
High-speed

elliptic-curve cryptography

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF CCR–9983950

Alfred P. Sloan Foundation

Define = 2255 � 19; prime.

Define = 358990. Define

Curve : Z 0 � 1 � � � � � � 1 � by
� � � coordinate of � th multiple

of (2 � � � �) on the elliptic curve
2 = � 3 + � 2 + � over F � .

Main topic of this talk: Compute

� Curve() � Curve()

in very few CPU cycles.

In particular, use floating point

for fast arithmetic mod .

High-speed

elliptic-curve cryptography

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF CCR–9983950

Alfred P. Sloan Foundation

Define = 2255 � 19; prime.

Define = 358990. Define

Curve : Z 0 � 1 � � � � � � 1 � by
� � � coordinate of � th multiple

of (2 � � � �) on the elliptic curve
2 = � 3 + � 2 + � over F � .

Main topic of this talk: Compute

� Curve() � Curve()

in very few CPU cycles.

In particular, use floating point

for fast arithmetic mod .

Why cryptographers care

Each user has secret key ,

public key Curve().

Users with secret keys �

exchange Curve() � Curve()

through an authenticated channel;

compute Curve(); hash it;

use hash as shared secret to

encrypt and authenticate messages.

Curve speed is important

when number of messages is small.

Define = 2255 � 19; prime.

Define = 358990. Define

Curve : Z 0 � 1 � � � � � � 1 � by
� � � coordinate of � th multiple

of (2 � � � �) on the elliptic curve
2 = � 3 + � 2 + � over F � .

Main topic of this talk: Compute

� Curve() � Curve()

in very few CPU cycles.

In particular, use floating point

for fast arithmetic mod .

Why cryptographers care

Each user has secret key ,

public key Curve().

Users with secret keys �

exchange Curve() � Curve()

through an authenticated channel;

compute Curve(); hash it;

use hash as shared secret to

encrypt and authenticate messages.

Curve speed is important

when number of messages is small.

Define = 2255 � 19; prime.

Define = 358990. Define

Curve : Z 0 � 1 � � � � � � 1 � by
� � � coordinate of � th multiple

of (2 � � � �) on the elliptic curve
2 = � 3 + � 2 + � over F � .

Main topic of this talk: Compute

� Curve() � Curve()

in very few CPU cycles.

In particular, use floating point

for fast arithmetic mod .

Why cryptographers care

Each user has secret key ,

public key Curve().

Users with secret keys �

exchange Curve() � Curve()

through an authenticated channel;

compute Curve(); hash it;

use hash as shared secret to

encrypt and authenticate messages.

Curve speed is important

when number of messages is small.

Analogous system using 2
�

mod :

1976 Diffie Hellman.

Using elliptic curves

to avoid index-calculus attacks:

1986 Miller, 1987 Koblitz.

Using � 3 + � 2 + � for speed:

1987 Montgomery (for ECM).

High precision from fp sums:

1968 Veltkamp, 1971 Dekker.

Speedups: 1999–2005 Bernstein.

Why cryptographers care

Each user has secret key ,

public key Curve().

Users with secret keys �

exchange Curve() � Curve()

through an authenticated channel;

compute Curve(); hash it;

use hash as shared secret to

encrypt and authenticate messages.

Curve speed is important

when number of messages is small.

Analogous system using 2
�

mod :

1976 Diffie Hellman.

Using elliptic curves

to avoid index-calculus attacks:

1986 Miller, 1987 Koblitz.

Using � 3 + � 2 + � for speed:

1987 Montgomery (for ECM).

High precision from fp sums:

1968 Veltkamp, 1971 Dekker.

Speedups: 1999–2005 Bernstein.

Why cryptographers care

Each user has secret key ,

public key Curve().

Users with secret keys �

exchange Curve() � Curve()

through an authenticated channel;

compute Curve(); hash it;

use hash as shared secret to

encrypt and authenticate messages.

Curve speed is important

when number of messages is small.

Analogous system using 2
�

mod :

1976 Diffie Hellman.

Using elliptic curves

to avoid index-calculus attacks:

1986 Miller, 1987 Koblitz.

Using � 3 + � 2 + � for speed:

1987 Montgomery (for ECM).

High precision from fp sums:

1968 Veltkamp, 1971 Dekker.

Speedups: 1999–2005 Bernstein.

Understanding CPU design

Computers are designed for

music, movies, Photoshop, Doom 3,

etc. Heavy use of fp arithmetic,

i.e., approximate real arithmetic.

Example: Athlon, every cycle,

does one add and one multiply

of high-precision fp numbers.

Programmer paying attention

to these CPU features

can use them for cryptography.

Analogous system using 2
�

mod :

1976 Diffie Hellman.

Using elliptic curves

to avoid index-calculus attacks:

1986 Miller, 1987 Koblitz.

Using � 3 + � 2 + � for speed:

1987 Montgomery (for ECM).

High precision from fp sums:

1968 Veltkamp, 1971 Dekker.

Speedups: 1999–2005 Bernstein.

Understanding CPU design

Computers are designed for

music, movies, Photoshop, Doom 3,

etc. Heavy use of fp arithmetic,

i.e., approximate real arithmetic.

Example: Athlon, every cycle,

does one add and one multiply

of high-precision fp numbers.

Programmer paying attention

to these CPU features

can use them for cryptography.

Analogous system using 2
�

mod :

1976 Diffie Hellman.

Using elliptic curves

to avoid index-calculus attacks:

1986 Miller, 1987 Koblitz.

Using � 3 + � 2 + � for speed:

1987 Montgomery (for ECM).

High precision from fp sums:

1968 Veltkamp, 1971 Dekker.

Speedups: 1999–2005 Bernstein.

Understanding CPU design

Computers are designed for

music, movies, Photoshop, Doom 3,

etc. Heavy use of fp arithmetic,

i.e., approximate real arithmetic.

Example: Athlon, every cycle,

does one add and one multiply

of high-precision fp numbers.

Programmer paying attention

to these CPU features

can use them for cryptography.

A 53-bit fp number

is a real number 2
�

with � � Z and
� �

253.

Round each real number � to

closest 53-bit fp number, fp53 � .

Round halves to even.

Examples:

fp53(8675309) = 8675309;

fp53(2
127 + 8675309) = 2127;

fp53(2
127 � 8675309) = 2127.

Understanding CPU design

Computers are designed for

music, movies, Photoshop, Doom 3,

etc. Heavy use of fp arithmetic,

i.e., approximate real arithmetic.

Example: Athlon, every cycle,

does one add and one multiply

of high-precision fp numbers.

Programmer paying attention

to these CPU features

can use them for cryptography.

A 53-bit fp number

is a real number 2
�

with � � Z and
� �

253.

Round each real number � to

closest 53-bit fp number, fp53 � .

Round halves to even.

Examples:

fp53(8675309) = 8675309;

fp53(2
127 + 8675309) = 2127;

fp53(2
127 � 8675309) = 2127.

Understanding CPU design

Computers are designed for

music, movies, Photoshop, Doom 3,

etc. Heavy use of fp arithmetic,

i.e., approximate real arithmetic.

Example: Athlon, every cycle,

does one add and one multiply

of high-precision fp numbers.

Programmer paying attention

to these CPU features

can use them for cryptography.

A 53-bit fp number

is a real number 2
�

with � � Z and
� �

253.

Round each real number � to

closest 53-bit fp number, fp53 � .

Round halves to even.

Examples:

fp53(8675309) = 8675309;

fp53(2
127 + 8675309) = 2127;

fp53(2
127 � 8675309) = 2127.

Typical CPU: UltraSPARC III.

Every cycle, UltraSPARC III can do

one fp multiplication
� ��� � fp53(

� �)

and one fp addition
� ��� � fp53(

� + �),

subject to limits on � .

“4-cycle fp-operation latency”:

Results available after 4 cycles.

Can substitute subtraction

for addition. I’ll count

subtractions as additions.

A 53-bit fp number

is a real number 2
�

with � � Z and
� �

253.

Round each real number � to

closest 53-bit fp number, fp53 � .

Round halves to even.

Examples:

fp53(8675309) = 8675309;

fp53(2
127 + 8675309) = 2127;

fp53(2
127 � 8675309) = 2127.

Typical CPU: UltraSPARC III.

Every cycle, UltraSPARC III can do

one fp multiplication
� ��� � fp53(

� �)

and one fp addition
� ��� � fp53(

� + �),

subject to limits on � .

“4-cycle fp-operation latency”:

Results available after 4 cycles.

Can substitute subtraction

for addition. I’ll count

subtractions as additions.

A 53-bit fp number

is a real number 2
�

with � � Z and
� �

253.

Round each real number � to

closest 53-bit fp number, fp53 � .

Round halves to even.

Examples:

fp53(8675309) = 8675309;

fp53(2
127 + 8675309) = 2127;

fp53(2
127 � 8675309) = 2127.

Typical CPU: UltraSPARC III.

Every cycle, UltraSPARC III can do

one fp multiplication
� ��� � fp53(

� �)

and one fp addition
� ��� � fp53(

� + �),

subject to limits on � .

“4-cycle fp-operation latency”:

Results available after 4 cycles.

Can substitute subtraction

for addition. I’ll count

subtractions as additions.

Some variation among CPUs.

PowerPC RS64 IV: One addition

or one multiplication or one

“fused” � ��� ��� � fp53(
� � + �).

Results available after 4 cycles.

Athlon: fp64 instead of fp53;

one multiplication and one addition.

Results available after 4 cycles.

I’ll focus on UltraSPARC III.

Not the most important CPU,

but it’s a good warmup.

Typical CPU: UltraSPARC III.

Every cycle, UltraSPARC III can do

one fp multiplication
� ��� � fp53(

� �)

and one fp addition
� ��� � fp53(

� + �),

subject to limits on � .

“4-cycle fp-operation latency”:

Results available after 4 cycles.

Can substitute subtraction

for addition. I’ll count

subtractions as additions.

Some variation among CPUs.

PowerPC RS64 IV: One addition

or one multiplication or one

“fused” � ��� ��� � fp53(
� � + �).

Results available after 4 cycles.

Athlon: fp64 instead of fp53;

one multiplication and one addition.

Results available after 4 cycles.

I’ll focus on UltraSPARC III.

Not the most important CPU,

but it’s a good warmup.

Typical CPU: UltraSPARC III.

Every cycle, UltraSPARC III can do

one fp multiplication
� ��� � fp53(

� �)

and one fp addition
� ��� � fp53(

� + �),

subject to limits on � .

“4-cycle fp-operation latency”:

Results available after 4 cycles.

Can substitute subtraction

for addition. I’ll count

subtractions as additions.

Some variation among CPUs.

PowerPC RS64 IV: One addition

or one multiplication or one

“fused” � ��� ��� � fp53(
� � + �).

Results available after 4 cycles.

Athlon: fp64 instead of fp53;

one multiplication and one addition.

Results available after 4 cycles.

I’ll focus on UltraSPARC III.

Not the most important CPU,

but it’s a good warmup.

Exact dot products

If � � � 220 � � � � � 0 � 1 � � � � � 220

then � is a 53-bit fp number

so � = fp53(�).

If � � ��� � � 220 � � � � � 220

then � ��� � � + � are

53-bit fp numbers so

� = fp53(�), � = fp53(�),

� + � = fp53(� + �).

UltraSPARC III computes

� � ��� � � � + � with

two fp mults, one fp add.

Some variation among CPUs.

PowerPC RS64 IV: One addition

or one multiplication or one

“fused” � ��� ��� � fp53(
� � + �).

Results available after 4 cycles.

Athlon: fp64 instead of fp53;

one multiplication and one addition.

Results available after 4 cycles.

I’ll focus on UltraSPARC III.

Not the most important CPU,

but it’s a good warmup.

Exact dot products

If � � � 220 � � � � � 0 � 1 � � � � � 220

then � is a 53-bit fp number

so � = fp53(�).

If � � ��� � � 220 � � � � � 220

then � ��� � � + � are

53-bit fp numbers so

� = fp53(�), � = fp53(�),

� + � = fp53(� + �).

UltraSPARC III computes

� � ��� � � � + � with

two fp mults, one fp add.

Some variation among CPUs.

PowerPC RS64 IV: One addition

or one multiplication or one

“fused” � ��� ��� � fp53(
� � + �).

Results available after 4 cycles.

Athlon: fp64 instead of fp53;

one multiplication and one addition.

Results available after 4 cycles.

I’ll focus on UltraSPARC III.

Not the most important CPU,

but it’s a good warmup.

Exact dot products

If � � � 220 � � � � � 0 � 1 � � � � � 220

then � is a 53-bit fp number

so � = fp53(�).

If � � ��� � � 220 � � � � � 220

then � ��� � � + � are

53-bit fp numbers so

� = fp53(�), � = fp53(�),

� + � = fp53(� + �).

UltraSPARC III computes

� � ��� � � � + � with

two fp mults, one fp add.

Bit extraction

Define � � = 3 � 2
� +51,

top �
� = fp53(fp53(

� + � �) � � �),

bottom � � = fp53(
� � top �

�).

If � is a 53-bit fp number

and
� � �

2
� +51 then

top �
� 2

�
Z;

�
bottom � �

�
2
��� 1; and

� = top �
� + bottom � � .

Exact dot products

If � � � 220 � � � � � 0 � 1 � � � � � 220

then � is a 53-bit fp number

so � = fp53(�).

If � � ��� � � 220 � � � � � 220

then � ��� � � + � are

53-bit fp numbers so

� = fp53(�), � = fp53(�),

� + � = fp53(� + �).

UltraSPARC III computes

� � ��� � � � + � with

two fp mults, one fp add.

Bit extraction

Define � � = 3 � 2
� +51,

top �
� = fp53(fp53(

� + � �) � � �),

bottom � � = fp53(
� � top �

�).

If � is a 53-bit fp number

and
� � �

2
� +51 then

top �
� 2

�
Z;

�
bottom � �

�
2
��� 1; and

� = top �
� + bottom � � .

Exact dot products

If � � � 220 � � � � � 0 � 1 � � � � � 220

then � is a 53-bit fp number

so � = fp53(�).

If � � ��� � � 220 � � � � � 220

then � ��� � � + � are

53-bit fp numbers so

� = fp53(�), � = fp53(�),

� + � = fp53(� + �).

UltraSPARC III computes

� � ��� � � � + � with

two fp mults, one fp add.

Bit extraction

Define � � = 3 � 2
� +51,

top �
� = fp53(fp53(

� + � �) � � �),

bottom � � = fp53(
� � top �

�).

If � is a 53-bit fp number

and
� � �

2
� +51 then

top �
� 2

�
Z;

�
bottom � �

�
2
��� 1; and

� = top �
� + bottom � � .

Big integers as fp sums

Every integer mod 2255 � 19

can be written as a sum
�

0 + �
22 + �

43 + �
64 +

�
85 + �

107 + �
128 + �

149 +
�

170 + �
192 + �

213 + �
234

where � � 2
� � 222 � � � � � 222 .

Indices
�

are � 255 12 �
for 0 � 1 � � � � � 11 .

Representation is not unique;

it’s not the input/output format.

Uniqueness would cost cycles!

Bit extraction

Define � � = 3 � 2
� +51,

top �
� = fp53(fp53(

� + � �) � � �),

bottom � � = fp53(
� � top �

�).

If � is a 53-bit fp number

and
� � �

2
� +51 then

top �
� 2

�
Z;

�
bottom � �

�
2
��� 1; and

� = top �
� + bottom � � .

Big integers as fp sums

Every integer mod 2255 � 19

can be written as a sum
�

0 + �
22 + �

43 + �
64 +

�
85 + �

107 + �
128 + �

149 +
�

170 + �
192 + �

213 + �
234

where � � 2
� � 222 � � � � � 222 .

Indices
�

are � 255 12 �
for 0 � 1 � � � � � 11 .

Representation is not unique;

it’s not the input/output format.

Uniqueness would cost cycles!

Bit extraction

Define � � = 3 � 2
� +51,

top �
� = fp53(fp53(

� + � �) � � �),

bottom � � = fp53(
� � top �

�).

If � is a 53-bit fp number

and
� � �

2
� +51 then

top �
� 2

�
Z;

�
bottom � �

�
2
��� 1; and

� = top �
� + bottom � � .

Big integers as fp sums

Every integer mod 2255 � 19

can be written as a sum
�

0 + �
22 + �

43 + �
64 +

�
85 + �

107 + �
128 + �

149 +
�

170 + �
192 + �

213 + �
234

where � � 2
� � 222 � � � � � 222 .

Indices
�

are � 255 12 �
for 0 � 1 � � � � � 11 .

Representation is not unique;

it’s not the input/output format.

Uniqueness would cost cycles!

Assume � = � � as above,

and similarly � = � � . Then
� � = 0 + 22 + � � � + 468

where 0 = �
0 � 0,

22 = �
0 � 22 + �

22 � 0,

43 = �
0 � 43 + �

22 � 22 + �
43 � 0,

etc.

Each � is a 53-bit fp number.

Given � � ’s and � � ’s,

can compute � ’s using

144 fp mults, 121 fp adds.

Big integers as fp sums

Every integer mod 2255 � 19

can be written as a sum
�

0 + �
22 + �

43 + �
64 +

�
85 + �

107 + �
128 + �

149 +
�

170 + �
192 + �

213 + �
234

where � � 2
� � 222 � � � � � 222 .

Indices
�

are � 255 12 �
for 0 � 1 � � � � � 11 .

Representation is not unique;

it’s not the input/output format.

Uniqueness would cost cycles!

Assume � = � � as above,

and similarly � = � � . Then
� � = 0 + 22 + � � � + 468

where 0 = �
0 � 0,

22 = �
0 � 22 + �

22 � 0,

43 = �
0 � 43 + �

22 � 22 + �
43 � 0,

etc.

Each � is a 53-bit fp number.

Given � � ’s and � � ’s,

can compute � ’s using

144 fp mults, 121 fp adds.

Big integers as fp sums

Every integer mod 2255 � 19

can be written as a sum
�

0 + �
22 + �

43 + �
64 +

�
85 + �

107 + �
128 + �

149 +
�

170 + �
192 + �

213 + �
234

where � � 2
� � 222 � � � � � 222 .

Indices
�

are � 255 12 �
for 0 � 1 � � � � � 11 .

Representation is not unique;

it’s not the input/output format.

Uniqueness would cost cycles!

Assume � = � � as above,

and similarly � = � � . Then
� � = 0 + 22 + � � � + 468

where 0 = �
0 � 0,

22 = �
0 � 22 + �

22 � 0,

43 = �
0 � 43 + �

22 � 22 + �
43 � 0,

etc.

Each � is a 53-bit fp number.

Given � � ’s and � � ’s,

can compute � ’s using

144 fp mults, 121 fp adds.

Furthermore, modulo 2255 � 19,
� � �

0 + �
22 + � � � + �

234

where �
0 = 0 + 19 � 2

� 255
255,

�
22 = 22 + 19 � 2

� 255
277, etc.

Each � � is a 53-bit fp number.

Example: �
0 is an integer;

� �
0

�
381 � 244.

Computing � � ’s from � ’s takes

11 fp mults, 11 fp adds.

Structure: (Z[�] Z[2255
�
12 �])

(2255 � 12 � 19) Z (2255 � 19).

Assume � = � � as above,

and similarly � = � � . Then
� � = 0 + 22 + � � � + 468

where 0 = �
0 � 0,

22 = �
0 � 22 + �

22 � 0,

43 = �
0 � 43 + �

22 � 22 + �
43 � 0,

etc.

Each � is a 53-bit fp number.

Given � � ’s and � � ’s,

can compute � ’s using

144 fp mults, 121 fp adds.

Furthermore, modulo 2255 � 19,
� � �

0 + �
22 + � � � + �

234

where �
0 = 0 + 19 � 2

� 255
255,

�
22 = 22 + 19 � 2

� 255
277, etc.

Each � � is a 53-bit fp number.

Example: �
0 is an integer;

� �
0

�
381 � 244.

Computing � � ’s from � ’s takes

11 fp mults, 11 fp adds.

Structure: (Z[�] Z[2255
�
12 �])

(2255 � 12 � 19) Z (2255 � 19).

Assume � = � � as above,

and similarly � = � � . Then
� � = 0 + 22 + � � � + 468

where 0 = �
0 � 0,

22 = �
0 � 22 + �

22 � 0,

43 = �
0 � 43 + �

22 � 22 + �
43 � 0,

etc.

Each � is a 53-bit fp number.

Given � � ’s and � � ’s,

can compute � ’s using

144 fp mults, 121 fp adds.

Furthermore, modulo 2255 � 19,
� � �

0 + �
22 + � � � + �

234

where �
0 = 0 + 19 � 2

� 255
255,

�
22 = 22 + 19 � 2

� 255
277, etc.

Each � � is a 53-bit fp number.

Example: �
0 is an integer;

� �
0

�
381 � 244.

Computing � � ’s from � ’s takes

11 fp mults, 11 fp adds.

Structure: (Z[�] Z[2255
�
12 �])

(2255 � 12 � 19) Z (2255 � 19).

Carries

“Carry from �
0 to �

22”:

replace �
0 and �

22 by

bottom22
�
0 and �

22 + top22
�
0.

This takes 4 fp adds,

and guarantees
� �

0
�

221.

Series of 13 carries puts all � � ’s

in range for subsequent products:

from �
192 to �

213 to �
234 to 255;

then from �
0 to �

22 to �
43 to � � �

to �
192 to �

213.

This takes 52 fp adds.

Furthermore, modulo 2255 � 19,
� � �

0 + �
22 + � � � + �

234

where �
0 = 0 + 19 � 2

� 255
255,

�
22 = 22 + 19 � 2

� 255
277, etc.

Each � � is a 53-bit fp number.

Example: �
0 is an integer;

� �
0

�
381 � 244.

Computing � � ’s from � ’s takes

11 fp mults, 11 fp adds.

Structure: (Z[�] Z[2255
�
12 �])

(2255 � 12 � 19) Z (2255 � 19).

Carries

“Carry from �
0 to �

22”:

replace �
0 and �

22 by

bottom22
�
0 and �

22 + top22
�
0.

This takes 4 fp adds,

and guarantees
� �

0
�

221.

Series of 13 carries puts all � � ’s

in range for subsequent products:

from �
192 to �

213 to �
234 to 255;

then from �
0 to �

22 to �
43 to � � �

to �
192 to �

213.

This takes 52 fp adds.

Furthermore, modulo 2255 � 19,
� � �

0 + �
22 + � � � + �

234

where �
0 = 0 + 19 � 2

� 255
255,

�
22 = 22 + 19 � 2

� 255
277, etc.

Each � � is a 53-bit fp number.

Example: �
0 is an integer;

� �
0

�
381 � 244.

Computing � � ’s from � ’s takes

11 fp mults, 11 fp adds.

Structure: (Z[�] Z[2255
�
12 �])

(2255 � 12 � 19) Z (2255 � 19).

Carries

“Carry from �
0 to �

22”:

replace �
0 and �

22 by

bottom22
�
0 and �

22 + top22
�
0.

This takes 4 fp adds,

and guarantees
� �

0
�

221.

Series of 13 carries puts all � � ’s

in range for subsequent products:

from �
192 to �

213 to �
234 to 255;

then from �
0 to �

22 to �
43 to � � �

to �
192 to �

213.

This takes 52 fp adds.

Total 155 mults, 184 adds

to multiply modulo 2255 � 19

in this representation.

184 UltraSPARC III cycles.

= 184 cycles? Two obstacles:

fp-operation latency;

“load/store” latency imposed by

limited number of “registers.”

Schedule instructions carefully

to bring cycles down to 184.

Carries

“Carry from �
0 to �

22”:

replace �
0 and �

22 by

bottom22
�
0 and �

22 + top22
�
0.

This takes 4 fp adds,

and guarantees
� �

0
�

221.

Series of 13 carries puts all � � ’s

in range for subsequent products:

from �
192 to �

213 to �
234 to 255;

then from �
0 to �

22 to �
43 to � � �

to �
192 to �

213.

This takes 52 fp adds.

Total 155 mults, 184 adds

to multiply modulo 2255 � 19

in this representation.

184 UltraSPARC III cycles.

= 184 cycles? Two obstacles:

fp-operation latency;

“load/store” latency imposed by

limited number of “registers.”

Schedule instructions carefully

to bring cycles down to 184.

Carries

“Carry from �
0 to �

22”:

replace �
0 and �

22 by

bottom22
�
0 and �

22 + top22
�
0.

This takes 4 fp adds,

and guarantees
� �

0
�

221.

Series of 13 carries puts all � � ’s

in range for subsequent products:

from �
192 to �

213 to �
234 to 255;

then from �
0 to �

22 to �
43 to � � �

to �
192 to �

213.

This takes 52 fp adds.

Total 155 mults, 184 adds

to multiply modulo 2255 � 19

in this representation.

184 UltraSPARC III cycles.

= 184 cycles? Two obstacles:

fp-operation latency;

“load/store” latency imposed by

limited number of “registers.”

Schedule instructions carefully

to bring cycles down to 184.

Have developed qhasm,

new programming language

for high-speed computations.

Includes range verification,

guided register allocation, et al.

Lets me write desired code

with much less human time than

traditional asm, C compiler, etc.

Have also used for fast AES,

fast Poly1305, fast Salsa20, etc.;

see, e.g., http://cr.yp.to

/mac/poly1305_athlon.s.

Total 155 mults, 184 adds

to multiply modulo 2255 � 19

in this representation.

184 UltraSPARC III cycles.

= 184 cycles? Two obstacles:

fp-operation latency;

“load/store” latency imposed by

limited number of “registers.”

Schedule instructions carefully

to bring cycles down to 184.

Have developed qhasm,

new programming language

for high-speed computations.

Includes range verification,

guided register allocation, et al.

Lets me write desired code

with much less human time than

traditional asm, C compiler, etc.

Have also used for fast AES,

fast Poly1305, fast Salsa20, etc.;

see, e.g., http://cr.yp.to

/mac/poly1305_athlon.s.

Total 155 mults, 184 adds

to multiply modulo 2255 � 19

in this representation.

184 UltraSPARC III cycles.

= 184 cycles? Two obstacles:

fp-operation latency;

“load/store” latency imposed by

limited number of “registers.”

Schedule instructions carefully

to bring cycles down to 184.

Have developed qhasm,

new programming language

for high-speed computations.

Includes range verification,

guided register allocation, et al.

Lets me write desired code

with much less human time than

traditional asm, C compiler, etc.

Have also used for fast AES,

fast Poly1305, fast Salsa20, etc.;

see, e.g., http://cr.yp.to

/mac/poly1305_athlon.s.

Speedup: Squarings

Often know in advance that � = � .

�
0

�
64 + �

22
�

43 + �
43

�
22 + �

64
�

0

is more efficiently computed as

2(�
0

�
64 + �

22
�

43).

Even better: First compute

2 �
0 � 2 �

22 � � � � � 2 �
234

and then compute

(2 �
0)

�
64 + (2 �

22)
�

43 etc.

130 fp adds instead of 184.

Makes carry time even more visible.

Have developed qhasm,

new programming language

for high-speed computations.

Includes range verification,

guided register allocation, et al.

Lets me write desired code

with much less human time than

traditional asm, C compiler, etc.

Have also used for fast AES,

fast Poly1305, fast Salsa20, etc.;

see, e.g., http://cr.yp.to

/mac/poly1305_athlon.s.

Speedup: Squarings

Often know in advance that � = � .

�
0

�
64 + �

22
�

43 + �
43

�
22 + �

64
�

0

is more efficiently computed as

2(�
0

�
64 + �

22
�

43).

Even better: First compute

2 �
0 � 2 �

22 � � � � � 2 �
234

and then compute

(2 �
0)

�
64 + (2 �

22)
�

43 etc.

130 fp adds instead of 184.

Makes carry time even more visible.

Have developed qhasm,

new programming language

for high-speed computations.

Includes range verification,

guided register allocation, et al.

Lets me write desired code

with much less human time than

traditional asm, C compiler, etc.

Have also used for fast AES,

fast Poly1305, fast Salsa20, etc.;

see, e.g., http://cr.yp.to

/mac/poly1305_athlon.s.

Speedup: Squarings

Often know in advance that � = � .

�
0

�
64 + �

22
�

43 + �
43

�
22 + �

64
�

0

is more efficiently computed as

2(�
0

�
64 + �

22
�

43).

Even better: First compute

2 �
0 � 2 �

22 � � � � � 2 �
234

and then compute

(2 �
0)

�
64 + (2 �

22)
�

43 etc.

130 fp adds instead of 184.

Makes carry time even more visible.

Speedup: Karatsuba’s method

Say 0 = �
0 + �

22 � + � � � + �
107 � 5,

1 = �
128 + �

149 � + � � � + �
234 � 5,

0 = � 0 + � � � , 1 = � 128 + � � � .

Original, 184 adds: Product is

0 0 +(0 1 + 1 0) � 6 + 1 1 � 12.

Karatsuba, 182 adds:

((0+ 1)(0+ 1) �
0 0

�
1 1) � 6

+ 0 0 + 1 1 � 12.

Improved Karatsuba, 177 adds:

(0 + 1)(0 + 1) � 6

+ (0 0
�

1 1 � 6)(1 � � 6).

Speedup: Squarings

Often know in advance that � = � .

�
0

�
64 + �

22
�

43 + �
43

�
22 + �

64
�

0

is more efficiently computed as

2(�
0

�
64 + �

22
�

43).

Even better: First compute

2 �
0 � 2 �

22 � � � � � 2 �
234

and then compute

(2 �
0)

�
64 + (2 �

22)
�

43 etc.

130 fp adds instead of 184.

Makes carry time even more visible.

Speedup: Karatsuba’s method

Say 0 = �
0 + �

22 � + � � � + �
107 � 5,

1 = �
128 + �

149 � + � � � + �
234 � 5,

0 = � 0 + � � � , 1 = � 128 + � � � .

Original, 184 adds: Product is

0 0 +(0 1 + 1 0) � 6 + 1 1 � 12.

Karatsuba, 182 adds:

((0+ 1)(0+ 1) �
0 0

�
1 1) � 6

+ 0 0 + 1 1 � 12.

Improved Karatsuba, 177 adds:

(0 + 1)(0 + 1) � 6

+ (0 0
�

1 1 � 6)(1 � � 6).

Speedup: Squarings

Often know in advance that � = � .

�
0

�
64 + �

22
�

43 + �
43

�
22 + �

64
�

0

is more efficiently computed as

2(�
0

�
64 + �

22
�

43).

Even better: First compute

2 �
0 � 2 �

22 � � � � � 2 �
234

and then compute

(2 �
0)

�
64 + (2 �

22)
�

43 etc.

130 fp adds instead of 184.

Makes carry time even more visible.

Speedup: Karatsuba’s method

Say 0 = �
0 + �

22 � + � � � + �
107 � 5,

1 = �
128 + �

149 � + � � � + �
234 � 5,

0 = � 0 + � � � , 1 = � 128 + � � � .

Original, 184 adds: Product is

0 0 +(0 1 + 1 0) � 6 + 1 1 � 12.

Karatsuba, 182 adds:

((0+ 1)(0+ 1) �
0 0

�
1 1) � 6

+ 0 0 + 1 1 � 12.

Improved Karatsuba, 177 adds:

(0 + 1)(0 + 1) � 6

+ (0 0
�

1 1 � 6)(1 � � 6).

The Curve function

Overall strategy to compute

� Curve() � Curve(),

using arithmetic mod = 2255 � 19:

For various integers � ,

find � � � � � such that

Curve(�) � � � � (mod),

i.e., � � Curve(�) � � (mod).

e.g. �
1 = Curve(), � 1 = 1,

assuming Curve() = .

Can easily restrict � Curve()

to ensure that never appears.

Speedup: Karatsuba’s method

Say 0 = �
0 + �

22 � + � � � + �
107 � 5,

1 = �
128 + �

149 � + � � � + �
234 � 5,

0 = � 0 + � � � , 1 = � 128 + � � � .

Original, 184 adds: Product is

0 0 +(0 1 + 1 0) � 6 + 1 1 � 12.

Karatsuba, 182 adds:

((0+ 1)(0+ 1) �
0 0

�
1 1) � 6

+ 0 0 + 1 1 � 12.

Improved Karatsuba, 177 adds:

(0 + 1)(0 + 1) � 6

+ (0 0
�

1 1 � 6)(1 � � 6).

The Curve function

Overall strategy to compute

� Curve() � Curve(),

using arithmetic mod = 2255 � 19:

For various integers � ,

find � � � � � such that

Curve(�) � � � � (mod),

i.e., � � Curve(�) � � (mod).

e.g. �
1 = Curve(), � 1 = 1,

assuming Curve() = .

Can easily restrict � Curve()

to ensure that never appears.

Speedup: Karatsuba’s method

Say 0 = �
0 + �

22 � + � � � + �
107 � 5,

1 = �
128 + �

149 � + � � � + �
234 � 5,

0 = � 0 + � � � , 1 = � 128 + � � � .

Original, 184 adds: Product is

0 0 +(0 1 + 1 0) � 6 + 1 1 � 12.

Karatsuba, 182 adds:

((0+ 1)(0+ 1) �
0 0

�
1 1) � 6

+ 0 0 + 1 1 � 12.

Improved Karatsuba, 177 adds:

(0 + 1)(0 + 1) � 6

+ (0 0
�

1 1 � 6)(1 � � 6).

The Curve function

Overall strategy to compute

� Curve() � Curve(),

using arithmetic mod = 2255 � 19:

For various integers � ,

find � � � � � such that

Curve(�) � � � � (mod),

i.e., � � Curve(�) � � (mod).

e.g. �
1 = Curve(), � 1 = 1,

assuming Curve() = .

Can easily restrict � Curve()

to ensure that never appears.

We’ll see how to compute
� � � � � � �

2
� � � 2

� ; and
� � � � � � � �

+1 � � �
+1 � Curve()

� �
2

�
+1 � � 2

�
+1.

Combine to compute
� � � � � � � �

+1 � � �
+1 � � Curve()

� � � � � � � � �

+1 � � �

+1

where =
� � 2 � , = � mod 2.

Conditional branches and

input-dependent load addresses

can leak via timing.

Replace with arithmetic:

e.g., (1 �) � � + () � �
+1.

The Curve function

Overall strategy to compute

� Curve() � Curve(),

using arithmetic mod = 2255 � 19:

For various integers � ,

find � � � � � such that

Curve(�) � � � � (mod),

i.e., � � Curve(�) � � (mod).

e.g. �
1 = Curve(), � 1 = 1,

assuming Curve() = .

Can easily restrict � Curve()

to ensure that never appears.

We’ll see how to compute
� � � � � � �

2
� � � 2

� ; and
� � � � � � � �

+1 � � �
+1 � Curve()

� �
2

�
+1 � � 2

�
+1.

Combine to compute
� � � � � � � �

+1 � � �
+1 � � Curve()

� � � � � � � � �

+1 � � �

+1

where =
� � 2 � , = � mod 2.

Conditional branches and

input-dependent load addresses

can leak via timing.

Replace with arithmetic:

e.g., (1 �) � � + () � �
+1.

The Curve function

Overall strategy to compute

� Curve() � Curve(),

using arithmetic mod = 2255 � 19:

For various integers � ,

find � � � � � such that

Curve(�) � � � � (mod),

i.e., � � Curve(�) � � (mod).

e.g. �
1 = Curve(), � 1 = 1,

assuming Curve() = .

Can easily restrict � Curve()

to ensure that never appears.

We’ll see how to compute
� � � � � � �

2
� � � 2

� ; and
� � � � � � � �

+1 � � �
+1 � Curve()

� �
2

�
+1 � � 2

�
+1.

Combine to compute
� � � � � � � �

+1 � � �
+1 � � Curve()

� � � � � � � � �

+1 � � �

+1

where =
� � 2 � , = � mod 2.

Conditional branches and

input-dependent load addresses

can leak via timing.

Replace with arithmetic:

e.g., (1 �) � � + () � �
+1.

Eventually reach � = .

Divide � � by � � modulo

to obtain Curve().

Simple division method: Fermat!
� � � � � � �

� � 2
� .

Euclid-type division methods

are faster but have

input-dependent timings.

Finally convert from

floating-point representation

to byte-string output format.

We’ll see how to compute
� � � � � � �

2
� � � 2

� ; and
� � � � � � � �

+1 � � �
+1 � Curve()

� �
2

�
+1 � � 2

�
+1.

Combine to compute
� � � � � � � �

+1 � � �
+1 � � Curve()

� � � � � � � � �

+1 � � �

+1

where =
� � 2 � , = � mod 2.

Conditional branches and

input-dependent load addresses

can leak via timing.

Replace with arithmetic:

e.g., (1 �) � � + () � �
+1.

Eventually reach � = .

Divide � � by � � modulo

to obtain Curve().

Simple division method: Fermat!
� � � � � � �

� � 2
� .

Euclid-type division methods

are faster but have

input-dependent timings.

Finally convert from

floating-point representation

to byte-string output format.

We’ll see how to compute
� � � � � � �

2
� � � 2

� ; and
� � � � � � � �

+1 � � �
+1 � Curve()

� �
2

�
+1 � � 2

�
+1.

Combine to compute
� � � � � � � �

+1 � � �
+1 � � Curve()

� � � � � � � � �

+1 � � �

+1

where =
� � 2 � , = � mod 2.

Conditional branches and

input-dependent load addresses

can leak via timing.

Replace with arithmetic:

e.g., (1 �) � � + () � �
+1.

Eventually reach � = .

Divide � � by � � modulo

to obtain Curve().

Simple division method: Fermat!
� � � � � � �

� � 2
� .

Euclid-type division methods

are faster but have

input-dependent timings.

Finally convert from

floating-point representation

to byte-string output format.

From � to 2 �

In Z :
�

2
� = (� 2� � � 2�)2,

� 2
� = 4 � � � � (� 2� + � � � � + � 2�).

Compute as follows:

(� � � � �)2; (� � + � �)2;
�

2
� = (� � � � �)2(� � + � �)2;

4 � � � � = (� � + � �)2 � (� � � � �)2;

(� 2) � � � � = 89747 � 4 � � � � ;

� 2
� =

4 � � � � ((� � + � �)2 + (� 2) � � � �).

Eventually reach � = .

Divide � � by � � modulo

to obtain Curve().

Simple division method: Fermat!
� � � � � � �

� � 2
� .

Euclid-type division methods

are faster but have

input-dependent timings.

Finally convert from

floating-point representation

to byte-string output format.

From � to 2 �

In Z :
�

2
� = (� 2� � � 2�)2,

� 2
� = 4 � � � � (� 2� + � � � � + � 2�).

Compute as follows:

(� � � � �)2; (� � + � �)2;
�

2
� = (� � � � �)2(� � + � �)2;

4 � � � � = (� � + � �)2 � (� � � � �)2;

(� 2) � � � � = 89747 � 4 � � � � ;

� 2
� =

4 � � � � ((� � + � �)2 + (� 2) � � � �).

Eventually reach � = .

Divide � � by � � modulo

to obtain Curve().

Simple division method: Fermat!
� � � � � � �

� � 2
� .

Euclid-type division methods

are faster but have

input-dependent timings.

Finally convert from

floating-point representation

to byte-string output format.

From � to 2 �

In Z :
�

2
� = (� 2� � � 2�)2,

� 2
� = 4 � � � � (� 2� + � � � � + � 2�).

Compute as follows:

(� � � � �)2; (� � + � �)2;
�

2
� = (� � � � �)2(� � + � �)2;

4 � � � � = (� � + � �)2 � (� � � � �)2;

(� 2) � � � � = 89747 � 4 � � � � ;

� 2
� =

4 � � � � ((� � + � �)2 + (� 2) � � � �).

From � � � + 1 to 2 � + 1

�
2

�

+1 = 4(� � � �

+1
� � � � �

+1)
2,

� 2
�

+1 =

4(� � � �

+1
� � � � �

+1)
2 Curve().

Compute as follows:

(� � � � �)(� �

+1 + � �

+1);

(� � + � �)(� �

+1
� � �

+1);

2(� � � �

+1
� � � � �

+1) = sum;

2(� � � �

+1
� � � � �

+1) = difference;
�

2
�

+1 = (2(� � � �

+1
� � � � �

+1))
2;

(2(� � � �

+1
� � � � �

+1))
2;

� 2
�

+1 = (� � �) Curve().

From � to 2 �

In Z :
�

2
� = (� 2� � � 2�)2,

� 2
� = 4 � � � � (� 2� + � � � � + � 2�).

Compute as follows:

(� � � � �)2; (� � + � �)2;
�

2
� = (� � � � �)2(� � + � �)2;

4 � � � � = (� � + � �)2 � (� � � � �)2;

(� 2) � � � � = 89747 � 4 � � � � ;

� 2
� =

4 � � � � ((� � + � �)2 + (� 2) � � � �).

From � � � + 1 to 2 � + 1

�
2

�

+1 = 4(� � � �

+1
� � � � �

+1)
2,

� 2
�

+1 =

4(� � � �

+1
� � � � �

+1)
2 Curve().

Compute as follows:

(� � � � �)(� �

+1 + � �

+1);

(� � + � �)(� �

+1
� � �

+1);

2(� � � �

+1
� � � � �

+1) = sum;

2(� � � �

+1
� � � � �

+1) = difference;
�

2
�

+1 = (2(� � � �

+1
� � � � �

+1))
2;

(2(� � � �

+1
� � � � �

+1))
2;

� 2
�

+1 = (� � �) Curve().

From � to 2 �

In Z :
�

2
� = (� 2� � � 2�)2,

� 2
� = 4 � � � � (� 2� + � � � � + � 2�).

Compute as follows:

(� � � � �)2; (� � + � �)2;
�

2
� = (� � � � �)2(� � + � �)2;

4 � � � � = (� � + � �)2 � (� � � � �)2;

(� 2) � � � � = 89747 � 4 � � � � ;

� 2
� =

4 � � � � ((� � + � �)2 + (� 2) � � � �).

From � � � + 1 to 2 � + 1

�
2

�

+1 = 4(� � � �

+1
� � � � �

+1)
2,

� 2
�

+1 =

4(� � � �

+1
� � � � �

+1)
2 Curve().

Compute as follows:

(� � � � �)(� �

+1 + � �

+1);

(� � + � �)(� �

+1
� � �

+1);

2(� � � �

+1
� � � � �

+1) = sum;

2(� � � �

+1
� � � � �

+1) = difference;
�

2
�

+1 = (2(� � � �

+1
� � � � �

+1))
2;

(2(� � � �

+1
� � � � �

+1))
2;

� 2
�

+1 = (� � �) Curve().

Total time

Slightly over 1600 fp adds

(520 from carries)

for each bit of .

Total for 256-bit :

413000 fp adds; plus

50000 fp adds for final division.

Aiming for 500000 cycles.

Still have to finish software.

Should end up even faster than

my NIST P-224 software,

despite 14% more bits!

From � � � + 1 to 2 � + 1

�
2

�

+1 = 4(� � � �

+1
� � � � �

+1)
2,

� 2
�

+1 =

4(� � � �

+1
� � � � �

+1)
2 Curve().

Compute as follows:

(� � � � �)(� �

+1 + � �

+1);

(� � + � �)(� �

+1
� � �

+1);

2(� � � �

+1
� � � � �

+1) = sum;

2(� � � �

+1
� � � � �

+1) = difference;
�

2
�

+1 = (2(� � � �

+1
� � � � �

+1))
2;

(2(� � � �

+1
� � � � �

+1))
2;

� 2
�

+1 = (� � �) Curve().

Total time

Slightly over 1600 fp adds

(520 from carries)

for each bit of .

Total for 256-bit :

413000 fp adds; plus

50000 fp adds for final division.

Aiming for 500000 cycles.

Still have to finish software.

Should end up even faster than

my NIST P-224 software,

despite 14% more bits!

