High-speed
elliptic-curve cryptography
D. J. Bernstein

Thanks to:
University of Illinois at Chicago NSF CCR-9983950
Alfred P. Sloan Foundation

Define $p=2^{255}-19$; prime.
Define $A=358990$. Define
Curve : $\mathbf{Z} \rightarrow\{0,1, \ldots, p-1, \infty\}$ by
$n \mapsto x$ coordinate of nth multiple of $(2, \ldots)$ on the elliptic curve $y^{2}=x^{3}+A x^{2}+x$ over \mathbf{F}_{p}.

Main topic of this talk: Compute U, Curve (V) \mapsto Curve (UV) in very few CPU cycles.
In particular, use floating point for fast arithmetic $\bmod p$.

ography

is at Chicago
undation

Define $p=2^{255}-19$; prime.
Define $A=358990$. Define
Curve : $\mathbf{Z} \rightarrow\{0,1, \ldots, p-1, \infty\}$ by
$n \mapsto x$ coordinate of nth multiple of $(2, \ldots)$ on the elliptic curve $y^{2}=x^{3}+A x^{2}+x$ over \mathbf{F}_{p}.

Main topic of this talk: Compute U, Curve (V) \mapsto Curve (UV) in very few CPU cycles.
In particular, use floating point for fast arithmetic $\bmod p$.

Why cryptographe
Each user has secr public key Curve(L

Users with secret exchange Curve(U through an authen compute Curve (U use hash as sharec encrypt and authe

Curve speed is imp when number of n

Define $p=2^{255}-19$; prime.
Define $A=358990$. Define
Curve : $\mathbf{Z} \rightarrow\{0,1, \ldots, p-1, \infty\}$ by
$n \mapsto x$ coordinate of nth multiple of $(2, \ldots)$ on the elliptic curve $y^{2}=x^{3}+A x^{2}+x$ over \mathbf{F}_{p}.

Main topic of this talk: Compute U, Curve (V) \mapsto Curve (UV) in very few CPU cycles. In particular, use floating point for fast arithmetic $\bmod p$.

Why cryptographers care

Each user has secret key U, public key Curve (U).

Users with secret keys U, V exchange Curve(U), Curve (V) through an authenticated channel; compute Curve(UV); hash it; use hash as shared secret to encrypt and authenticate messages.

Curve speed is important when number of messages is small.

19; prime.
0 . Define
$\ldots, p-1, \infty\}$ by
of nth multiple
elliptic curve
x over \mathbf{F}_{p}.
talk: Compute
rve(UV)
ycles.
loating point $\bmod p$.

Why cryptographers care

Each user has secret key U, public key Curve (U).

Users with secret keys U, V exchange Curve(U), Curve (V) through an authenticated channel; compute Curve(UV); hash it; use hash as shared secret to encrypt and authenticate messages.

Curve speed is important when number of messages is small.

Analogous system 1976 Diffie Hellma

Using elliptic curv to avoid index-cal 1986 Miller, 1987 Using $x^{3}+A x^{2}+$ 1987 Montgomery

High precision fror 1968 Veltkamp, 1 Speedups: 1999-2

Why cryptographers care

Each user has secret key U, public key Curve(U).

Users with secret keys U, V exchange Curve(U), Curve (V) through an authenticated channel; compute Curve(UV); hash it; use hash as shared secret to encrypt and authenticate messages.

Curve speed is important when number of messages is small.

Analogous system using $2^{U} \bmod p$: 1976 Diffie Hellman.

Using elliptic curves
to avoid index-calculus attacks:
1986 Miller, 1987 Koblitz.
Using $x^{3}+A x^{2}+x$ for speed:
1987 Montgomery (for ECM).
High precision from fp sums:
1968 Veltkamp, 1971 Dekker.
Speedups: 1999-2005 Bernstein.

rs care

et key U,
J).
keys U, V
), Curve(V) ticated channel;
/); hash it; secret to
nticate messages.
ortant
tessages is small.

Analogous system using $2^{U} \bmod p$: 1976 Diffie Hellman.

Using elliptic curves
to avoid index-calculus attacks: 1986 Miller, 1987 Koblitz.

Using $x^{3}+A x^{2}+x$ for speed:
1987 Montgomery (for ECM).
High precision from fp sums:
1968 Veltkamp, 1971 Dekker.
Speedups: 1999-2005 Bernstein.

Understanding CP

Computers are des music, movies, Ph etc. Heavy use of i.e., approximate r

Example: Athlon, does one add and of high-precision f

Programmer payin to these CPU feat can use them for

Analogous system using $2^{U} \bmod p$: 1976 Diffie Hellman.

Using elliptic curves
to avoid index-calculus attacks:
1986 Miller, 1987 Koblitz.
Using $x^{3}+A x^{2}+x$ for speed:
1987 Montgomery (for ECM).
High precision from fp sums:
1968 Veltkamp, 1971 Dekker.
Speedups: 1999-2005 Bernstein.

Understanding CPU design

Computers are designed for music, movies, Photoshop, Doom 3, etc. Heavy use of fp arithmetic, i.e., approximate real arithmetic.

Example: Athlon, every cycle, does one add and one multiply of high-precision fp numbers.

Programmer paying attention to these CPU features can use them for cryptography.

using $2^{U} \bmod p$: Understanding CPU design

Computers are designed for music, movies, Photoshop, Doom 3, etc. Heavy use of fp arithmetic, i.e., approximate real arithmetic.

Example: Athlon, every cycle, does one add and one multiply of high-precision fp numbers.

Programmer paying attention to these CPU features can use them for cryptography.

A 53-bit fp numb

is a real number 2 with $e, f \in \mathbf{Z}$ and

Round each real n closest 53-bit fp n Round halves to e

Examples:
$\mathrm{fp}_{53}(8675309)=\varepsilon$ $\mathrm{fp}_{53}\left(2^{127}+86753\right.$ $\mathrm{fp}_{53}\left(2^{127}-86753\right.$

Understanding CPU design

Computers are designed for music, movies, Photoshop, Doom 3, etc. Heavy use of fp arithmetic, i.e., approximate real arithmetic.

Example: Athlon, every cycle, does one add and one multiply of high-precision fp numbers.

Programmer paying attention to these CPU features can use them for cryptography.

A 53-bit fp number

is a real number $2^{e} f$ with $e, f \in \mathbf{Z}$ and $|f| \leq 2^{53}$.

Round each real number z to closest 53-bit fp number, $\mathrm{fp}_{53} z$.
Round halves to even.
Examples:
$\mathrm{fp}_{53}(8675309)=8675309$;
$\mathrm{fp}_{53}\left(2^{127}+8675309\right)=2^{127}$;
$f p_{53}\left(2^{127}-8675309\right)=2^{127}$.

U design

igned for
otoshop, Doom 3, fp arithmetic, eal arithmetic.
every cycle, one multiply
o numbers.
g attention ures
ryptography.

A 53-bit fp number

is a real number $2^{e} f$ with $e, f \in \mathbf{Z}$ and $|f| \leq 2^{53}$.

Round each real number z to closest 53-bit fp number, $\mathrm{fp}_{53} z$.
Round halves to even.

Examples:

$$
\mathrm{fp}_{53}(8675309)=8675309
$$

$$
\mathrm{fp}_{53}\left(2^{127}+8675309\right)=2^{127}
$$

$$
\mathrm{fp}_{53}\left(2^{127}-8675309\right)=2^{127}
$$

Typical CPU: Ultr
Every cycle, Ultra one fp multiplicati $r, s \mapsto \mathrm{fp}_{53}(r s)$
and one fp additio $r, s \mapsto \mathrm{fp}_{53}(r+s)$ subject to limits o
"4-cycle fp-operat Results available a

Can substitute sul for addition. I'll cc subtractions as ad

A 53-bit fp number

is a real number $2^{e} f$ with $e, f \in \mathbf{Z}$ and $|f| \leq 2^{53}$.

Round each real number z to closest 53-bit fp number, $\mathrm{fp}_{53} z$.
Round halves to even.
Examples:
$\mathrm{fp}_{53}(8675309)=8675309$;
$f_{53}\left(2^{127}+8675309\right)=2^{127}$;
$f_{53}\left(2^{127}-8675309\right)=2^{127}$.

Typical CPU: UltraSPARC III.
Every cycle, UltraSPARC III can do one fp multiplication
$r, s \mapsto \mathrm{fp}_{53}$ (rs)
and one fp addition
$r, s \mapsto \mathrm{fp}_{53}(r+s)$,
subject to limits on e.
"4-cycle fp-operation latency":
Results available after 4 cycles.
Can substitute subtraction for addition. I'll count subtractions as additions.

```
er
e
|f| \leq 2 53.
```

umber z to
umber, $\mathrm{fp}_{53} z$.
ven.

675309;
09) $=2^{127}$;
$09)=2^{127}$.

Typical CPU: UltraSPARC III.

Every cycle, UltraSPARC III can do one fp multiplication
$r, s \mapsto \mathrm{fp}_{53}(r s)$
and one fp addition
$r, s \mapsto \mathrm{fp}_{53}(r+s)$,
subject to limits on e.
"4-cycle fp-operation latency":
Results available after 4 cycles.
Can substitute subtraction
for addition. I'll count
subtractions as additions.

Some variation an
PowerPC RS64 IV or one multiplicati "fused" $r, s, t \mapsto f$
Results available a
Athlon: fp_{64} inste one multiplication Results available a

I'll focus on UltraS Not the most imp but it's a good wa

Typical CPU: UltraSPARC III.
Every cycle, UltraSPARC III can do one fp multiplication
$r, s \mapsto \mathrm{fp}_{53}(r s)$
and one fp addition
$r, s \mapsto \mathrm{fp}_{53}(r+s)$,
subject to limits on e.
"4-cycle fp-operation latency": Results available after 4 cycles.

Can substitute subtraction for addition. I'll count subtractions as additions.

Some variation among CPUs.
PowerPC RS64 IV: One addition or one multiplication or one "fused" $r, s, t \mapsto \mathrm{fp}_{53}(r s+t)$.
Results available after 4 cycles.
Athlon: fp_{64} instead of fp_{53}; one multiplication and one addition. Results available after 4 cycles.

I'll focus on UltraSPARC III. Not the most important CPU, but it's a good warmup.
aSPARC III.
5PARC III can do
on

n

n e.
ion latency":
fter 4 cycles.
traction
unt
ditions.

Some variation among CPUs.
PowerPC RS64 IV: One addition or one multiplication or one "fused" $r, s, t \mapsto \mathrm{fp}_{53}(r s+t)$.
Results available after 4 cycles.
Athlon: fp_{64} instead of fp_{53}; one multiplication and one addition. Results available after 4 cycles.

I'll focus on UltraSPARC III. Not the most important CPU, but it's a good warmup.

Exact dot product

If $a, b \in\left\{-2^{20}, \ldots\right.$ then $a b$ is a 53-bit so $a b=\mathrm{fp}_{53}(a b)$.

If $a, b, c, d \in\left\{-2^{2}\right.$ then $a b, c d, a b+c$ 53-bit fp numbers $a b=\mathrm{fp}_{53}(a b), c d$ $a b+c d=\mathrm{fp}_{53}(a b$

UltraSPARC III co $a, b, c, d \mapsto a b+c$ two fp mults, one

Some variation among CPUs.
PowerPC RS64 IV: One addition or one multiplication or one "fused" $r, s, t \mapsto \mathrm{fp}_{53}(r s+t)$.
Results available after 4 cycles.
Athlon: fp_{64} instead of fp_{53}; one multiplication and one addition. Results available after 4 cycles.

I'll focus on UltraSPARC III. Not the most important CPU, but it's a good warmup.

Exact dot products

If $a, b \in\left\{-2^{20}, \ldots, 0,1, \ldots, 2^{20}\right\}$
then $a b$ is a 53 -bit fp number
so $a b=\mathrm{fp}_{53}(a b)$.
If $a, b, c, d \in\left\{-2^{20}, \ldots, 2^{20}\right\}$ then $a b, c d, a b+c d$ are 53-bit fp numbers so $a b=\mathrm{fp}_{53}(a b), c d=\mathrm{fp}_{53}(c d)$, $a b+c d=\mathrm{fp}_{53}(a b+c d)$.

UltraSPARC III computes
$a, b, c, d \mapsto a b+c d$ with two $f p$ mults, one $f p$ add.

וong CPUs.
One addition
on or one
$p_{53}(r s+t)$.
fter 4 cycles.
ad of fp_{53};
and one addition.
fter 4 cycles.
SPARC III.
ortant CPU,
rmup.

Exact dot products

If $a, b \in\left\{-2^{20}, \ldots, 0,1, \ldots, 2^{20}\right\}$ then $a b$ is a 53 -bit fp number
so $a b=\mathrm{fp}_{53}(a b)$.
If $a, b, c, d \in\left\{-2^{20}, \ldots, 2^{20}\right\}$ then $a b, c d, a b+c d$ are
53-bit fp numbers so
$a b=\mathrm{fp}_{53}(a b), c d=\mathrm{fp}_{53}(c d)$,
$a b+c d=\mathrm{fp}_{53}(a b+c d)$.
UltraSPARC III computes
$a, b, c, d \mapsto a b+c d$ with two fp mults, one fp add.

Bit extraction

Define $\alpha_{i}=3 \cdot 2^{i-}$ top $_{i} r=\mathrm{fp}_{53}\left(\mathrm{fp}_{53}\right.$ bottom $_{i} r=\mathrm{fp}_{53}($

If r is a 53 -bit fp and $|r| \leq 2^{i+51}$ th top $_{i} r \in 2^{i} \mathbf{Z}$;
\mid bottom $_{i} r \mid \leq 2^{i-}$
$r=$ top $_{i} r+$ botto

Exact dot products

If $a, b \in\left\{-2^{20}, \ldots, 0,1, \ldots, 2^{20}\right\}$
then $a b$ is a 53 -bit fp number
so $a b=\mathrm{fp}_{53}(a b)$.
If $a, b, c, d \in\left\{-2^{20}, \ldots, 2^{20}\right\}$
then $a b, c d, a b+c d$ are
53-bit fp numbers so
$a b=\mathrm{fp}_{53}(a b), c d=\mathrm{fp}_{53}(c d)$,
$a b+c d=\mathrm{fp}_{53}(a b+c d)$.
UltraSPARC III computes
$a, b, c, d \mapsto a b+c d$ with two fp mults, one fp add.

Bit extraction

Define $\alpha_{i}=3 \cdot 2^{i+51}$, top $_{i} r=\mathrm{fp}_{53}\left(\mathrm{fp}_{53}\left(r+\alpha_{i}\right)-\alpha_{i}\right)$, bottom $_{i} r=\mathrm{fp}_{53}\left(r-\right.$ top $\left._{i} r\right)$.

If r is a 53 -bit fp number and $|r| \leq 2^{i+51}$ then top $_{i} r \in 2^{i} \mathbf{Z}$; \mid bottom $_{i} r \mid \leq 2^{i-1}$; and $r=$ top $_{i} r+$ bottom $_{i} r$.

Bit extraction

$\left.., 0,1, \ldots, 2^{20}\right\}$

fp number
$\left.0, \ldots, 2^{20}\right\}$
d are
SO
$=\mathrm{fp}_{53}(c d)$,
$+c d)$
mputes
d with
fp add.

Define $\alpha_{i}=3 \cdot 2^{i+51}$,
top $_{i} r=\mathrm{fp}_{53}\left(\mathrm{fp}_{53}\left(r+\alpha_{i}\right)-\alpha_{i}\right)$, bottom $_{i} r=\mathrm{fp}_{53}\left(r-\right.$ top $\left._{i} r\right)$.

If r is a 53-bit fp number and $|r| \leq 2^{i+51}$ then top $_{i} r \in 2^{i} \mathbf{Z}$;
\mid bottom $_{i} r \mid \leq 2^{i-1}$; and
$r=$ top $_{i} r+$ bottom $_{i} r$.

Big integers as fp
Every integer mod can be written as $u_{0}+u_{22}+u_{43}+$ $u_{85}+u_{107}+u_{128}$ $u_{170}+u_{192}+u_{21}$ where $u_{i} / 2^{i} \in\{-$ Indices i are [255] for $j \in\{0,1, \ldots, 1$

Representation is it's not the input/ Uniqueness would

Bit extraction

Define $\alpha_{i}=3 \cdot 2^{i+51}$,
top $_{i} r=\mathrm{fp}_{53}\left(\mathrm{fp}_{53}\left(r+\alpha_{i}\right)-\alpha_{i}\right)$,
bottom $_{i} r=\mathrm{fp}_{53}\left(r-\right.$ top $\left._{i} r\right)$.
If r is a 53 -bit fp number
and $|r| \leq 2^{i+51}$ then
top $_{i} r \in 2^{2} \mathbf{Z}$;
\mid bottom $_{i} r \mid \leq 2^{i-1}$; and
$r=$ top $_{i} r+$ bottom $_{i} r$.

Big integers as fp sums

Every integer mod $2^{255}-19$
can be written as a sum
$u_{0}+u_{22}+u_{43}+u_{64}+$
$u_{85}+u_{107}+u_{128}+u_{149}+$
$u_{170}+u_{192}+u_{213}+u_{234}$ where $u_{i} / 2^{i} \in\left\{-2^{22}, \ldots, 2^{22}\right\}$.

Indices i are $\lceil 255 j / 12\rceil$
for $j \in\{0,1, \ldots, 11\}$.
Representation is not unique;
it's not the input/output format.
Uniqueness would cost cycles!

Big integers as fp sums
Every integer mod $2^{255}-19$
can be written as a sum
$u_{0}+u_{22}+u_{43}+u_{64}+$
$u_{85}+u_{107}+u_{128}+u_{149}+$
$u_{170}+u_{192}+u_{213}+u_{234}$
where $u_{i} / 2^{i} \in\left\{-2^{22}, \ldots, 2^{22}\right\}$.
Indices i are $\lceil 255 j / 12\rceil$
for $j \in\{0,1, \ldots, 11\}$.
Representation is not unique;
it's not the input/output format.
Uniqueness would cost cycles!

Assume $u=\sum u_{i}$ and similarly $v=$ $u v=w_{0}+w_{22}+$ where $w_{0}=u_{0} v_{0}$, $w_{22}=u_{0} v_{22}+u_{2}$ $w_{43}=u_{0} v_{43}+u_{2}$ etc.

Each w_{i} is a 53 -bi Given u_{i} 's and $v_{i}{ }^{\prime}$ can compute w_{i} 's 144 fp mults, 121

Big integers as fp sums

Every integer mod $2^{255}-19$
can be written as a sum
$u_{0}+u_{22}+u_{43}+u_{64}+$
$u_{85}+u_{107}+u_{128}+u_{149}+$
$u_{170}+u_{192}+u_{213}+u_{234}$ where $u_{i} / 2^{i} \in\left\{-2^{22}, \ldots, 2^{22}\right\}$.

Indices i are $\lceil 255 j / 12\rceil$
for $j \in\{0,1, \ldots, 11\}$.
Representation is not unique; it's not the input/output format.
Uniqueness would cost cycles!

Assume $u=\sum u_{i}$ as above, and similarly $v=\sum v_{i}$. Then $u v=w_{0}+w_{22}+\cdots+w_{468}$ where $w_{0}=u_{0} v_{0}$,
$w_{22}=u_{0} v_{22}+u_{22} v_{0}$,
$w_{43}=u_{0} v_{43}+u_{22} v_{22}+u_{43} v_{0}$, etc.

Each w_{i} is a 53 -bit fp number. Given u_{i} 's and v_{i} 's,
can compute w_{i} 's using
144 fp mults, 121 fp adds.
$3+u_{234}$
$\left.2^{22}, \ldots, 2^{22}\right\}$.
j/12
$1\}$.
not unique;
output format.
cost cycles!

Assume $u=\sum u_{i}$ as above, and similarly $v=\sum v_{i}$. Then $u v=w_{0}+w_{22}+\cdots+w_{468}$ where $w_{0}=u_{0} v_{0}$,
$w_{22}=u_{0} v_{22}+u_{22} v_{0}$,
$w_{43}=u_{0} v_{43}+u_{22} v_{22}+u_{43} v_{0}$, etc.

Each w_{i} is a 53 -bit fp number. Given u_{i} 's and v_{i} 's,
can compute w_{i} 's using 144 fp mults, 121 fp adds.

Furthermore, mod $u v \equiv r_{0}+r_{22}+$. where $r_{0}=w_{0}+$ $r_{22}=w_{22}+19 \cdot 2$

Each r_{i} is a 53-bit Example: r_{0} is an $\left|r_{0}\right| \leq 381 \cdot 2^{44}$.

Computing $r_{i}{ }^{\prime}$'s fro 11 fp mults, 11 fp

Structure: $(\mathbf{Z}[t] \cap$ $/\left(2^{255} t^{12}-19\right) \rightarrow$

Assume $u=\sum u_{i}$ as above, and similarly $v=\sum v_{i}$. Then $u v=w_{0}+w_{22}+\cdots+w_{468}$
where $w_{0}=u_{0} v_{0}$,
$w_{22}=u_{0} v_{22}+u_{22} v_{0}$,
$w_{43}=u_{0} v_{43}+u_{22} v_{22}+u_{43} v_{0}$, etc.

Each w_{i} is a 53 -bit fp number. Given u_{i} 's and v_{i} 's,
can compute w_{i} 's using 144 fp mults, 121 fp adds.

Furthermore, modulo $2^{255}-19$,
$u v \equiv r_{0}+r_{22}+\cdots+r_{234}$ where $r_{0}=w_{0}+19 \cdot 2^{-255} w_{255}$, $r_{22}=w_{22}+19 \cdot 2^{-255} w_{277}$, etc.

Each r_{i} is a 53 -bit fp number.
Example: r_{0} is an integer;
$\left|r_{0}\right| \leq 381 \cdot 2^{44}$.
Computing r_{i} 's from w_{i} 's takes 11 fp mults, 11 fp adds.

Structure: $\left(\mathbf{Z}[t] \cap \overline{\mathbf{Z}}\left[2^{255 / 12} t\right]\right)$ $/\left(2^{255} t^{12}-19\right) \rightarrow \mathbf{Z} /\left(2^{255}-19\right)$.
as above,
$\sum v_{i}$. Then
$\cdots+w_{468}$
${ }_{2} v_{0}$,
${ }_{2} v_{22}+u_{43} v_{0}$
t fp number.
S,
using
fp adds.

Furthermore, modulo $2^{255}-19$,
$u v \equiv r_{0}+r_{22}+\cdots+r_{234}$ where $r_{0}=w_{0}+19 \cdot 2^{-255} w_{255}$,
$r_{22}=w_{22}+19 \cdot 2^{-255} w_{277}$, etc.
Each r_{i} is a 53-bit fp number.
Example: r_{0} is an integer;

$$
\left|r_{0}\right| \leq 381 \cdot 2^{44} .
$$

Computing r_{i} 's from w_{i} 's takes 11 fp mults, 11 fp adds.

Structure: $\left(\mathbf{Z}[t] \cap \overline{\mathbf{Z}}\left[2^{255 / 12} t\right]\right)$ $/\left(2^{255} t^{12}-19\right) \rightarrow \mathbf{Z} /\left(2^{255}-19\right)$.

Carries

"Carry from r_{0} to replace r_{0} and r_{22} bottom $22 r_{0}$ and r This takes 4 fp ad and guarantees $\mid r_{C}$

Series of 13 carrie in range for subsec from r_{192} to r_{213} then from r_{0} to r_{2} to r_{192} to r_{213}.
This takes 52 fp a

Furthermore, modulo $2^{255}-19$, $u v \equiv r_{0}+r_{22}+\cdots+r_{234}$ where $r_{0}=w_{0}+19 \cdot 2^{-255} w_{255}$, $r_{22}=w_{22}+19 \cdot 2^{-255} w_{277}$, etc.

Each r_{i} is a 53 -bit fp number.
Example: r_{0} is an integer; $\left|r_{0}\right| \leq 381 \cdot 2^{44}$.

Computing r_{i} 's from w_{i} 's takes 11 fp mults, 11 fp adds.

Structure: $\left(\mathbf{Z}[t] \cap \overline{\mathbf{Z}}\left[2^{255 / 12} t\right]\right)$ $/\left(2^{255} t^{12}-19\right) \rightarrow \mathbf{Z} /\left(2^{255}-19\right)$.

Carries

"Carry from r_{0} to r_{22} ": replace r_{0} and r_{22} by bottom $22 r_{0}$ and $r_{22}+$ top $_{22} r_{0}$. This takes 4 fp adds, and guarantees $\left|r_{0}\right| \leq 2^{21}$.

Series of 13 carries puts all $r_{i}{ }^{\prime}$ s in range for subsequent products: from r_{192} to r_{213} to r_{234} to w_{255}; then from r_{0} to r_{22} to r_{43} to ...
to r_{192} to r_{213}.
This takes 52 fp adds.
ulo $2^{255}-19$

$$
\cdots+r_{234}
$$

$19 \cdot 2^{-255} w_{255}$ ${ }^{-255} w_{277}$, etc.
fp number. integer;
w_{i} 's takes
adds.
$\left.\overline{\mathbf{Z}}\left[2^{255 / 12} t\right]\right)$
$\mathbf{Z} /\left(2^{255}-19\right)$

Carries

"Carry from r_{0} to r_{22} ": replace r_{0} and r_{22} by
bottom $22 r_{0}$ and $r_{22}+$ top $_{22} r_{0}$.
This takes 4 fp adds, and guarantees $\left|r_{0}\right| \leq 2^{21}$.

Series of 13 carries puts all r_{i} 's in range for subsequent products: from r_{192} to r_{213} to r_{234} to w_{255}; then from r_{0} to r_{22} to r_{43} to ... to r_{192} to r_{213}.
This takes 52 fp adds.

Total 155 mults, 1 to multiply modul in this representat
≥ 184 UltraSPAR
$=184$ cycles? Tw fp-operation laten "load/store" laten limited number of

Schedule instructic to bring cycles do

Carries

"Carry from r_{0} to r_{22} ":
replace r_{0} and r_{22} by
bottom $22 r_{0}$ and $r_{22}+$ top $_{22} r_{0}$.
This takes 4 fp adds, and guarantees $\left|r_{0}\right| \leq 2^{21}$.

Series of 13 carries puts all $r_{i}{ }^{\prime}$ s in range for subsequent products: from r_{192} to r_{213} to r_{234} to w_{255}; then from r_{0} to r_{22} to r_{43} to ...
to r_{192} to r_{213}.
This takes 52 fp adds.

Total 155 mults, 184 adds to multiply modulo $2^{255}-19$ in this representation.
≥ 184 UltraSPARC III cycles.
$=184$ cycles? Two obstacles:
fp-operation latency;
"load/store" latency imposed by limited number of "registers."

Schedule instructions carefully to bring cycles down to ≈ 184.

$r_{22}{ }^{\prime \prime}$:

by
$22+$ top $_{22} r_{0}$. ds, $\mid \leq 2^{21}$. puts all r_{i} 's quent products:
to r_{234} to w_{255};
2 to r_{43} to ...
dds.

Total 155 mults, 184 adds to multiply modulo $2^{255}-19$ in this representation.
≥ 184 UltraSPARC III cycles.
$=184$ cycles? Two obstacles: fp-operation latency;
"load/store" latency imposed by limited number of "registers."

Schedule instructions carefully to bring cycles down to ≈ 184.

Have developed ql new programming for high-speed con

Includes range ver guided register all

Lets me write desi with much less hu traditional asm, C Have also used for fast Poly1305, fas see, e.g., http:// /mac/poly1305_a

Total 155 mults, 184 adds to multiply modulo $2^{255}-19$ in this representation.
≥ 184 UltraSPARC III cycles.
$=184$ cycles? Two obstacles:
fp-operation latency;
"load/store" latency imposed by limited number of "registers."

Schedule instructions carefully to bring cycles down to ≈ 184.

Have developed qhasm, new programming language for high-speed computations.

Includes range verification, guided register allocation, et al.

Lets me write desired code with much less human time than traditional asm, C compiler, etc. Have also used for fast AES, fast Poly1305, fast Salsa20, etc.;
see, e.g., http://cr.yp.to /mac/poly1305_athlon.s.

84 adds
o $2^{255}-19$
ion.
C III cycles.
o obstacles:
cy;
cy imposed by "registers."
ons carefully
wn to ≈ 184.

Have developed qhasm, new programming language for high-speed computations.

Includes range verification, guided register allocation, et al.

Lets me write desired code with much less human time than traditional asm, C compiler, etc. Have also used for fast AES, fast Poly1305, fast Salsa20, etc.; see, e.g., http://cr.yp.to /mac/poly1305_athlon.s.

Speedup: Squarin

Often know in adv $u_{0} u_{64}+u_{22} u_{43}+$ is more efficiently $2\left(u_{0} u_{64}+u_{22} u_{43}\right.$

Even better: First $2 u_{0}, 2 u_{22}, \ldots, 2 u_{2}$ and then compute $\left(2 u_{0}\right) u_{64}+\left(2 u_{22}\right)$

130 fp adds instea
Makes carry time

Have developed qhasm, new programming language for high-speed computations.

Includes range verification, guided register allocation, et al.

Lets me write desired code with much less human time than traditional asm, C compiler, etc. Have also used for fast AES, fast Poly1305, fast Salsa20, etc.;
see, e.g., http://cr.yp.to /mac/poly1305_athlon.s.

Speedup: Squarings

Often know in advance that $u=v$.

$$
u_{0} u_{64}+u_{22} u_{43}+u_{43} u_{22}+u_{64} u_{0}
$$ is more efficiently computed as $2\left(u_{0} u_{64}+u_{22} u_{43}\right)$.

Even better: First compute $2 u_{0}, 2 u_{22}, \ldots, 2 u_{234}$ and then compute $\left(2 u_{0}\right) u_{64}+\left(2 u_{22}\right) u_{43}$ etc.

130 fp adds instead of 184.
Makes carry time even more visible.

1asm,
language mputations.
ification, cation, et al.
red code
man time than
compiler, etc.
fast AES,
Salsa20, etc.;
cr.yp.to
athlon.s.

Speedup: Squarings

Often know in advance that $u=v$.
$u_{0} u_{64}+u_{22} u_{43}+u_{43} u_{22}+u_{64} u_{0}$
is more efficiently computed as
$2\left(u_{0} u_{64}+u_{22} u_{43}\right)$.
Even better: First compute
$2 u_{0}, 2 u_{22}, \ldots, 2 u_{234}$
and then compute

$$
\left(2 u_{0}\right) u_{64}+\left(2 u_{22}\right) u_{43} \text { etc. }
$$

130 fp adds instead of 184.
Makes carry time even more visible.

Speedup: Karatsu
Say $A_{0}=u_{0}+u_{2}$
$A_{1}=u_{128}+u_{149}$
$B_{0}=v_{0}+\cdots, B_{1}$
Original, 184 adds $A_{0} B_{0}+\left(A_{0} B_{1}+A\right.$

Karatsuba, 182 ad $\left(\left(A_{0}+A_{1}\right)\left(B_{0}+B_{1}\right.\right.$ $+A_{0} B_{0}+A_{1} B_{1} t^{1}$ Improved Karatsul $\left(A_{0}+A_{1}\right)\left(B_{0}+B\right.$
$+\left(A_{0} B_{0}-A_{1} B_{1} t\right.$

Speedup: Squarings

Often know in advance that $u=v$.
$u_{0} u_{64}+u_{22} u_{43}+u_{43} u_{22}+u_{64} u_{0}$ is more efficiently computed as $2\left(u_{0} u_{64}+u_{22} u_{43}\right)$.

Even better: First compute
$2 u_{0}, 2 u_{22}, \ldots, 2 u_{234}$
and then compute
$\left(2 u_{0}\right) u_{64}+\left(2 u_{22}\right) u_{43}$ etc.
130 fp adds instead of 184.
Makes carry time even more visible.

Speedup: Karatsuba's method
Say $A_{0}=u_{0}+u_{22} t+\cdots+u_{107} t^{5}$,
$A_{1}=u_{128}+u_{149} t+\cdots+u_{234} t^{5}$,
$B_{0}=v_{0}+\cdots, B_{1}=v_{128}+\cdots$.
Original, 184 adds: Product is $A_{0} B_{0}+\left(A_{0} B_{1}+A_{1} B_{0}\right) t^{6}+A_{1} B_{1} t^{12}$.

Karatsuba, 182 adds:
$\left(\left(A_{0}+A_{1}\right)\left(B_{0}+B_{1}\right)-A_{0} B_{0}-A_{1} B_{1}\right) t^{6}$
$+A_{0} B_{0}+A_{1} B_{1} t^{12}$.
Improved Karatsuba, 177 adds:
$\left(A_{0}+A_{1}\right)\left(B_{0}+B_{1}\right) t^{6}$
$+\left(A_{0} B_{0}-A_{1} B_{1} t^{6}\right)\left(1-t^{6}\right)$.
ance that $u=v$.
$u_{43} u_{22}+u_{64} u_{0}$
computed as
compute
34
u_{43} etc.
d of 184 .
even more visible.

Speedup: Karatsuba's method

Say $A_{0}=u_{0}+u_{22} t+\cdots+u_{107} t^{5}$,
$A_{1}=u_{128}+u_{149} t+\cdots+u_{234} t^{5}$,
$B_{0}=v_{0}+\cdots, B_{1}=v_{128}+\cdots$.
Original, 184 adds: Product is $A_{0} B_{0}+\left(A_{0} B_{1}+A_{1} B_{0}\right) t^{6}+A_{1} B_{1} t^{12}$.

Karatsuba, 182 adds:
$\left(\left(A_{0}+A_{1}\right)\left(B_{0}+B_{1}\right)-A_{0} B_{0}-A_{1} B_{1}\right) t^{6}$
$+A_{0} B_{0}+A_{1} B_{1} t^{12}$.
Improved Karatsuba, 177 adds:
$\left(A_{0}+A_{1}\right)\left(B_{0}+B_{1}\right) t^{6}$
$+\left(A_{0} B_{0}-A_{1} B_{1} t^{6}\right)\left(1-t^{6}\right)$.

The Curve functio
Overall strategy tc U, Curve $(V) \mapsto \mathrm{Cu}$ using arithmetic m

For various intege find x_{n}, z_{n} such t Curve $(n V) \equiv x_{n} /$ i.e., z_{n} Curve($n V$) e.g. $x_{1}=$ Curve $(V$ assuming Curve $(V$

Can easily restrict to ensure that ∞

Speedup: Karatsuba's method

Say $A_{0}=u_{0}+u_{22} t+\cdots+u_{107} t^{5}$,
$A_{1}=u_{128}+u_{149} t+\cdots+u_{234} t^{5}$,
$B_{0}=v_{0}+\cdots, B_{1}=v_{128}+\cdots$.
Original, 184 adds: Product is $A_{0} B_{0}+\left(A_{0} B_{1}+A_{1} B_{0}\right) t^{6}+A_{1} B_{1} t^{12}$.

Karatsuba, 182 adds:
$\left(\left(A_{0}+A_{1}\right)\left(B_{0}+B_{1}\right)-A_{0} B_{0}-A_{1} B_{1}\right) t^{6}$ $+A_{0} B_{0}+A_{1} B_{1} t^{12}$.

Improved Karatsuba, 177 adds:
$\left(A_{0}+A_{1}\right)\left(B_{0}+B_{1}\right) t^{6}$
$+\left(A_{0} B_{0}-A_{1} B_{1} t^{6}\right)\left(1-t^{6}\right)$.

The Curve function

Overall strategy to compute U, Curve (V) \mapsto Curve (UV), using arithmetic $\bmod p=2^{255}-19$:

For various integers n, find x_{n}, z_{n} such that Curve $(n V) \equiv x_{n} / z_{n} \quad(\bmod p)$, i.e., $z_{n} \operatorname{Curve}(n V) \equiv x_{n} \quad(\bmod p)$.
e.g. $x_{1}=\operatorname{Curve}(V), z_{1}=1$, assuming Curve $(V) \neq \infty$.

Can easily restrict U, Curve (V) to ensure that ∞ never appears.
${ }_{2} t+\cdots+u_{107} t^{5}$
$+\cdots+u_{234} t^{5}$
$=v_{128}+\cdots$.
Product is
$\left.{ }_{1} B_{0}\right) t^{6}+A_{1} B_{1} t^{12}$.
ds:
$\left.-A_{0} B_{0}-A_{1} B_{1}\right) t^{6}$
2
oa, 177 adds:

1) t^{6}
$\left.{ }^{6}\right)\left(1-t^{6}\right)$

The Curve function

Overall strategy to compute U, Curve (V) \mapsto Curve (UV), using arithmetic $\bmod p=2^{255}-19$:

For various integers n, find x_{n}, z_{n} such that
Curve $(n V) \equiv x_{n} / z_{n} \quad(\bmod p)$,
i.e., $z_{n} \operatorname{Curve}(n V) \equiv x_{n} \quad(\bmod p)$.
e.g. $x_{1}=\operatorname{Curve}(V), z_{1}=1$, assuming Curve $(V) \neq \infty$.

Can easily restrict U, Curve (V) to ensure that ∞ never appears.

We'll see how to c $x_{m}, z_{m} \mapsto x_{2 m}, z_{2}$ $x_{m}, z_{m}, x_{m+1}, z_{m}$ $\mapsto x_{2 m+1}, z_{2 m+1}$.

Combine to comp $x_{m}, z_{m}, x_{m+1}, z_{m}$ $\mapsto x_{n}, z_{n}, x_{n+1}, z$ where $m=\lfloor n / 2\rfloor$

Conditional brancl input-dependent lc can leak b via timi Replace with arith e.g., $(1-b) x_{m}+$

The Curve function

Overall strategy to compute U, Curve (V) \mapsto Curve (UV), using arithmetic $\bmod p=2^{255}-19$:

For various integers n, find x_{n}, z_{n} such that
Curve $(n V) \equiv x_{n} / z_{n} \quad(\bmod p)$,
i.e., z_{n} Curve $(n V) \equiv x_{n} \quad(\bmod p)$.
e.g. $x_{1}=\operatorname{Curve}(V), z_{1}=1$, assuming Curve $(V) \neq \infty$.

Can easily restrict U, Curve (V) to ensure that ∞ never appears.

We'll see how to compute
$x_{m}, z_{m} \mapsto x_{2 m}, z_{2 m}$; and
$x_{m}, z_{m}, x_{m+1}, z_{m+1}$, Curve (V)
$\mapsto x_{2 m+1}, z_{2 m+1}$.
Combine to compute
$x_{m}, z_{m}, x_{m+1}, z_{m+1}, b$, Curve(V)
$\mapsto x_{n}, z_{n}, x_{n+1}, z_{n+1}$
where $m=\lfloor n / 2\rfloor, b=n \bmod 2$.
Conditional branches and input-dependent load addresses
can leak b via timing.
Replace with arithmetic:
e.g., $(1-b) x_{m}+(b) x_{m+1}$.

We'll see how to compute $x_{m}, z_{m} \mapsto x_{2 m}, z_{2 m}$; and $x_{m}, z_{m}, x_{m+1}, z_{m+1}$, Curve (V)
$\mapsto x_{2 m+1}, z_{2 m+1}$.
Combine to compute
$x_{m}, z_{m}, x_{m+1}, z_{m+1}, b$, Curve (V)
$\mapsto x_{n}, z_{n}, x_{n+1}, z_{n+1}$
where $m=\lfloor n / 2\rfloor, b=n \bmod 2$.
Conditional branches and input-dependent load addresses can leak b via timing.
Replace with arithmetic:
e.g., $(1-b) x_{m}+(b) x_{m+1}$.

Eventually reach r
Divide x_{U} by z_{U} to obtain Curve $(U$

Simple division m $x_{U} / z_{U} \equiv x_{U} z_{U}^{p-2}$. Euclid-type divisio are faster but hav input-dependent t

Finally convert fro floating-point repr to byte-string outf

We'll see how to compute $x_{m}, z_{m} \mapsto x_{2 m}, z_{2 m}$; and $x_{m}, z_{m}, x_{m+1}, z_{m+1}$, Curve(V) $\mapsto x_{2 m+1}, z_{2 m+1}$.

Combine to compute
$x_{m}, z_{m}, x_{m+1}, z_{m+1}, b$, Curve (V)
$\mapsto x_{n}, z_{n}, x_{n+1}, z_{n+1}$
where $m=\lfloor n / 2\rfloor, b=n \bmod 2$.
Conditional branches and input-dependent load addresses
can leak b via timing.
Replace with arithmetic:
e.g., $(1-b) x_{m}+(b) x_{m+1}$.

Eventually reach $n=U$.
Divide x_{U} by z_{U} modulo p to obtain Curve(UV).

Simple division method: Fermat!
$x_{U} / z_{U} \equiv x_{U} z_{U}^{p-2}$.
Euclid-type division methods
are faster but have input-dependent timings.

Finally convert from
floating-point representation to byte-string output format.
ompute
m; and
+1 , Curve(V)
ıte

$$
+1, b, \operatorname{Curve}(V)
$$

$n+1$
$b=n \bmod 2$
es and
zad addresses
ng.
metic:
(b) x_{m+1}.

Eventually reach $n=U$.
Divide x_{U} by z_{U} modulo p to obtain Curve(UV).

Simple division method: Fermat!
$x_{U} / z_{U} \equiv x_{U} z_{U}^{p-2}$.
Euclid-type division methods
are faster but have input-dependent timings.

Finally convert from floating-point representation to byte-string output format.

From n to $2 n$
$\ln \mathbf{Z} / p$:
$x_{2 n}=\left(x_{n}^{2}-z_{n}^{2}\right)^{2}$
$z_{2 n}=4 x_{n} z_{n}\left(x_{n}^{2}\right.$
Compute as follow $\left(x_{n}-z_{n}\right)^{2} ;\left(x_{n}+\right.$ $x_{2 n}=\left(x_{n}-z_{n}\right)^{2}$
$4 x_{n} z_{n}=\left(x_{n}+z_{r}\right.$
$(A-2) x_{n} z_{n}=89$
$z_{2 n}=$
$4 x_{n} z_{n}\left(\left(x_{n}+z_{n}\right)^{2}\right.$

Eventually reach $n=U$.

Divide x_{U} by z_{U} modulo p to obtain Curve(UV).

Simple division method: Fermat!
$x_{U} / z_{U} \equiv x_{U} z_{U}^{p-2}$.
Euclid-type division methods
are faster but have input-dependent timings.

Finally convert from floating-point representation to byte-string output format.

From n to $2 n$

$\ln \mathbf{Z} / p$:
$x_{2 n}=\left(x_{n}^{2}-z_{n}^{2}\right)^{2}$,
$z_{2 n}=4 x_{n} z_{n}\left(x_{n}^{2}+A x_{n} z_{n}+z_{n}^{2}\right)$.
Compute as follows:
$\left(x_{n}-z_{n}\right)^{2} ;\left(x_{n}+z_{n}\right)^{2}$;
$x_{2 n}=\left(x_{n}-z_{n}\right)^{2}\left(x_{n}+z_{n}\right)^{2}$;
$4 x_{n} z_{n}=\left(x_{n}+z_{n}\right)^{2}-\left(x_{n}-z_{n}\right)^{2}$;
$(A-2) x_{n} z_{n}=89747 \cdot 4 x_{n} z_{n}$;
$z_{2 n}=$
$4 x_{n} z_{n}\left(\left(x_{n}+z_{n}\right)^{2}+(A-2) x_{n} z_{n}\right)$.

$$
=U
$$

nodulo p
$V)$.
thod: Fermat!
n methods
mings.
m
esentation put format.

From n to $2 n$

$\ln \mathbf{Z} / p$:
$x_{2 n}=\left(x_{n}^{2}-z_{n}^{2}\right)^{2}$,
$z_{2 n}=4 x_{n} z_{n}\left(x_{n}^{2}+A x_{n} z_{n}+z_{n}^{2}\right)$.
Compute as follows:

$$
\begin{aligned}
& \left(x_{n}-z_{n}\right)^{2} ;\left(x_{n}+z_{n}\right)^{2} \\
& x_{2 n}=\left(x_{n}-z_{n}\right)^{2}\left(x_{n}+z_{n}\right)^{2} ; \\
& 4 x_{n} z_{n}=\left(x_{n}+z_{n}\right)^{2}-\left(x_{n}-z_{n}\right)^{2} ; \\
& (A-2) x_{n} z_{n}=89747 \cdot 4 x_{n} z_{n} \\
& z_{2 n}= \\
& 4 x_{n} z_{n}\left(\left(x_{n}+z_{n}\right)^{2}+(A-2) x_{n} z_{n}\right) .
\end{aligned}
$$

From $n, n+1$ to
$x_{2 n+1}=4\left(x_{n} x_{n+}\right.$

$$
z_{2 n+1}=
$$

$$
4\left(x_{n} z_{n+1}-z_{n} x_{n}\right.
$$

Compute as follow
$\left(x_{n}-z_{n}\right)\left(x_{n+1}+\right.$

$$
\left(x_{n}+z_{n}\right)\left(x_{n+1}-\right.
$$

$$
2\left(x_{n} x_{n+1}-z_{n} z_{n}\right.
$$

$$
2\left(x_{n} z_{n+1}-z_{n} x_{n}\right.
$$

$$
x_{2 n+1}=\left(2 \left(x_{n} x_{n}\right.\right.
$$

$$
\left(2 \left(x_{n} z_{n+1}-z_{n} x_{1}\right.\right.
$$

$$
z_{2 n+1}=(\cdots) \text { Cur }
$$

From n to $2 n$

$\ln \mathbf{Z} / p$:
$x_{2 n}=\left(x_{n}^{2}-z_{n}^{2}\right)^{2}$,
$z_{2 n}=4 x_{n} z_{n}\left(x_{n}^{2}+A x_{n} z_{n}+z_{n}^{2}\right)$.
Compute as follows:
$\left(x_{n}-z_{n}\right)^{2} ;\left(x_{n}+z_{n}\right)^{2}$;
$x_{2 n}=\left(x_{n}-z_{n}\right)^{2}\left(x_{n}+z_{n}\right)^{2}$;
$4 x_{n} z_{n}=\left(x_{n}+z_{n}\right)^{2}-\left(x_{n}-z_{n}\right)^{2}$;
$(A-2) x_{n} z_{n}=89747 \cdot 4 x_{n} z_{n}$;
$z_{2 n}=$
$4 x_{n} z_{n}\left(\left(x_{n}+z_{n}\right)^{2}+(A-2) x_{n} z_{n}\right)$.

From $n, n+1$ to $2 n+1$

$$
\begin{aligned}
& x_{2 n+1}=4\left(x_{n} x_{n+1}-z_{n} z_{n+1}\right)^{2} \\
& z_{2 n+1}= \\
& 4\left(x_{n} z_{n+1}-z_{n} x_{n+1}\right)^{2} \operatorname{Curve}(V)
\end{aligned}
$$

Compute as follows:
$\left(x_{n}-z_{n}\right)\left(x_{n+1}+z_{n+1}\right)$;
$\left(x_{n}+z_{n}\right)\left(x_{n+1}-z_{n+1}\right)$;
$2\left(x_{n} x_{n+1}-z_{n} z_{n+1}\right)=$ sum;
$2\left(x_{n} z_{n+1}-z_{n} x_{n+1}\right)=$ difference;
$x_{2 n+1}=\left(2\left(x_{n} x_{n+1}-z_{n} z_{n+1}\right)\right)^{2}$;
$\left(2\left(x_{n} z_{n+1}-z_{n} x_{n+1}\right)\right)^{2}$;
$z_{2 n+1}=(\cdots)$ Curve (V).

From $n, n+1$ to $2 n+1$

$$
\begin{aligned}
& x_{2 n+1}=4\left(x_{n} x_{n+1}-z_{n} z_{n+1}\right)^{2} \\
& z_{2 n+1}= \\
& 4\left(x_{n} z_{n+1}-z_{n} x_{n+1}\right)^{2} \operatorname{Curve}(V)
\end{aligned}
$$

Compute as follows:

$$
\begin{aligned}
& \left(x_{n}-z_{n}\right)\left(x_{n+1}+z_{n+1}\right) ; \\
& \left(x_{n}+z_{n}\right)\left(x_{n+1}-z_{n+1}\right) ; \\
& 2\left(x_{n} x_{n+1}-z_{n} z_{n+1}\right)=\text { sum; } \\
& 2\left(x_{n} z_{n+1}-z_{n} x_{n+1}\right)=\text { difference; } \\
& x_{2 n+1}=\left(2\left(x_{n} x_{n+1}-z_{n} z_{n+1}\right)\right)^{2} ; \\
& \left(2\left(x_{n} z_{n+1}-z_{n} x_{n+1}\right)\right)^{2} ; \\
& z_{2 n+1}=(\cdots) \operatorname{Curve}(V)
\end{aligned}
$$

Total time

Slightly over 1600 (520 from carries) for each bit of U.

Total for 256-bit $\approx 413000 \mathrm{fp}$ adds; $\approx 50000 \mathrm{fp}$ adds f

Aiming for 500000 Still have to finish Should end up eve my NIST P-224 sc despite 14% more

From $n, n+1$ to $2 n+1$
$x_{2 n+1}=4\left(x_{n} x_{n+1}-z_{n} z_{n+1}\right)^{2}$,
$z_{2 n+1}=$
$4\left(x_{n} z_{n+1}-z_{n} x_{n+1}\right)^{2}$ Curve (V).
Compute as follows:

$$
\begin{aligned}
& \left(x_{n}-z_{n}\right)\left(x_{n+1}+z_{n+1}\right) ; \\
& \left(x_{n}+z_{n}\right)\left(x_{n+1}-z_{n+1}\right) ; \\
& 2\left(x_{n} x_{n+1}-z_{n} z_{n+1}\right)=\text { sum; } \\
& 2\left(x_{n} z_{n+1}-z_{n} x_{n+1}\right)=\text { difference; } \\
& x_{2 n+1}=\left(2\left(x_{n} x_{n+1}-z_{n} z_{n+1}\right)\right)^{2} ; \\
& \left(2\left(x_{n} z_{n+1}-z_{n} x_{n+1}\right)\right)^{2} ; \\
& z_{2 n+1}=(\cdots) \operatorname{Curve}(V)
\end{aligned}
$$

Total time

Slightly over 1600 fp adds (520 from carries) for each bit of U.

Total for 256-bit U :
$\approx 413000 \mathrm{fp}$ adds; plus
$\approx 50000 \mathrm{fp}$ adds for final division.
Aiming for 500000 cycles.
Still have to finish software.
Should end up even faster than my NIST P-224 software, despite 14% more bits!

