The Poly1305-AES

 message-authentication codeD. J. Bernstein

Thanks to:
University of Illinois at Chicago
NSF CCR-9983950
Alfred P. Sloan Foundation

The AES function

("Rijndael" 1998 Daemen Rijmen;
2001 standardized as "AES")
Given 16 -byte sequence n
and 16 -byte sequence k,
AES produces
16 -byte sequence $\mathrm{AES}_{k}(n)$.
Uses table lookup and \oplus (xor): $\mathrm{e} 0=\mathrm{tab}[\mathrm{k}[13]] \oplus 1$
$\mathrm{e} 1=\mathrm{tab}[\mathrm{k}[0] \oplus \mathrm{n}[0]] \oplus \mathrm{k}[0] \oplus \mathrm{e} 0$
etc.
$\mathrm{AES}_{k}(n)=(\mathrm{e} 784, \ldots, \mathrm{e} 799)$.

Unpredictability

Consider two oracles.

One oracle knows a uniform random 16 -byte sequence k.
Given a 16 -byte sequence n,
this oracle returns $\mathrm{AES}_{k}(n)$.
The other oracle knows a uniform random permutation f of the set of 16 -byte sequences.
Given n, this oracle returns $f(n)$.
Design goal of AES:
These oracles are indistinguishable.

Define δ as attacker's
chance of distinguishing AES_{k}
from uniform random permutation:
i.e., distance between
$\operatorname{Pr}[a t t a c k e r$ says yes given $f]$ and
$\operatorname{Pr}\left[a t t a c k e r\right.$ says yes given $\left.A E S_{k}\right]$.
We believe that $\delta \leq 2^{-40}$ even for an attacker using 100 years of CPU time on all the world's computers.

Can't prove it, but many experts have failed to disprove it.

The Poly1305-AES function

Given byte sequence m,
16 -byte sequence n,
16-byte sequence k,
16-byte sequence r
with certain bits cleared,
Poly1305-AES produces
16-byte sequence
Poly1305 $_{r}\left(m, \operatorname{AES}_{k}(n)\right)$.
Uses polynomial evaluation
modulo the prime $2^{130}-5$.
unsigned int j;
mpz_class rbar $=0$;
for ($\mathrm{j}=0 ; \mathrm{j}<16 ;++\mathrm{j}$)
rbar += ((mpz_class) r[j]) << (8*j);
mpz_class $\mathrm{h}=0$;
mpz_class $p=\left(\left(\left(m p z _c l a s s\right) 1\right) \ll 130\right)-5$;
while (mlen > 0) \{
mpz_class c = 0;
for ($j=0 ;(j<16) \& \&(j<m l e n) ;++j)$
$c+=\left(\left(m p z _c l a s s\right) m[j]\right) \ll(8 * j) ;$
$c+=\left(\left(m p z _c l a s s\right) 1\right) \ll(8 * j)$;
m += j; mlen -= j;
$h=((h+c) * r b a r) \% p ;$
\}
unsigned char aeskn[16];
aes (aeskn,k,n);
for ($\mathrm{j}=0 ; \mathrm{j}<16 ;++\mathrm{j}$)
h += ((mpz_class) aeskn[j]) << (8 * j) ;
for ($j=0 ; j<16 ;++j$) \{
mpz_class c = h \% 256;
h >>= 8;
out $[j]=$ c.get_ui();
\}

Poly1305-AES authenticators

Sender, receiver share secret uniform random k, r.

Sender attaches authenticator $a=\operatorname{Poly}_{1305}\left(m, \operatorname{AES}_{k}(n)\right)$
to message m with nonce n.
(The usual nonce requirement:
never use the same nonce for two different messages.)

Receiver rejects $n^{\prime}, m^{\prime}, a^{\prime}$
if $a^{\prime} \neq \operatorname{Poly} 1305_{r}\left(m^{\prime}, \operatorname{AES}_{k}\left(n^{\prime}\right)\right)$.

Poly1305-AES security guarantee

Attacker adaptively
chooses $C \leq 2^{64}$ messages,
sees their authenticators,
attempts D forgeries;
all messages $\leq L$ bytes.
Then $\operatorname{Pr}[$ all forgeries rejected]
$\geq 1-\delta-14 D\lceil L / 16\rceil / 2^{106}$
Example: Say $\delta \leq 2^{-40} ; L=1536$; see 2^{64} authenticators;
attempt 2^{64} forgeries. Then
$\operatorname{Pr}[$ all rejected $] \geq 0.999999999998$.

Alternatives to AES

Can replace $A E S_{k}$ with any F_{k} that is conjecturally unpredictable.

Example: $F_{k}(n)=\operatorname{MD5}(k, n)$.
Somewhat slower than AES.
"Hasn't MD5 been broken?"
Distinct $(k, n),\left(k^{\prime}, n^{\prime}\right)$ are known with $\operatorname{MD5}(k, n)=\operatorname{MD5}\left(k^{\prime}, n^{\prime}\right)$. (2004 Wang)
Still not obvious how to predict $n \mapsto \operatorname{MD5}(k, n)$ for secret k. We know AES collisions too!

Alternatives to +

$\operatorname{Poly}^{1305} r\left(m, \mathrm{AES}_{k}(n)\right)$ equals
$\operatorname{Poly}_{1305}^{r}(m, 0)+\mathrm{AES}_{k}(n)$ where + is addition modulo 2^{128}.

Use Poly $1305_{r}(m, 0) \oplus \mathrm{AES}_{k}(n) ?$
No! Eliminates security guarantee.
Use $\mathrm{AES}_{k}\left(\operatorname{Poly}^{2} 305_{r}(m, 0)\right)$? Has a guarantee, but bad for large C : roughly $8 C(C+D)\lceil L / 16\rceil / 2^{106}$.

Use $\operatorname{MD} 5\left(k, n, \operatorname{Poly}^{2} 305_{r}(m, 0)\right) ?$ That's fine if MD5 is ok.

Alternatives to Poly1305

The crucial property of Poly 1305_{r} : If m, m^{\prime} are distinct messages and Δ is a 16 -byte sequence then $\operatorname{Pr}[\operatorname{Poly} 1305 r(m, 0)=$

$$
\text { Poly } \left.1305 r\left(m^{\prime}, 0\right)+\Delta\right]
$$

is very small: $\leq 8\lceil L / 16\rceil / 2^{106}$. "Small differential probabilities."

In particular, for $\Delta=0$:
If m, m^{\prime} are distinct messages then
$\operatorname{Pr}[\operatorname{Poly} 1305 r(m, 0)=$

$$
\text { Poly } \left.1305_{r}\left(m^{\prime}, 0\right)\right] \text { is very small. }
$$

"Small collision probabilities."

Easy to build functions that satisfy these properties.

Embed messages and outputs into polynomial ring $\mathbf{Z}\left[x_{1}, x_{2}, x_{3}, \ldots\right]$.

Use $m \mapsto m$ mod r where r is a random prime ideal.

Small differential probability
means that $m-m^{\prime}-\Delta$
is divisible by very few r 's
when $m \neq m^{\prime}$.
(Addition of Δ is actually
$\bmod 2^{128}$; be careful.)

Example: (1981 Karp Rabin)

View messages m as integers, specifically multiples of 2^{128}.
Outputs: $\left\{0,1, \ldots, 2^{128}-1\right\}$.
Reduce m modulo a uniform random prime number r between 2^{120} and 2^{128}.
(Problem: generating r is slow.)
Low differential probability:
if $m \neq m^{\prime}$ then $m-m^{\prime}-\Delta \neq 0$
so $m-m^{\prime}-\Delta$ is divisible
by very few prime numbers.

Variant that works with \oplus :
View messages m as polynomials $m_{128} x^{128}+m_{129} x^{129}+\cdots$ with each m_{i} in $\{0,1\}$.

Outputs: $o_{0}+o_{1} x+\cdots+o_{127} x^{127}$ with each o_{i} in $\{0,1\}$.

Reduce m modulo $2, r$ where r is a uniform random irreducible degree-128 polynomial over $\mathbf{Z} / 2$.
(Problem: division by r is slow; no polynomial-multiplication circuit in a typical computer.)

Example: (1974 Gilbert MacWilliams Sloane)

Choose prime number $p \approx 2^{128}$.
View messages m as linear
polynomials $m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}$
with $m_{1}, m_{2}, m_{3} \in\{0, \ldots, p-1\}$.
Outputs: $\{0, \ldots, p-1\}$.
Reduce m modulo
$p, x_{1}-r_{1}, x_{2}-r_{2}, x_{3}-r_{3}$
to $m_{1} r_{1}+m_{2} r_{2}+m_{3} r_{3} \bmod p$.
(Problem: long m needs long r.)

Example: (1993 den Boer; independently 1994 Taylor; independently 1994 Bierbrauer Johnson Kabatianskii Smeets)

Choose prime number $p \approx 2^{128}$.
View messages m as polynomials
$m_{1} x+m_{2} x^{2}+m_{3} x^{3}+\cdots$ with $m_{1}, m_{2}, m_{3}, \ldots \in\{0,1, \ldots, p-1\}$.
Outputs: $\{0,1, \ldots, p-1\}$.
Reduce m modulo $p, x-r$ where r is a uniform random element of $\{0,1, \ldots, p-1\}$; i.e., compute $m_{1} r+m_{2} r^{2}+\cdots \bmod p$.
"hash127": 32-bit m_{i} 's,
$p=2^{127}-1$. (1999 Bernstein)
"PolyR": 64-bit m_{i} 's,
$p=2^{64}-59$; re-encode $m_{i}{ }^{\prime} s$
between p and $2^{64}-1$; run twice to achieve reasonable security. (2000 Krovetz Rogaway)
"Poly1305": 128-bit m_{i} 's,
$p=2^{130}-5$. (2002 Bernstein,
fully developed in 2004-2005)
"CWC": 96-bit m_{i} 's, $p=2^{127}-1$.
(2003 Kohno Viega Whiting)

Often people use functions where the differential probabilities are merely conjectured to be small.

Example: ("cipher block chaining")
If AES_{r} is unpredictable
then $m_{1}, m_{2}, m_{3} \mapsto$
$\mathrm{AES}_{r}\left(\mathrm{AES}_{r}\left(\mathrm{AES}_{r}\left(m_{1}\right) \oplus m_{2}\right) \oplus m_{3}\right)$
has small differential probabilities.
(Much slower than Poly1305.)

Example: (1970 Zobrist, adapted)
If AES_{r} is unpredictable
then $m_{1}, m_{2}, m_{3} \mapsto$
$\mathrm{AES}_{r}\left(1, m_{1}\right) \oplus \mathrm{AES}_{r}\left(2, m_{2}\right) \oplus$
$\mathrm{AES}_{r}\left(3, m_{3}\right)$
has small differential probabilities.
(Even slower.)
Example: $m \mapsto \operatorname{MD5}(r, m)$
is conjectured to have
small collision probabilities.
(Faster than AES, but not as fast as Poly1305.)

How to build your own MAC

1. Choose a combination method:
$h(m)+f(n)$ or $h(m) \oplus f(n)$
or $f(h(m))$-worse security-
or $f(n, h(m))$-bigger f input.
2. Choose a random function h where the appropriate probability
(+-differential or \oplus-differential or collision or collision) is small: e.g., Poly 1305_{r}.
3. Choose a random function f that seems unpredictable:
e.g., AES_{k}.
4. Optional complication:

Generate k, r from a shorter key; e.g., $k=\operatorname{AES}_{s}(0), r=\operatorname{AES}_{s}(1)$; e.g., $k=\operatorname{MD5}(s), r=\operatorname{MD5}(s \oplus 1)$; many more possibilities.
5. Choose a Googleable name for your MAC.
6. Put it all together.
7. Publish!

Example:

1. Combination: $f(h(m))$.
2. Low collision probability:
$\mathrm{AES}_{r}\left(\mathrm{AES}_{r}\left(m_{1}\right) \oplus m_{2}\right)$.
3. Unpredictable: AES_{k}.
4. Optional complication: No.
5. Name: "EMAC." (Whoops.)
6. $\mathrm{EMAC}_{k, r}\left(m_{1}, m_{2}\right)=$

$$
\operatorname{AES}_{k}\left(\mathrm{AES}_{r}\left(\mathrm{AES}_{r}\left(m_{1}\right) \oplus m_{2}\right)\right)
$$

7. (2000 Petrank Rackoff)

Example: "NMAC-MD5" is
$\operatorname{MD5}(k, \operatorname{MD5}(r, m))$.
"HMAC-MD5" is NMAC-MD5
plus the optional complication.
(1996 Bellare Canetti Krawczyk,
claiming novelty of the entire structure)

Stronger: $\operatorname{MD5}(k, n, \operatorname{MD5}(r, m))$.
Stronger and faster:
$\operatorname{MD5}\left(k, n, \operatorname{Poly}^{2} 305 r(m, 0)\right)$.
Wow, live just invented two new MACs! Time to publish!

Speed

"MMH: software message authentication in the Gbit/second rates" (1997 Halevi Krawczyk)

Gilbert-MacWilliams-Sloane
(incorrectly credited to Carter and Wegman), slightly tweaked.
1.5 Pentium Pro cycles/byte ... for a 4-byte authenticator. 6 Pentium Pro cycles/byte for reasonable security. Not as fast as MD5.

Polynomial evaluation $\bmod 2^{127}-1$ faster than MD5 on
Pentium, UltraSPARC, etc.
(1999 Bernstein)
... using a big precomputed table of powers of r.
MMH also uses large table.
Problem: What happens in applications that handle many keys simultaneously? Tables don't fit into cache, and take a long time to load!

Independently: "UMAC-MMX-60,
0.98 Pentium II cycles/byte" (1999

Black Halevi Krawczyk Krovetz
Rogaway, using a Winograd trick without credit)
... for an 8-byte authenticator.
... plus many cycles per message.
... and much slower on PowerPC etc. (Newest UMAC benchmark page: "All speeds were measured on a Pentium 4.")
... and again using large tables.

Poly1305: consistent high speed.
Fast on a wide variety of CPUs.
No precomputation. Still fast when handling many keys.
("High key agility.")
No constraints on message length, message alignment, etc.

Fast public-domain software now available: cr.yp.to/mac.html.

CPU cycles for ℓ-byte message with all data aligned in L1 cache:

ℓ	16	128	1024
Athlon	634	979	3767
Pentium III	746	1247	5361
Pentium M	726	1161	4611
PowerPC 7410	896	1728	8464
PowerPC Sstar	910	1459	5905
UltraSPARC II	816	1288	5118
UltraSPARC III	854	1383	5601

Comprehensive speed tables: cr.yp.to/mac/speed.html

Some important speed tips:

- Represent large integers
as sums of floating-point numbers
(1968 Veltkamp, 1971 Dekker)
in pre-specified ranges
(1999 Bernstein).
- Schedule instructions manually.

C compiler can't figure out, e.g.,
which additions associate.

- Allocate registers manually.

C compiler spills values for
all sorts of silly reasons.
$200 \times$ faster than easy code.

