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of high-precision fp numbers.

Programmer paying attention

to these CPU features
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“load/store” latency imposed by

limited number of “registers.”

Schedule instructions carefully

to bring cycles down to 184.
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new programming language

for high-speed computations.

Includes range verification,

guided register allocation, et al.

Lets me write desired code

with much less human time than

traditional asm, C compiler, etc.

Have also used for fast AES,

fast Poly1305, fast Salsa20, etc.;

see, e.g., http://cr.yp.to

/mac/poly1305_athlon.s.
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43).

Even better: First compute

2 �
0 � 2 �

22 � � � � � 2 �
234

and then compute

(2 �
0)

�
64 + (2 �

22)
�

43 etc.

130 fp adds instead of 184.

Makes carry time even more visible.
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Speedup: Karatsuba’s method

Say 0 = �
0 + �

22 � + � � � + �
107 � 5,

1 = �
128 + �

149 � + � � � + �
234 � 5,

0 = � 0 + � � � , 1 = � 128 + � � � .

Original, 184 adds: Product is

0 0 +( 0 1 + 1 0) � 6 + 1 1 � 12.

Karatsuba, 182 adds:

(( 0+ 1)( 0+ 1) �
0 0

�
1 1) � 6

+ 0 0 + 1 1 � 12.

Improved Karatsuba, 177 adds:

( 0 + 1)( 0 + 1) � 6

+ ( 0 0
�

1 1 � 6)(1 � � 6).
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The Curve function

Overall strategy to compute

� Curve( ) � Curve( ),

using arithmetic mod = 2255 � 19:

For various integers � ,

find � � � � � such that

Curve( � ) � � � � (mod ),

i.e., � � Curve( � ) � � (mod ).

e.g. �
1 = Curve( ), � 1 = 1,

assuming Curve( ) = .

Can easily restrict � Curve( )

to ensure that never appears.
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assuming Curve( ) = .

Can easily restrict � Curve( )

to ensure that never appears.

We’ll see how to compute
� � � � � � �

2
� � � 2

� ; and
� � � � � � � �

+1 � � �
+1 � Curve( )

� �
2

�
+1 � � 2

�
+1.

Combine to compute
� � � � � � � �

+1 � � �
+1 � � Curve( )

� � � � � � � � �

+1 � � �

+1

where =
� � 2 � , = � mod 2.

Conditional branches and

input-dependent load addresses

can leak via timing.

Replace with arithmetic:

e.g., (1 � ) � � + ( ) � �
+1.
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Divide � � by � � modulo

to obtain Curve( ).

Simple division method: Fermat!
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� � 2
� .

Euclid-type division methods

are faster but have

input-dependent timings.

Finally convert from

floating-point representation

to byte-string output format.
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From � to 2 �
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( � 2) � � � � = 89747 � 4 � � � � ;

� 2
� =

4 � � � � (( � � + � � )2 + ( � 2) � � � � ).
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Total time

Slightly over 1600 fp adds

(520 from carries)

for each bit of .

Total for 256-bit :

413000 fp adds; plus

50000 fp adds for final division.

Aiming for 500000 cycles.

Still have to finish software.

Should end up even faster than

my NIST P-224 software,

despite 14% more bits!
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