Three algorithms related to the number-field sieve

- D. J. Bernstein
- Thanks to:
- University of Illinois at Chicago NSF DMS–0140542 Alfred P. Sloan Foundation

#### The number-field sieve

Goal: Find $\{(x,y)\in \mathsf{Z}^2: xy=611\}.$ 

The **Q** sieve forms a square as product of c(c + 611d)for several pairs (c, d):  $14(625) \cdot 64(675) \cdot 75(686)$  $= 4410000^{2}$ .

 $gcd \{611, 14 \cdot 64 \cdot 75 - 4410000\}$ = 47.

47 and 611/47 = 13 are prime,

so  $\{x\} = \{\pm 1, \pm 13, \pm 47, \pm 611\}.$ 

The  $\mathbf{Q}(\sqrt{14})$  sieve forms a square as product of  $(c + 25d)(c + \sqrt{14}d)$ for several pairs (c, d):  $(-11 + 3 \cdot 25)(-11 + 3\sqrt{14})$  $\cdot (3 + 25)(3 + \sqrt{14})$  $= (112 - 16\sqrt{14})^2$ .

Compute  $u = (-11 + 3 \cdot 25) \cdot (3 + 25),$   $v = 112 - 16 \cdot 25,$  $gcd \{611, u - v\} = 13.$ 

#### How to find these squares?

#### Traditional approach:

Choose *H*, *R* with  $26 \cdot 14 \cdot R^3 = H$ .

Look at all pairs (c, d)in  $[-R, R] \times [0, R]$ with  $(c + 25d)(c^2 - 14d^2) \neq 0$ and gcd  $\{c, d\} = 1$ .

 $(c + 25d)(c^2 - 14d^2)$  is small: between -H and H. Conjecturally, good chance of being smooth. Many smooths  $\Rightarrow$  square. Find more pairs (c, d)with  $|(c + 25d)(c^2 - 14d^2)| \le H$ in a less balanced rectangle. (1999 Brian Murphy)

Can do better: set of (c, d)with  $|(c + 25d)(c^2 - 14d^2)| \le H$ extends far beyond any inscribed rectangle. Find *c* range for each *d*. (Bob Silverman, Scott Contini, Arjen Lenstra)

Algorithm 1 of this talk: estimate, much more quickly, accurately, number of pairs (*c*, *d*). Take any nonconstant  $f \in {\sf Z}[x]$ , all real roots order  $<(\deg f)/2$ : e.g.,  $f=(x+25)(x^2-14)$ .

Area of  $\{(c, d) \in \mathbf{R} \times \mathbf{R} : d > 0, |d^{\deg f} f(c/d)| \leq H\}$ is  $(1/2)H^{2/\deg f}Q(f)$  where  $Q(f) = \int_{-\infty}^{\infty} dx/(f(x)^2)^{1/\deg f}.$ Will explain fast Q(f) bounds.

Extremely accurate estimate:  $\#\{(c, d) \in \mathbf{Z} imes \mathbf{Z} : \gcd\{c, d\} = 1, d > 0, |d^{\deg f} f(c/d)| \leq H\}$  $\approx (3/\pi^2) H^{2/\deg f} Q(f).$  Can verify accuracy of estimate by finding all integer pairs (c, d), i.e., by solving equations  $d^{\deg f}f(c/d) = \pm 1$ ,  $d^{\deg f}f(c/d) = \pm 2$ , ...  $d^{\deg f}f(c/d) = \pm H$ . Slow but convincing.

Another accurate estimate, easier to verify:  $\#\{(c,d) \in \mathbf{Z} \times \mathbf{Z} : \gcd\{c,d\} = 1, d > 0, |d^{\deg f}f(c/d)| \leq H, d$ d not very large}  $\approx (3/\pi^2)H^{2/\deg f}Q(f).$ 

### To compute good approximation to Q(f), and hence good approximation to distribution of $d^{\deg f} f(c/d)$ :

 $\int_{-s}^{s} dx/(f(x)^2)^{1/\deg f}$  is within  $\left| \begin{pmatrix} -2/\deg f \\ n+1 \end{pmatrix} \right| rac{2s^{1-2e/\deg f}}{3(1-2e/\deg f)4^n}$ of  $\sum_{i\in\{0,2,4,\ldots\}} 2q_i rac{s^{i+1-2e/\deg f}}{i+1-2e/\deg f}$ if  $f(x) = x^e(1 + \cdots)$  in  $\mathbf{R}[[x]]$ ,  $|\cdots| \leq 1/4$  for  $\pmb{x} \in [-s,s]$ ,  $\sum_{0\leq j\leq n} \binom{-2/\deg f}{j} (\cdots)^j = \sum q_i x^i.$ 

Handle constant factors in f. Handle intervals [v - s, v + s]. Partition  $(-\infty,\infty)$ : one interval around each real root of f; one interval around  $\infty$ , reversing f; more intervals with e = 0. Be careful with roundoff error. This is not the end of the story: can handle some f's more quickly by arithmetic-geometric mean.

#### How to find good polynomials?

Many f's possible for n. How to find f that minimizes number-field-sieve time?

General strategy: Enumerate many f's. For each f, estimate time using information about f arithmetic, distribution of  $d^{\deg f}f(c/d)$ , distribution of smooth numbers.

Let's restrict attention to f(x) = $(x-m)(f_5x^5+f_4x^4+\cdots+f_0).$ Take m near  $n^{1/6}$ . Expand n in base m:  $n = f_5 m^5 + f_4 m^4 + \cdots + f_0.$ Can use negative coefficients. Have  $f_5 \approx n^{1/6}$ . Typically all the  $f_i$ 's are on scale of  $n^{1/6}$ .

(1993 Buhler Lenstra Pomerance)

## To reduce f values by factor B: Enumerate many possibilities

for *m* near  $B^{0.25}n^{1/6}$ .

Have  $f_5 \approx B^{-1.25} n^{1/6}$ .  $f_4, f_3, f_2, f_1, f_0$  could be as large as  $B^{0.25} n^{1/6}$ . Hope that they are smaller, on scale of  $B^{-1.25} n^{1/6}$ .

Conjecturally this happens within roughly  $B^{7.5}$  trials. Then  $(c - dm)(f_5c^5 + \cdots + f_0d^5)$ is on scale of  $B^{-1}R^6n^{2/6}$ for *c*, *d* on scale of *R*. Can force  $f_4$  to be small. Say  $n = f_5 m^5 + f_4 m^4 + \dots + f_0$ . Choose integer  $k \approx f_4/5f_5$ . Write n in base m + k:  $n = f_5(m + k)^5$  $+ (f_4 - 5kf_5)(m + k)^4 + \dots$ 

Now degree-4 coefficient is on same scale as  $f_5$ .

Hope for small  $f_3$ ,  $f_2$ ,  $f_1$ ,  $f_0$ . Conjecturally this happens within roughly  $B^6$  trials. Improvement: Skew the coefficients. (1999 Murphy, without analysis)

Enumerate many possibilities for m near  $Bn^{1/6}$ .

Have  $f_5 \approx B^{-5} n^{1/6}$ .  $f_4$ ,  $f_3$ ,  $f_2$ ,  $f_1$ ,  $f_0$  could be as large as  $Bn^{1/6}$ .

Force small  $f_4$ . Hope for  $f_3$  on scale of  $B^{-2}n^{1/6}$ ,  $f_2$  on scale of  $B^{-0.5}n^{1/6}$ .

Conjecturally this happens within roughly  $B^{4.5}$  trials: (2+1) + (0.5+1) = 4.5.For c on scale of  $B^{0.75}R$ and d on scale of  $B^{-0.75}R$ have c - md on scale of  $B^{0.25} Rn^{1/6}$ and  $f_5c^5 + f_4c^4d + \cdots + f_0d^5$ on scale of  $B^{-1.25} R^5 n^{1/6}$ 

Product  $B^{-1}R^6n^{2/6}$ 

Similar effect of B on Q(f); can afford to compute Qfor many attractive f's. Can we do better? Yes!

Algorithm 2 of this talk: only about *B*<sup>3.5</sup> trials, conjecturally.

Each trial is fairly expensive, using four-dimensional integer-relation finding, but worthwhile for large *B*.

This is so fast that we should start searching  $(m_2x - m_1)(c_5x^5 + c_4x^4 + \cdots + c_0).$ 

Say  $n = f_5 m^5 + f_4 m^4 + \cdots + f_0$ .

Choose integer  $k \approx f_4/5f_5$ and integer  $\ell \approx m/5f_5$ .

Find all short vectors in lattice generated by  $(m/B^3, 0, 0, 10f_5k^2 - 4f_4k + f_3),$  $(0, m/B^4, 0, 20f_5k\ell - 4f_4\ell),$  $(0, 0, m/B^5, 10f_5\ell^2),$ (0, 0, 0, m).

Hope for j below  $B^1$ with  $(10f_5k^2 - 4f_4k + f_3)$  $+(20f_5k\ell-4f_4\ell)j$  $+(10f_5\ell^2)j^2$ below  $m/B^3$  modulo m. Write *n* in base  $m + k + j\ell$ . **Obtain degree-5 coefficient** on scale of  $B^{-5}n^{1/6}$ : degree-4 coefficient on scale of  $B^{-4}n^{1/6}$ : degree-3 coefficient on scale of  $B^{-2}n^{1/6}$ . Hope for good degree 2.

How to recognize smooth numbers?

Sieve  $d^{\deg f} f(c/d)$ to find primes  $\leq y^{\theta}$ ; say time *S* per pair (c, d).

Keep pairs (c, d) with small unfactored parts of  $d^{\deg f} f(c/d)$ .

Use second test to find primes  $\leq y$ ; say time T per pair (c, d).

Total time with tests balanced: roughly  $RS^{\theta}T^{1-\theta}$ where R is smoothness ratio. (1982 Pomerance)

#### How to do second test?

Elliptic-curve method conjecturally finds primes  $\leq y$  in time  $\exp((\lg y)^{1/2+o(1)})$  per input bit. (1987 Lenstra)

Faster batch algorithm: time  $\exp((3 + o(1)) \log \log y)$  per bit. (2000 Bernstein)

Variant:  $\exp((2 + o(1)) \log \log y)$ per bit, conjecturally. (2004 Franke Kleinjung Morain Wirth, in ECPP context)

# Slightly faster variant (2004 Bernstein):

Compute product P of the primes. Compute  $P \mod n_1$ ,  $P \mod n_2$ , .... Now  $n_j$  is smooth if and only if  $((P \mod n_j)^{\text{big}}) \mod n_j = 0.$ 

Use the  $\exp((3 + o(1)) \log \log y)$ algorithm to factor the smooths; conjecturally not a bottleneck.

Let's focus on time-consuming step: compute  $P \mod n_1$ ,  $P \mod n_2$ , . . . . Traditionally use **remainder tree** (1972 Fiduccia, 1972 Moenck Borodin):



Represent each  $P \mod \cdots$ as a bit string in base 2:  $b_0, b_1, \ldots$  represents  $b_0 + 2b_1 + \cdots$ . Algorithm 3 of this talk: use a different structure, replacing almost all of the divisions with multiplications. Constant-factor speedup.

(speedup in function-field case, using polynomial reversal etc.: 2003 Bostan Lecerf Schost; structure: 2004 Bernstein)

With redundancies eliminated (1992 Montgomery, 2004 Kramer): new structure is 2.6 + o(1)times faster than remainder tree.

#### Scaled remainder tree:



Represent each  $P/\cdots \mod 1$ as a nearby real number in base 2:  $b_{-1}, b_{-2}, \ldots$  represents  $2^{-1}b_{-1} + 2^{-2}b_{-2} + \cdots$ .

