Faster factorization into coprimes D. J. Bernstein Thanks to:
University of Illinois at Chicago
NSF DMS-0140542
Alfred P. Sloan Foundation

Problem: Convert
$x \equiv a \quad(\bmod 299)$,
$x \equiv b \quad(\bmod 799)$
into a single congruence.
Solution:
$x \equiv 799 \cdot 180 \cdot a-299 \cdot 481 \cdot b$
$(\bmod 299 \cdot 799)$.
Underlying computation,
by Euclid's algorithm:
$799 \cdot 180-299 \cdot 481=1$.

Problem: Convert
$x \equiv a \quad(\bmod 299)$,
$x \equiv b \quad(\bmod 793)$
into a single congruence.
Much more difficult.
Can't write 1 as $793 u+299 v$;
793 and 299 aren't coprime.
Euclid's algorithm discovers $\operatorname{gcd}\{299,793\}=13$: specifically,
$13=793 \cdot 20-299 \cdot 53$,
$299=13 \cdot 23,793=13 \cdot 61$.
$\operatorname{gcd}\{13,23\}=1$. Thus
$x \equiv a \quad(\bmod 299) \Longleftrightarrow$
$x \equiv a \quad(\bmod 13)$,
$x \equiv a \quad(\bmod 23)$.
$\operatorname{gcd}\{13,61\}=1$. Thus
$x \equiv b \quad(\bmod 793) \Longleftrightarrow$
$x \equiv b \quad(\bmod 13)$,
$x \equiv b \quad(\bmod 61)$.
Underlying computations:
$23 \cdot 4-13 \cdot 7=1$;
$61 \cdot 3-13 \cdot 14=1$.

Assuming $a \equiv b \quad(\bmod 13)$:
$x \equiv a \quad(\bmod 299)$,
$x \equiv b \quad(\bmod 793) \Longleftrightarrow$
$x \equiv a \quad(\bmod 13)$,
$x \equiv a \quad(\bmod 23)$,
$x \equiv b \quad(\bmod 61) \Longleftrightarrow$
$x \equiv-1 \cdot 23 \cdot 61 \cdot a$

$$
+13 \cdot 21 \cdot 61 \cdot a
$$

$$
-13 \cdot 23 \cdot 51 \cdot b
$$

$(\bmod 13 \cdot 23 \cdot 61)$.

Problem: Convert
$x \equiv a \quad(\bmod 103816603)$,
$x \equiv b \quad(\bmod 22649627)$
into a single congruence.
$\operatorname{gcd}\{103816603,22649627\}=187$;
$103816603=187 \cdot 555169$;
$22649627=187 \cdot 121121$.
Now encounter another difficulty:
187, 555169 aren't coprime;
congruence mod 103816603
is not equivalent to
separate congruences
mod 187 and mod 555169.

Continue computing gads
and exact quotients:
$\operatorname{gcd}\{555169,187\}=17$;
$555169 / 17=32657 ; 187 / 17=11$;
$32657 / 17=1921 ; 1921 / 17=113 ;$
121121/11 = 11011;
$11011 / 11=1001 ; 1001 / 11=91$.
$11,17,91,113$ are coprime;
$103816603=11 \cdot 17^{4} \cdot 113$;
$22649627=11^{4} \cdot 17 \cdot 91$.
$x \equiv \cdots \quad\left(\bmod 11^{4} \cdot 17^{4} \cdot 91 \cdot 113\right)$.

For any set $S \subseteq\{1,2,3, \ldots\}$:
The natural coprime base for S,
written $\mathrm{cb} S$, is the
unique $P \subseteq\{2,3, \ldots\}$ such that

- each element of P can be obtained
from $S \cup\{1\}$ via product,
exact quotient, ged;
- P is coprime: $\operatorname{gcd}\{a, b\}=1$
for all distinct $a, b \in P$; and
- each element of S can be obtained
from $P \cup\{1\}$ via product.
e.g. $c b\{103816603,22649627\}$
$=\{11,17,91,113\}$.

Obvious algorithm to compute cb S and factor S over cb S :
time $O\left(n^{3}\right)$ for n input bits.
(frequently reinvented)
More careful algorithm, avoiding pointless ged computations: $O\left(n^{2}\right)$. (1990 Bach Driscoll Shallit)

Can do much better for large n : $n^{1+o(1)}$; more precisely, $n(\lg n)^{O(1)}$.
(1995 Bernstein)
New algorithm: $n(\lg n)^{4+o(1)}$.
(2004 Bernstein)

This line of work has also led to $n(\lg n)^{3+o(1)}$, and sometimes $n(\lg n)^{2+o(1)}$, algorithms for
various constrained examples of factoring into coprimes.

Unexpected applications to proving primality,
detecting perfect powers,
factoring into primes, et al.

Can apply same algorithms
in more generality: e.g.,
replace integers with polynomials.
Typical application:
Consider a squarefree $g \in(\mathbf{Z} / 2)[x]$.
What are g 's irreducible divisors?
One answer: Find basis h_{1}, h_{2}, \ldots
for $\left\{h \in(\mathbf{Z} / 2)[x]:(g h)^{\prime}=h^{2}\right\}$ as a vector space over $\mathbf{Z} / 2$.
Then $\mathrm{cb}\left\{g, h_{1}, h_{2}, \ldots\right\}$ contains all irreducible divisors of g.
(1993 Niederreiter, 1994 Göttfert)

Fast product, quotient, ged

Given $a, b \in \mathbf{Z}$, can compute $a b$
in time $\leq n(\lg n)^{1+o(1)}$
where n is number of input bits.
(1971 Pollard; independently
1971 Nicholson; independently
1971 Schönhage Strassen)
Also time $\leq n(\lg n)^{1+o(1)}$ where n is number of input bits:
Given $a, b \in \mathbf{Z}$ with $b \neq 0$, compute $\lfloor a / b\rfloor$ and $a \bmod b$.
(reduction to product: 1966 Cook)

Time $\leq n(\lg n)^{2+o(1)}$:
Given $a, b \in \mathbf{Z}$, compute $\operatorname{gcd}\{a, b\}$.
(1971 Schönhage;
core idea: 1938 Lehmer;
$n(\lg n)^{5+o(1)}: 1971$ Knuth $)$
Better time bound when a
is much larger than b :
$\leq n(\lg n)^{1+o(1)}+m(\lg m)^{2+o(1)}$
where m is number of bits in b.
Idea: $\operatorname{gcd}\{b, a \bmod b\}$.
For survey of these algorithms:
http://cr.yp.to/papers.html
\#multapps

Modular squaring ad nauseam

Time $\leq n(\lg n)^{2+o(1)}$:
Given $a, b \in \mathbf{Z}$ with $a \neq 0$,
compute $\operatorname{gcd}\left\{a, b^{\infty}\right\}$.
Algorithm:
Compute $b \bmod a$,
$b^{2} \bmod a=(b \bmod a)^{2} \bmod a$, $b^{4} \bmod a=\left(b^{2} \bmod a\right)^{2} \bmod a$, $b^{8} \bmod a=\left(b^{4} \bmod a\right)^{2} \bmod a$, etc., until $b^{2^{k}}$ with $2^{k} \geq n$.
Then compute $\operatorname{gcd}\left\{a, b^{\infty}\right\}$ as $\operatorname{gcd}\left\{a, b^{2^{k}} \bmod a\right\}$.

Factoring a, b into coprimes

Given $a, b \in \mathbf{Z}, a \geq b \geq 2$:
Compute $a_{0}=a, g_{0}=\operatorname{gcd}\left\{a_{0}, b\right\}$,
$a_{1}=a_{0} / g_{0}, g_{1}=\operatorname{gcd}\left\{a_{1}, g_{0}^{2}\right\}$,
$a_{2}=a_{1} / g_{1}, g_{2}=\operatorname{gcd}\left\{a_{2}, g_{1}^{2}\right\}$, etc., stopping when $g_{k}=1$.

How long does this take?
e.g. $a=2^{100} 3^{100}, b=2^{137} 3^{13}$:
$a_{0}=2^{100} 3^{100}, g_{0}=2^{100} 3^{13}$, $a_{1}=3^{87}, g_{1}=3^{26}$,
$a_{2}=3^{61}, g_{2}=3^{52}$,
$a_{3}=3^{9}, g_{3}=3^{9}$,
$a_{4}=1, g_{4}=1$.

Consider a prime p.
Define $e=\operatorname{ord}_{p} a$: ie., p^{e} divides a but p^{e+1} doesn't. Define $f=\operatorname{ord}_{p} b$.

$2^{e} \leq p^{e} \leq a<2^{n}$ so $e<n$.
Thus $g_{k}=1$ for $k=\lceil\lg n\rceil$.
Time to divide a_{i} by g_{i},
square g_{i}, and compute
$\operatorname{gcd}\left\{a_{i+1}, g_{i}^{2}\right\}$:
$\leq n(\lg n)^{1+o(1)}+m_{i}\left(\lg m_{i}\right)^{2+o(1)}$
where m_{i} is number of bits in g_{i}.
$\left.a=a_{k}\right\rceil g_{i}$ so $\sum m_{i} \leq O(n)$.
Total time for all a_{i}, g_{i} :
$\leq n(\lg n)^{2+o(1)}$.

Next step: Compute
$b \bmod g_{1}, b \bmod g_{2}, \ldots$
using a remainder tree
(1972 Fiduccia,
1972 Moenck Borodin):
$b \bmod g_{1} g_{2} g_{3} g_{4}$

$b \bmod g_{1} g_{2}$
$b \bmod g_{3} g_{4}$

$b \bmod g_{1} \quad b \bmod g_{3}$
Total time $\leq n(\lg n)^{1+o(1)}$.

Next step: Compute
$x_{0}=g_{0} / \operatorname{gcd}\left\{g_{0}, g_{1}^{\infty}\right\}$,
$x_{1}=g_{1} / \operatorname{gcd}\left\{g_{1}, g_{2}^{\infty}\right\}$, etc.

Write $m_{i}^{\prime}=m_{i}+m_{i+1}$.
Time $\leq \sum m_{i}^{\prime}\left(\lg m_{i}^{\prime}\right)^{2+o(1)}$ $\leq n(\lg n)^{2+o(1)}$.
e.g. $a=2^{100} 3^{100}, b=2^{137} 3^{13}$: $g_{0}=2^{100} 3^{13}, g_{1}=3^{26}$,
$g_{2}=3^{52}, g_{3}=3^{9}, g_{4}=1$;
$x_{0}=2^{100}, x_{1}=1, x_{2}=1$,
$x_{3}=3^{9}$.

Next step: Compute
$y_{0}=\operatorname{gcd}\left\{b, x_{0}^{\infty}\right\}$,
$y_{1}=\operatorname{gcd}\left\{g_{0}, x_{1}^{\infty}\right\}$,
$y_{2}=\operatorname{gcd}\left\{\operatorname{gcd}\left\{b \bmod g_{1}, g_{1}\right\}, x_{2}^{\infty}\right\}$, $y_{3}=\operatorname{gcd}\left\{\operatorname{gcd}\left\{b \bmod g_{2}, g_{2}\right\}, x_{3}^{\infty}\right\}$, $y_{4}=\operatorname{gcd}\left\{\operatorname{gcd}\left\{b \bmod g_{3}, g_{3}\right\}, x_{4}^{\infty}\right\}$, etc.

Time $\leq n(\lg n)^{2+o(1)}$.
e.g. $a=2^{100} 3^{100}, b=2^{137} 3^{13}$:
$x_{0}=2^{100}, x_{1}=1, x_{2}=1, x_{3}=3^{9}$; $y_{0}=2^{137}, y_{1}=1, y_{2}=1, y_{3}=3^{13}$.

Now $\operatorname{cb}\{a, b\}$ is disjoint union of $\operatorname{cb}\left\{x_{0}, y_{0} / x_{0}\right\}$,
$\operatorname{cb}\left\{x_{1}, y_{1}\right\}, \operatorname{cb}\left\{x_{2}, y_{2}\right\}, \ldots$,
$\left\{a_{k}\right\}-\{1\},\left\{b / \operatorname{gcd}\left\{b, a^{\infty}\right\}\right\}-\{1\}$.
e.g. $\operatorname{cb}\left\{2^{100} 3^{100}, 2^{137} 3^{13}\right\}=$
$\operatorname{cb}\left\{2^{100}, 2^{37}\right\} \cup \operatorname{cb}\left\{3^{9}, 3^{13}\right\}$.
Recursion multiplies total time by a constant factor, since product $x_{0}\left(y_{0} / x_{0}\right) x_{1} y_{1} x_{2} y_{2} \cdots$ is at most $a b / a^{1 / 3} \leq(a b)^{5 / 6}$.

Time $\leq n(\lg n)^{2+o(1)}$
to compute $\operatorname{cb}\{a, b\}$.

Outline of the general case

Time $\leq(k+1) n(\lg n)^{2+o(1)}$:
Given multiset S and
coprime set P with $\# P \leq 2^{k}$,
compute $\operatorname{gcd}\left\{s, p^{\infty}\right\}$
for each $s \in S$, each $p \in P$.
Time $\leq n(\lg n)^{2+o(1)}$:
Given a and coprime set Q,
compute $\operatorname{cb}(\{a\} \cup Q)$.
http://cr.yp.to/papers.html \#dcba2

Remaining constructions are the same as in 1995:
http://cr.yp.to/papers.html \#dcba

Time $\leq n(\lg n)^{3+o(1)}$:
Given coprime P, coprime Q, compute $\operatorname{cb}(P \cup Q)$.

Time $\leq n(\lg n)^{4+o(1)}$:
Given S, compute cb S.
Also handle factorizations.

Detecting multiplicative relations

Does $91^{1952681} 119^{1513335} 221^{634643}$ equal $1547^{1708632} 6898073^{439346}$?

Each side has logarithm ≈ 19466590.674872.

More generally:
What is kernel of $(a, b, c, d, e) \mapsto$ $91^{a} 119^{b} 221^{c} 1547^{-d} 6898073^{-e}$?

Factor into coprimes:
$91=7 \cdot 13 ; 119=7 \cdot 17$;
$221=13 \cdot 17 ; 1547=7 \cdot 13 \cdot 17$;
$6898073=7^{4} \cdot 13^{2} \cdot 17$.
$(a, b, c, d, e) \mapsto$
$91^{a} 119^{b} 221^{c} 1547^{-d} 6898073^{-e}=$
$7^{a+b-d-4 e} 13^{a+c-d-2 e} 17^{b+c-d-e}$.
Kernel is generated by
$(1,1,1,2,0)$ and (3, 2, $0,1,1)$.

Useful in modern "combination of congruence" algorithms to factor into primes,
compute discrete logs,
compute class groups, etc.
Discrete-log example:
Factor 9974, 1, 9975, 2, 9976, 3, ...
into coprimes and compute a kernel to combine the congruences
$9974 / 1 \equiv 1 \quad(\bmod 9973)$,
$9975 / 2 \equiv 1 \quad(\bmod 9973)$,
$9976 / 3 \equiv 1 \quad(\bmod 9973), \ldots$
into $2^{1515} / 11^{243} \equiv 1 \quad(\bmod 9973)$.

Detecting perfect powers

Given integer b with $1<b<2^{n}$.
Want largest integer k
such that b is a k th power.
Find integer r_{k} within 0.9 of $b^{1 / k}$
for $1 \leq k<n$.
Can check if $\left(r_{k}\right)^{k}=b$ for each k
in total time $n \exp (O(\sqrt{\lg n \lg \lg n}))$.
(1995 Bernstein, using
linear forms in logarithms)

Time $n(\lg n)^{O(1)}$ using
fast factorization into coprimes:
Compute $P=\operatorname{cb}\left\{r_{1}, r_{2}, \ldots\right\}$.
b is a k th power if and only if k divides $\operatorname{ord}_{q} b$ for each $q \in P$. Largest k is $\operatorname{gcd}\left\{\operatorname{ord}_{q} b: q \in P\right\}$.
(1994 Lenstra Pila;
2004 Bernstein Lenstra Pila)

