
The Poly1305-AES

message-authentication code

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF CCR–9983950

Alfred P. Sloan Foundation

The AES function

(“Rijndael” 1998 Daemen Rijmen;

2001 standardized as “AES”)

Given 16-byte sequence �

and 16-byte sequence ,

AES produces

16-byte sequence AES � (�).

Uses table lookup and (xor):

e0 = tab[k[13]] 1

e1 = tab[k[0] n[0]] k[0] e0

etc.

AES � (�) = (e784 � � � � � e799).

Unpredictability

Consider two oracles.

One oracle knows a uniform

random 16-byte sequence .

Given a 16-byte sequence � ,

this oracle returns AES � (�).

The other oracle knows a

uniform random permutation

of the set of 16-byte sequences.

Given � , this oracle returns (�).

Design goal of AES:

These oracles are indistinguishable.

Define as attacker’s

chance of distinguishing AES �

from uniform random permutation:

i.e., distance between

Pr[attacker says yes given] and

Pr[attacker says yes given AES �].

We believe that 2 �
40

even for an attacker using

100 years of CPU time

on all the world’s computers.

Can’t prove it, but many

experts have failed to disprove it.

The Poly1305-AES function

Given byte sequence ,

16-byte sequence � ,

16-byte sequence ,

16-byte sequence �

with certain bits cleared,

Poly1305-AES produces

16-byte sequence

Poly1305 � (� AES � (�)).

Uses polynomial evaluation

modulo the prime 2130 � 5.

unsigned int j;

mpz_class rbar = 0;

for (j = 0;j < 16;++j)

rbar += ((mpz_class) r[j]) << (8 * j);

mpz_class h = 0;

mpz_class p = (((mpz_class) 1) << 130) - 5;

while (mlen > 0) {

mpz_class c = 0;

for (j = 0;(j < 16) && (j < mlen);++j)

c += ((mpz_class) m[j]) << (8 * j);

c += ((mpz_class) 1) << (8 * j);

m += j; mlen -= j;

h = ((h + c) * rbar) % p;

}

unsigned char aeskn[16];

aes(aeskn,k,n);

for (j = 0;j < 16;++j)

h += ((mpz_class) aeskn[j]) << (8 * j);

for (j = 0;j < 16;++j) {

mpz_class c = h % 256;

h >>= 8;

out[j] = c.get_ui();

}

Poly1305-AES authenticators

Sender, receiver share

secret uniform random � � .

Sender attaches authenticator
� = Poly1305 � (� AES � (�))

to message with nonce � .

(The usual nonce requirement:

never use the same nonce

for two different messages.)

Receiver rejects � � � � � � �

if � � = Poly1305 � (� � AES � (� �)).

Poly1305-AES security guarantee

Attacker adaptively

chooses 264 messages,

sees their authenticators,

attempts forgeries;

all messages
�

bytes.

Then Pr[all forgeries rejected]

1 � � 14 � �
16 � 2106.

Example: Say 2 �
40;

�
= 1536;

see 264 authenticators;

attempt 264 forgeries. Then

Pr[all rejected] 0 � 999999999998.

Alternatives to AES

Can replace AES � with any �

that is conjecturally unpredictable.

Example: � (�) = MD5(� �).

Somewhat slower than AES.

“Hasn’t MD5 been broken?”

Distinct (� �) � (� � � �) are known

with MD5(� �) = MD5(� � � �).

(2004 Wang)

Still not obvious how to predict
� � MD5(� �) for secret .

We know AES collisions too!

Alternatives to +

Poly1305 � (� AES � (�)) equals

Poly1305 � (� 0) + AES � (�) where

+ is addition modulo 2128.

Use Poly1305 � (� 0) AES � (�)?

No! Eliminates security guarantee.

Use AES � (Poly1305 � (� 0))? Has

a guarantee, but bad for large :

roughly 8 (+) � �
16 � 2106.

Use MD5(� � � Poly1305 � (� 0))?

That’s fine if MD5 is ok.

Alternatives to Poly1305

The crucial property of Poly1305 � :

If � � are distinct messages

and ∆ is a 16-byte sequence then

Pr[Poly1305 � (� 0) =

Poly1305 � (� � 0) + ∆]

is very small: 8 � �
16 � 2106.

“Small differential probabilities.”

In particular, for ∆ = 0:

If � � are distinct messages then

Pr[Poly1305 � (� 0) =

Poly1305 � (� � 0)] is very small.

“Small collision probabilities.”

Easy to build functions that

satisfy these properties.

Embed messages and outputs into

polynomial ring Z[� 1 ��� 2 ��� 3 � � � �].

Use � mod � where
� is a random prime ideal.

Small differential probability

means that � � � ∆

is divisible by very few � ’s

when = � .

(Addition of ∆ is actually

mod 2128; be careful.)

Example: (1981 Karp Rabin)

View messages as integers,

specifically multiples of 2128.

Outputs: 0 � 1 � � � � � 2128 � 1 .

Reduce modulo a uniform

random prime number �

between 2120 and 2128.

(Problem: generating � is slow.)

Low differential probability:

if = � then � � � ∆ = 0

so � � � ∆ is divisible

by very few prime numbers.

Variant that works with :

View messages as polynomials

128 �
128 + 129 �

129 + � � �

with each � in 0 � 1 .

Outputs: � 0 + � 1 � + � � � + � 127 �
127

with each � � in 0 � 1 .

Reduce modulo 2 � � where
� is a uniform random irreducible

degree-128 polynomial over Z 2.

(Problem: division by � is slow;

no polynomial-multiplication circuit

in a typical computer.)

Example: (1974 Gilbert

MacWilliams Sloane)

Choose prime number 2128.

View messages as linear

polynomials 1 � 1 + 2 � 2 + 3 � 3

with 1 � 2 � 3 0 � � � � � � 1 .

Outputs: 0 � � � � � � 1 .

Reduce modulo

� � 1
� �

1 � � 2
� �

2 ��� 3
� �

3

to 1
�
1 + 2

�
2 + 3

�
3 mod .

(Problem: long needs long � .)

Example: (1993 den Boer;

independently 1994 Taylor;

independently 1994 Bierbrauer

Johansson Kabatianskii Smeets)

Choose prime number 2128.

View messages as polynomials

1 � + 2 �
2 + 3 �

3 + � � � with

1 � 2 � 3 � � � � 0 � 1 � � � � � � 1 .

Outputs: 0 � 1 � � � � � � 1 .

Reduce modulo � � � �

where � is a uniform random

element of 0 � 1 � � � � � � 1 ; i.e.,

compute 1
� + 2

� 2 + � � � mod .

“hash127”: 32-bit � ’s,

= 2127 � 1. (1999 Bernstein)

“PolyR”: 64-bit � ’s,

= 264 � 59; re-encode � ’s

between and 264 � 1; run twice

to achieve reasonable security.

(2000 Krovetz Rogaway)

“Poly1305”: 128-bit � ’s,

= 2130 � 5. (2002 Bernstein,

fully developed in 2004–2005)

“CWC”: 96-bit � ’s, = 2127 � 1.

(2003 Kohno Viega Whiting)

Often people use functions where

the differential probabilities

are merely conjectured

to be small.

Example: (“cipher block chaining”)

If AES � is unpredictable

then 1 � 2 � 3
�

AES � (AES � (AES � (1) 2) 3)

has small differential probabilities.

(Much slower than Poly1305.)

Example: (1970 Zobrist, adapted)

If AES � is unpredictable

then 1 � 2 � 3
�

AES � (1 � 1) AES � (2 � 2)

AES � (3 � 3)

has small differential probabilities.

(Even slower.)

Example: � MD5(� �)

is conjectured to have

small collision probabilities.

(Faster than AES, but

not as fast as Poly1305.)

How to build your own MAC

1. Choose a combination method:

() + (�) or () (�)

or (())—worse security—

or (� � ())—bigger input.

2. Choose a random function

where the appropriate probability

(+-differential or -differential

or collision or collision) is small:

e.g., Poly1305 � .

3. Choose a random function

that seems unpredictable:

e.g., AES � .

4. Optional complication:

Generate � � from a shorter key;

e.g., = AES � (0), � = AES � (1);

e.g., = MD5(�), � = MD5(� 1);

many more possibilities.

5. Choose a Googleable name

for your MAC.

6. Put it all together.

7. Publish!

Example:

1. Combination: (()).

2. Low collision probability:

AES � (AES � (1) 2).

3. Unpredictable: AES � .

4. Optional complication: No.

5. Name: “EMAC.” (Whoops.)

6. EMAC � � � (1 � 2) =

AES � (AES � (AES � (1) 2)).

7. (2000 Petrank Rackoff)

Example: “NMAC-MD5” is

MD5(� MD5(� �)).

“HMAC-MD5” is NMAC-MD5

plus the optional complication.

(1996 Bellare Canetti Krawczyk,

claiming novelty of the

entire structure)

Stronger: MD5(� � � MD5(� �)).

Stronger and faster:

MD5(� � � Poly1305 � (� 0)).

Wow, I’ve just invented two

new MACs! Time to publish!

Speed

“MMH: software message

authentication in the Gbit/second

rates” (1997 Halevi Krawczyk)

Gilbert-MacWilliams-Sloane

(incorrectly credited to Carter

and Wegman), slightly tweaked.

1.5 Pentium Pro cycles/byte

� � � for a 4-byte authenticator.

6 Pentium Pro cycles/byte

for reasonable security.

Not as fast as MD5.

Polynomial evaluation mod 2127 � 1

faster than MD5 on

Pentium, UltraSPARC, etc.

(1999 Bernstein)

� � � using a big precomputed

table of powers of � .

MMH also uses large table.

Problem: What happens in

applications that handle

many keys simultaneously?

Tables don’t fit into cache,

and take a long time to load!

Independently: “UMAC-MMX-60,

0.98 Pentium II cycles/byte” (1999

Black Halevi Krawczyk Krovetz

Rogaway, using a Winograd

trick without credit)

� � � for an 8-byte authenticator.

� � � plus many cycles per message.

� � � and much slower on PowerPC

etc. (Newest UMAC benchmark

page: “All speeds were measured

on a Pentium 4.”)

� � � and again using large tables.

Poly1305: consistent high speed.

Fast on a wide variety of CPUs.

No precomputation. Still fast

when handling many keys.

(“High key agility.”)

No constraints on message length,

message alignment, etc.

Fast public-domain software now

available: cr.yp.to/mac.html.

CPU cycles for -byte message

with all data aligned in L1 cache:

16 128 1024
Athlon 634 979 3767

Pentium III 746 1247 5361
Pentium M 726 1161 4611

PowerPC 7410 896 1728 8464
PowerPC Sstar 910 1459 5905
UltraSPARC II 816 1288 5118
UltraSPARC III 854 1383 5601

Comprehensive speed tables:

cr.yp.to/mac/speed.html

Some important speed tips:
� Represent large integers

as sums of floating-point numbers

(1968 Veltkamp, 1971 Dekker)

in pre-specified ranges

(1999 Bernstein).
� Schedule instructions manually.

C compiler can’t figure out, e.g.,

which additions associate.
� Allocate registers manually.

C compiler spills values for

all sorts of silly reasons.

200 � faster than easy code.

