Three algorithms

related to the number-field sieve
D. J. Bernstein

Thanks to:
University of Illinois at Chicago
NSF DMS-0140542
Alfred P. Sloan Foundation

The number-field sieve

Goal: Find
$\left\{(x, y) \in \mathbf{Z}^{2}: x y=611\right\}$.
The \mathbf{Q} sieve forms a square
as product of $c(c+611 d)$
for several pairs (c, d) :
14(625) • 64(675) • 75(686)
$=4410000^{2}$.
$\operatorname{gcd}\{611,14 \cdot 64 \cdot 75-4410000\}$
$=47$.
47 and $611 / 47=13$ are prime,
so $\{x\}=\{ \pm 1, \pm 13, \pm 47, \pm 611\}$.

The $\mathbf{Q}(\sqrt{14})$ sieve forms a square as product of $(c+25 d)(c+\sqrt{14} d)$
for several pairs (c, d) :
$(-11+3 \cdot 25)(-11+3 \sqrt{14})$
$\cdot(3+25)(3+\sqrt{14})$
$=(112-16 \sqrt{14})^{2}$.
Compute
$u=(-11+3 \cdot 25) \cdot(3+25)$,
$v=112-16 \cdot 25$,
$\operatorname{gcd}\{611, u-v\}=13$.

How to find these squares?

Traditional approach:
Choose H, R with $26 \cdot 14 \cdot R^{3}=H$.
Look at all pairs (c, d)
in $[-R, R] \times[0, R]$
with $(c+25 d)\left(c^{2}-14 d^{2}\right) \neq 0$
and $\operatorname{gcd}\{c, d\}=1$.
$(c+25 d)\left(c^{2}-14 d^{2}\right)$ is small:
between $-H$ and H. Conjecturally, good chance of being smooth.
Many smooths \Rightarrow square.

Find more pairs (c, d)
with $\left|(c+25 d)\left(c^{2}-14 d^{2}\right)\right| \leq H$
in a less balanced rectangle.
(1999 Brian Murphy)
Can do better: set of (c, d)
with $\left|(c+25 d)\left(c^{2}-14 d^{2}\right)\right| \leq H$ extends far beyond any inscribed rectangle. Find c range for each d. (Bob Silverman, Scott Contini, Arjen Lenstra)

Algorithm 1 of this talk:
estimate, much more quickly,
accurately, number of pairs (c, d).

Take any nonconstant $f \in \mathbf{Z}[x]$, all real roots order $<(\operatorname{deg} f) / 2$:
e.g., $f=(x+25)\left(x^{2}-14\right)$.

Area of $\{(c, d) \in \mathbf{R} \times \mathbf{R}: d>0$, $\left.\left|d^{\operatorname{deg} f} f(c / d)\right| \leq H\right\}$
is $(1 / 2) H^{2 / \operatorname{deg} f} Q(f)$ where
$Q(f)=\int_{-\infty}^{\infty} d x /\left(f(x)^{2}\right)^{1 / \operatorname{deg} f}$.
Will explain fast $Q(f)$ bounds.
Extremely accurate estimate:
$\#\{(c, d) \in \mathbf{Z} \times \mathbf{Z}: \operatorname{gcd}\{c, d\}=1$,
$\left.d>0,\left|d^{\operatorname{deg} f} f(c / d)\right| \leq H\right\}$
$\approx\left(3 / \pi^{2}\right) H^{2 / \operatorname{deg} f} Q(f)$.

Can verify accuracy of estimate by finding all integer pairs (c, d), ie., by solving equations $d^{\operatorname{deg} f} f(c / d)= \pm 1$,
$d^{\operatorname{deg} f} f(c / d)= \pm 2, \ldots$
$d^{\operatorname{deg} f} f(c / d)= \pm H$.
Slow but convincing.
Another accurate estimate, easier to verify:
$\#\{(c, d) \in \mathbf{Z} \times \mathbf{Z}: \operatorname{gcd}\{c, d\}=1$,
$d>0,\left|d^{\operatorname{deg} f} f(c / d)\right| \leq H$,
d not very large\}
$\approx\left(3 / \pi^{2}\right) H^{2 / \operatorname{deg} f} Q(f)$.

To compute

good approximation to $Q(f)$, and hence good approximation to distribution of $d^{\operatorname{deg} f} f(c / d)$:
$\int_{-s}^{s} d x /\left(f(x)^{2}\right)^{1 / \operatorname{deg} f}$ is within $\left|\binom{-2 / \operatorname{deg} f}{n+1}\right| \frac{2 s^{1-2 e / \operatorname{deg} f}}{3(1-2 e / \operatorname{deg} f) 4^{n}}$
of $\sum_{i \in\{0,2,4, \ldots\}} 2 q_{i} \frac{s^{i+1-2 e / \operatorname{deg} f}}{i+1-2 e / \operatorname{deg} f}$

$$
i \in\{0,2,4, \ldots\}
$$

if $f(x)=x^{e}(1+\cdots)$ in $\mathbf{R}[[x]]$,
$|\cdots| \leq 1 / 4$ for $x \in[-s, s]$,
$\sum_{0 \leq j \leq n}(\underset{j}{-2 / \operatorname{deg} f})(\cdots)^{j}=\sum q_{i} x^{i}$.

Handle constant factors in f.
Handle intervals $[v-s, v+s]$.
Partition $(-\infty, \infty)$:
one interval around each
real root of f; one interval around ∞, reversing f; more intervals with $e=0$.

Be careful with roundoff error.
This is not the end of the story: can handle some f 's more quickly by arithmetic-geometric mean.

How to find good polynomials?

Many f 's possible for n.
How to find f that
minimizes number-field-sieve time?
General strategy:
Enumerate many f's.
For each f, estimate time using information about f arithmetic, distribution of $d^{\operatorname{deg} f} f(c / d)$, distribution of smooth numbers.

Let's restrict attention to $f(x)=$ $(x-m)\left(f_{5} x^{5}+f_{4} x^{4}+\cdots+f_{0}\right)$.

Take m near $n^{1 / 6}$.
Expand n in base m :
$n=f_{5} m^{5}+f_{4} m^{4}+\cdots+f_{0}$.
Can use negative coefficients.
Have $f_{5} \approx n^{1 / 6}$.
Typically all the f_{i} 's
are on scale of $n^{1 / 6}$.
(1993 Buhler Lenstra Pomerance)

To reduce f values by factor B :
Enumerate many possibilities
for m near $B^{0.25} n^{1 / 6}$.
Have $f_{5} \approx B^{-1.25} n^{1 / 6}$.
$f_{4}, f_{3}, f_{2}, f_{1}, f_{0}$ could be as large as $B^{0.25} n^{1 / 6}$.

Hope that they are smaller, on scale of $B^{-1.25} n^{1 / 6}$.

Conjecturally this happens within roughly $B^{7.5}$ trials.
Then $(c-d m)\left(f_{5} c^{5}+\cdots+f_{0} d^{5}\right)$
is on scale of $B^{-1} R^{6} n^{2 / 6}$
for c, d on scale of R.

Can force f_{4} to be small.
Say $n=f_{5} m^{5}+f_{4} m^{4}+\cdots+f_{0}$.
Choose integer $k \approx f_{4} / 5 f_{5}$.
Write n in base $m+k$:
$n=f_{5}(m+k)^{5}$

$$
+\left(f_{4}-5 k f_{5}\right)(m+k)^{4}+\cdots .
$$

Now degree-4 coefficient is on same scale as f_{5}.

Hope for small $f_{3}, f_{2}, f_{1}, f_{0}$.
Conjecturally this happens
within roughly B^{6} trials.

Improvement: Skew the coefficients.
(1999 Murphy, without analysis)
Enumerate many possibilities
for m near $B n^{1 / 6}$.
Have $f_{5} \approx B^{-5} n^{1 / 6}$.
$f_{4}, f_{3}, f_{2}, f_{1}, f_{0}$ could be as large as $B n^{1 / 6}$.

Force small f_{4}. Hope for f_{3} on scale of $B^{-2} n^{1 / 6}$, f_{2} on scale of $B^{-0.5} n^{1 / 6}$.

Conjecturally this happens
within roughly $B^{4.5}$ trials:
$(2+1)+(0.5+1)=4.5$.
For c on scale of $B^{0.75} R$ and d on scale of $B^{-0.75} R$
have $c-m d$ on scale of $B^{0.25} R n^{1 / 6}$
and $f_{5} c^{5}+f_{4} c^{4} d+\cdots+f_{0} d^{5}$
on scale of $B^{-1.25} R^{5} n^{1 / 6}$.
Product $B^{-1} R^{6} n^{2 / 6}$.
Similar effect of B on $Q(f)$; can afford to compute Q
for many attractive f's.

Can we do better? Yes!
Algorithm 2 of this talk:
only about $B^{3.5}$ trials,
conjecturally.
Each trial is fairly expensive,
using four-dimensional
integer-relation finding,
but worthwhile for large B.
This is so fast that
we should start searching
$\left(m_{2} x-m_{1}\right)\left(c_{5} x^{5}+c_{4} x^{4}+\cdots+c_{0}\right)$.

Say $n=f_{5} m^{5}+f_{4} m^{4}+\cdots+f_{0}$.
Choose integer $k \approx f_{4} / 5 f_{5}$
and integer $\ell \approx m / 5 f_{5}$.
Find all short vectors
in lattice generated by
$\left(m / B^{3}, 0,0,10 f_{5} k^{2}-4 f_{4} k+f_{3}\right)$,
$\left(0, m / B^{4}, 0,20 f_{5} k \ell-4 f_{4} \ell\right)$,
$\left(0,0, m / B^{5}, 10 f_{5} \ell^{2}\right)$,
$(0,0,0 \quad, m)$.

Hope for j below B^{1}
with $\left(10 f_{5} k^{2}-4 f_{4} k+f_{3}\right)$

$$
\begin{aligned}
& +\left(20 f_{5} k \ell-4 f_{4} \ell\right) j \\
& +\left(10 f_{5} \ell^{2}\right) j^{2}
\end{aligned}
$$

below m / B^{3} modulo m.
Write n in base $m+k+j \ell$.
Obtain degrees coefficient
on scale of $B^{-5} n^{1 / 6}$;
degree-4 coefficient
on scale of $B^{-4} n^{1 / 6}$;
degree-3 coefficient
on scale of $B^{-2} n^{1 / 6}$.
Hope for good degree 2 .

How to recognize smooth numbers?
Sieve $d^{\operatorname{deg} f} f(c / d)$
to find primes $\leq y^{\theta}$;
say time S per pair (c, d).
Keep pairs (c, d) with small unfactored parts of $d^{\operatorname{deg} f} f(c / d)$.

Use second test to find primes $\leq y$; say time T per pair (c, d).

Total time with tests balanced: roughly $R S^{\theta} T^{1-\theta}$
where R is smoothness ratio.
(1982 Pomerance)

How to do second test?
Elliptic-curve method conjecturally finds primes $\leq y$ in time $\exp \left((\lg y)^{1 / 2+o(1)}\right)$ per input bit. (1987 Lenstra)

Faster batch algorithm: time $\exp ((3+o(1)) \log \lg y)$ per bit. (2000 Bernstein)

Variant: $\exp ((2+o(1)) \log \lg y)$
per bit, conjecturally.
(2004 Franke Kleinjung
Morain Wirth, in ECPP context)

Slightly faster variant
(2004 Bernstein):
Compute product P of the primes.
Compute $P \bmod n_{1}, P \bmod n_{2}, \ldots$.
Now n_{j} is smooth if and only if $\left(\left(P \bmod n_{j}\right)^{\mathrm{big}}\right) \bmod n_{j}=0$.

Use the $\exp ((3+o(1)) \log \lg y)$ algorithm to factor the smooths; conjecturally not a bottleneck.

Let's focus on time-consuming step:
compute $P \bmod n_{1}, P \bmod n_{2}, \ldots$.

Traditionally use remainder tree

 (1972 Fiduccia, 1972 Moenck Borodin):$P \bmod n_{1} n_{2} n_{3} n_{4}$

$P \bmod n_{1} n_{2} \quad P \bmod n_{3} n_{4}$

$P \bmod n_{1} \quad P \bmod n_{3}$
Represent each P mod..
as a bit string in base 2 :
b_{0}, b_{1}, \ldots represents $b_{0}+2 b_{1}+\cdots$.

Algorithm 3 of this talk:
use a different structure,
replacing almost all of the divisions with multiplications.
Constant-factor speedup.
(speedup in function-field case, using polynomial reversal etc.: 2003 Bostan Lecerf Schost; structure: 2004 Bernstein)

With redundancies eliminated
(1992 Montgomery, 2004 Kramer): new structure is $2.6+o(1)$
times faster than remainder tree.

Scaled remainder tree:

Represent each $P / \cdots \bmod 1$ as a nearby real number in base 2 :
b_{-1}, b_{-2}, \ldots represents
$2^{-1} b_{-1}+2^{-2} b_{-2}+\cdots$.
e.g. Scaled remainder tree for $P=8675309, n_{1}=10$,
$n_{2}=20, n_{3}=30, n_{4}=40$:

