
Faster factorization into coprimes

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF DMS–0140542

Alfred P. Sloan Foundation

Problem: Convert
� � (mod 299),
� (mod 799)

into a single congruence.

Solution:
� 799 � 180 �

� � 299 � 481 �

(mod 299 � 799).

Underlying computation,

by Euclid’s algorithm:

799 � 180 � 299 � 481 = 1.

Problem: Convert
� � (mod 299),
� (mod 793)

into a single congruence.

Much more difficult.

Can’t write 1 as 793 � + 299 � ;

793 and 299 aren’t coprime.

Euclid’s algorithm discovers

gcd 299 � 793 = 13: specifically,

13 = 793 � 20 � 299 � 53,

299 = 13 � 23, 793 = 13 � 61.

gcd 13 � 23 = 1. Thus
� � (mod 299)
� � (mod 13),
� � (mod 23).

gcd 13 � 61 = 1. Thus
� (mod 793)
� (mod 13),
� (mod 61).

Underlying computations:

23 � 4 � 13 � 7 = 1;

61 � 3 � 13 � 14 = 1.

Assuming � (mod 13):
� � (mod 299),
� (mod 793)
� � (mod 13),
� � (mod 23),
� (mod 61)
� � 1 � 23 � 61 �

�

+ 13 � 21 � 61 �
�

� 13 � 23 � 51 �

(mod 13 � 23 � 61).

Problem: Convert
� � (mod 103816603),
� (mod 22649627)

into a single congruence.

gcd 103816603 � 22649627 = 187;

103816603 = 187 � 555169;

22649627 = 187 � 121121.

Now encounter another difficulty:

187 � 555169 aren’t coprime;

congruence mod 103816603

is not equivalent to

separate congruences

mod 187 and mod 555169.

Continue computing gcds

and exact quotients:

gcd 555169 � 187 = 17;

555169 17 = 32657; 187 17 = 11;

32657 17 = 1921; 1921 17 = 113;

121121 11 = 11011;

11011 11 = 1001; 1001 11 = 91.

11 � 17 � 91 � 113 are coprime;

103816603 = 11 � 174
� 113;

22649627 = 114
� 17 � 91.

�
� � � (mod 114

� 174
� 91 � 113).

For any set 1 � 2 � 3 � � � � :

The natural coprime base for ,

written cb , is the

unique 2 � 3 � � � � such that
� each element of can be obtained

from 1 via product,

exact quotient, gcd;
� is coprime: gcd � � = 1

for all distinct � � ; and
� each element of can be obtained

from 1 via product.

e.g. cb 103816603 � 22649627

= 11 � 17 � 91 � 113 .

Obvious algorithm to compute cb

and factor over cb :

time (� 3) for � input bits.

(frequently reinvented)

More careful algorithm, avoiding

pointless gcd computations: (� 2).

(1990 Bach Driscoll Shallit)

Can do much better for large � :

� 1+ � (1); more precisely, � (lg �) (1).

(1995 Bernstein)

New algorithm: � (lg �)4+ � (1).

(2004 Bernstein)

This line of work has also led to

� (lg �)3+ � (1), and sometimes

� (lg �)2+ � (1), algorithms for

various constrained examples

of factoring into coprimes.

Unexpected applications to

proving primality,

detecting perfect powers,

factoring into primes, et al.

Can apply same algorithms

in more generality: e.g.,

replace integers with polynomials.

Typical application:

Consider a squarefree (Z 2)[�].

What are ’s irreducible divisors?

One answer: Find basis 1 � 2 � � � �

for (Z 2)[�] : ()
�

= 2

as a vector space over Z 2.

Then cb � 1 � 2 � � � � contains

all irreducible divisors of .

(1993 Niederreiter, 1994 Göttfert)

Fast product, quotient, gcd

Given � � Z, can compute �

in time � (lg �)1+ � (1)

where � is number of input bits.

(1971 Pollard; independently

1971 Nicholson; independently

1971 Schönhage Strassen)

Also time � (lg �)1+ � (1)

where � is number of input bits:

Given � � Z with = 0,

compute
� � � and � mod .

(reduction to product: 1966 Cook)

Time � (lg �)2+ � (1):

Given � � Z, compute gcd � � .

(1971 Schönhage;

core idea: 1938 Lehmer;

� (lg �)5+ � (1): 1971 Knuth)

Better time bound when �

is much larger than :

� (lg �)1+ � (1) + (lg)2+ � (1)

where is number of bits in .

Idea: gcd � � mod .

For survey of these algorithms:

http://cr.yp.to/papers.html

#multapps

Modular squaring ad nauseam

Time � (lg �)2+ � (1):

Given � � Z with � = 0,

compute gcd � � � .

Algorithm:

Compute mod � ,
2 mod � = (mod �)2 mod � ,
4 mod � = (2 mod �)2 mod � ,
8 mod � = (4 mod �)2 mod � ,

etc., until 2
�

with 2
�

� .

Then compute gcd � � �

as gcd � � 2
�

mod � .

Factoring � � into coprimes

Given � � Z, � 2:

Compute �
0 = � , 0 = gcd �

0 � ,
�
1 = �

0 0, 1 = gcd �
1 � 2

0 ,
�
2 = �

1 1, 2 = gcd �
2 � 2

1 ,

etc., stopping when � = 1.

How long does this take?

e.g. � = 21003100, = 2137313:
�
0 = 21003100, 0 = 2100313,

�
1 = 387, 1 = 326,

�
2 = 361, 2 = 352,

�
3 = 39, 3 = 39,

�
4 = 1, 4 = 1.

Consider a prime .

Define � = ord � � : i.e.,
�

divides � but
� +1 doesn’t.

Define = ord � .

� 3 7
� 3 7 15
ord � �

0 � � � �

ord � 0 �

ord � �
1 0 � � � � � �

ord � 1 0 � � 2 2
ord � �

2 0 0 � � 3 � � 3
ord � 2 0 0 � � 3 4
ord � �

3 0 0 0 � � 7
ord � 3 0 0 0 � � 7

2
� � � 2

�
so � � .

Thus � = 1 for =
�
lg � � .

Time to divide � � by � ,
square � , and compute

gcd � �
+1 � 2� :

� (lg �)1+ � (1) + � (lg �)2+ � (1)

where � is number of bits in � .
� = � � � so � (�).

Total time for all � � � � :
� (lg �)2+ � (1).

Next step: Compute

mod 1 � mod 2 � � � �

using a remainder tree

(1972 Fiduccia,

1972 Moenck Borodin):

mod 1 2 3 4

��~~
~~

~~

��
@@

@@
@@

mod 1 2

		��
��
��
�

��
//

//
mod 3 4

		��
��
��
�

��
//

//

mod 2 mod 4
mod 1 mod 3

Total time � (lg �)1+ � (1).

Next step: Compute
�

0 = 0 gcd 0 � �1 ,
�

1 = 1 gcd 1 � �2 ,

etc.

Write
�� = � + �

+1.

Time
�� (lg ��)2+ � (1)

� (lg �)2+ � (1).

e.g. � = 21003100, = 2137313:

0 = 2100313, 1 = 326,

2 = 352, 3 = 39, 4 = 1;
�

0 = 2100, �
1 = 1, �

2 = 1,
�

3 = 39.

Next step: Compute

0 = gcd � � �0 ,

1 = gcd 0 � � �1 ,

2 = gcd gcd mod 1 � 1 � � �2 ,

3 = gcd gcd mod 2 � 2 � � �3 ,

4 = gcd gcd mod 3 � 3 � � �4 ,

etc.

Time � (lg �)2+ � (1).

e.g. � = 21003100, = 2137313:
�

0 = 2100, �
1 = 1, �

2 = 1, �
3 = 39;

0 = 2137, 1 = 1, 2 = 1, 3 = 313.

Now cb � � is disjoint union of

cb �
0 � 0

�
0 �

cb �
1 � 1 � cb �

2 � 2 � � � � �
� � � 1 , gcd � � � � 1 .

e.g. cb 21003100 � 2137313 =

cb 2100 � 237 cb 39 � 313 .

Recursion multiplies total time

by a constant factor, since

product �
0(0

�
0)

�
1 1

�
2 2 � � �

is at most � � 1 � 3 (�)5 � 6.

Time � (lg �)2+ � (1)

to compute cb � � .

Outline of the general case

Time (+ 1) � (lg �)2+ � (1):

Given multiset and

coprime set with # 2
�
,

compute gcd � � �

for each � , each .

Time � (lg �)2+ � (1):

Given � and coprime set ,

compute cb(�).

http://cr.yp.to/papers.html

#dcba2

Remaining constructions

are the same as in 1995:

http://cr.yp.to/papers.html

#dcba

Time � (lg �)3+ � (1):

Given coprime , coprime ,

compute cb().

Time � (lg �)4+ � (1):

Given , compute cb .

Also handle factorizations.

Detecting multiplicative relations

Does 9119526811191513335221634643

equal 154717086326898073439346?

Each side has logarithm

19466590 � 674872.

More generally:

What is kernel of (� � ��� � � �) �

91
�
119

�
221

�
1547 �

�
6898073 �

�
?

Factor into coprimes:

91 = 7 � 13; 119 = 7 � 17;

221 = 13 � 17; 1547 = 7 � 13 � 17;

6898073 = 74
� 132

� 17.

(� � ��� � � �) �

91
�
119

�
221

�
1547 �

�
6898073 �

�
=

7
� +

�
�
�
� 4 �

13
� + �

�
�
� 2 �

17
�
+ �

�
�
�

�
.

Kernel is generated by

(1 � 1 � 1 � 2 � 0) and (3 � 2 � 0 � 1 � 1).

Useful in modern “combination

of congruence” algorithms to

factor into primes,

compute discrete logs,

compute class groups, etc.

Discrete-log example:

Factor 9974 � 1 � 9975 � 2 � 9976 � 3 � � � �

into coprimes and compute a kernel

to combine the congruences

9974 1 1 (mod 9973),

9975 2 1 (mod 9973),

9976 3 1 (mod 9973), � � �

into 21515 11243 1 (mod 9973).

Detecting perfect powers

Given integer with 1 2
�
.

Want largest integer

such that is a th power.

Find integer � � within 0 � 9 of 1 � �

for 1 � .

Can check if (� �)
�

= for each

in total time � exp((lg � lg lg �)).

(1995 Bernstein, using

linear forms in logarithms)

Time � (lg �) (1) using

fast factorization into coprimes:

Compute = cb � 1 � � 2 � � � � .

is a th power if and only if

divides ord � for each � .

Largest is gcd ord � : � .

(1994 Lenstra Pila;

2004 Bernstein Lenstra Pila)

