{2}, \ldots
nan-Carter:
out
etc.
$, s_{2}, \ldots, s_{C}$
rge C.

MAC speed leader: Poly1305-AES, http://cr.yp.to/mac.html.

Poly1305-AES bound on ϵ is $\lceil L / 16\rceil / 2^{103}$
for L-byte messages.
e.g., $\epsilon \leq 2^{-92}$ for $L=2048$.

Security gap compared to AES
$<1.7 D / 2^{92}$ if $C \leq 2^{64}$.
With old security bound,
C was limited to about 2^{46}.

Improved security apply far beyond t "Stronger security permutations": ht /papers.html\#p

Stronger than "ga
Another applicatio is provably strong /papers.html\#cc coming soon.

MAC speed leader: Poly1305-AES, http://cr.yp.to/mac.html.

Poly1305-AES bound on ϵ
is $\lceil L / 16\rceil / 2^{103}$
for L-byte messages.
e.g., $\epsilon \leq 2^{-92}$ for $L=2048$.

Security gap compared to AES
$<1.7 D / 2^{92}$ if $C \leq 2^{64}$.
With old security bound,
C was limited to about 2^{46}.

Improved security bounds apply far beyond the MAC context.
"Stronger security bounds for permutations": http://cr.yp.to /papers.html\#permutations

Stronger than "game-playing."
Another application: Counter mode is provably stronger than CBC. /papers.html\#countermode, coming soon.
Poly1305-AES, /mac.html. and on ϵ
bound, bout 2^{46}.

Improved security bounds
apply far beyond the MAC context.
"Stronger security bounds for permutations": http://cr.yp.to /papers.html\#permutations

Stronger than "game-playing."
Another application: Counter mode is provably stronger than CBC. /papers.html\#countermode, coming soon.

AES security prob 16-byte block inve Partly fixed in this but still annoying.

AES security prob secret-index table "Not vulnerable tc was wrong. Very I without extreme s /papers.html\#ca

Many fast stream don't have these p Do we want to ke

Improved security bounds apply far beyond the MAC context.
"Stronger security bounds for permutations": http://cr.yp.to /papers.html\#permutations

Stronger than "game-playing."
Another application: Counter mode is provably stronger than CBC. /papers.html\#countermode, coming soon.

AES security problems from 16-byte block invertibility: Partly fixed in this talk, but still annoying.

AES security problems from secret-index table lookups: "Not vulnerable to timing attacks" was wrong. Very hard to fix without extreme slowdowns.
/papers.html\#cachetiming
Many fast stream ciphers don't have these problems.
Do we want to keep AES?

