A state-of-the-art public-key signature system

D. J. Bernstein

Thanks to:

University of Illinois at Chicago NSF CCR–9983950

Alfred P. Sloan Foundation

Handwritten signatures

Want to transmit message: "Pay \$1000."

Sender attaches his signature: "Pay \$1000.

Recipient checks sender's signature:

Recipient accepts message: "Pay \$1000."

Forging signed messages

Attacker intercepts the signed message:

"Pay \$1000.

January C

Attacker modifies the message:

"Pay \$3000.

Recipient checks sender's signature:

Recipient accepts message:

"Pay \$3000."

How do we stop forgeries?

The signature has to depend on the message. Define set V of valid signed-message pairs (m, s).

Sender, given m, must be able to generate s such that $(m, s) \in V$.

Recipient must be able to check whether $(m, s) \in V$.

Attacker, given $(m, s) \in V$, must not be able to find $(m', s') \in V$ with $m' \neq m$.

Public-key signature systems

Sender has a **secret key** and a **public key**.

Recipient knows the public key.

Sender uses secret key to find $(m, s) \in V$, given m.

Recipient uses public key to check whether $(m, s) \in V$.

Hopefully attacker can't figure out secret key, and can't figure out (m', s') without secret key.

A state-of-the-art signature system

Sender's public key is an integer k with $2^{1536} < k < 2^{1537}$.

More restrictions on k, discussed later.

$$(m,e,f,r,s)\in V$$
 iff $e\in \{-1,1\},$ $f\in \{1,2\},\ r\in \{0,1,\dots,15\},$ $s\in \{0,1,\dots,2^{1536}-1\},$ and $efs^2-H_0(r,m)\in k\mathbf{Z}.$

 H_0 : {strings} \rightarrow {1, 2, ..., 2^{1536} } is a complicated public function, discussed later.

Given m, e, f, r, s, recipient computes $efs^2 - H_0(r, m)$, divides by k, checks that remainder is 0.

Attacker might select e', f', s', compute remainder $e'f'(s')^2 \mod k$, hope to invert H_0 to find (r', m'); but we conjecture that inverting H_0 is difficult.

Attacker might select r', m', compute $H_0(r', m')$, hope to find square root modulo k; but we conjecture that finding square roots is difficult.

Square roots modulo *primes* are easy to compute—but k will never be prime.

Particularly easy for primes $p \in 3 + 4\mathbf{Z}$: Given $i^2 \mod p$, compute $i^4 \mod p = (i^2 \mod p)^2 \mod p$, $i^6 \mod p = (i^4 \mod p)(i^2 \mod p) \mod p$, $i^{12} \mod p = (i^6 \mod p)^2 \mod p$, ..., $i^{(p+1)/2} \mod p$.

By Fermat's little theorem, this is a square root of i^2 modulo p.

About $\lg p$ multiplications.

Sender's secret key is (p, q, z) where z is a 256-bit string, p is prime, q is prime, $q \in 3 + 8\mathbf{Z}, q \in 7 + 8\mathbf{Z}, 2^{767} pq = k$.

Sender finds square roots mod k using factorization of k.

Attacker isn't given factorization, and conjecturally can't do this.

Given m, sender computes

- \bullet $r = H_1(z, m);$
- $h = H_0(r, m);$
- e = 1 if h is a square modulo q, otherwise e = -1;
- f = 1 if eh is a square modulo p, otherwise f = 2;
- s= the unique square root of eh/f modulo pq with $s \in \{0, 1, \ldots, (pq-1)/2\}$ and with $\pm s$ a square modulo pq. Signed message is (m, e, f, r, s).

 H_1 is another public function.

The hash functions H_0 , H_1

Start from this → function SHA.
String input,
160-bit output.

```
Define H_0(x) = 6 + 2^{96} \, \text{SHA}(1, x) + 2^{256} \, \text{SHA}(2, x) + \dots + 2^{1376} \, \text{SHA}(9, x). Define H_1(x) = \text{SHA}(0, x) \, \text{mod } 16.
```

```
### (100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 1
Bdefine PUTPAD(x) { \
   ctxt-%=bg[COUNT % 64)] = (x);
  COUNT %= 64;
  if (COUNT % 64 == 0)
   shai_step(ctxt);
}
                                               a = H(0); b = H(1); c = H(2); d = H(3); e = H(4);
                                                 fmp = S(5, a) + F0(b, c, d) + e + W(s) + K(t);
e = d; d = c; c = S(30, b); b = a; a = tmp;
                                                 } for (t = 20; t < 40; t++) { s = t \& 0x0f; w(s) & 0x0f) \cap W((s+2) \& 0x0f) \cap W(s); w(s) = 5(t, w(s+1) \& 0x0f) \cap W((s+2) \& 0x0f) \cap W(s); t = f(t, s) & f(t, s) & f(t, s) & f(t, s); v = f(t, s) & f(t, s) & f(t, s) & f(t, s); v = f(t, s) & f(t, s) & f(t, s) & f(t, s); v = f(t, s) & f
                                               void
sha1_init(ctxt)
struct sha1_ctxt *ctxt;
                                               bzero(ctxt, sizeof(struct shai_ctxt));

H(0) = 0x67452301;

H(1) = 0xefcdab80;

H(2) = 0x98badcfe;

H(3) = 0x10325476;

H(4) = 0x23241f0;
size_t padlen;
size_t padstart;
                                                                                                                                                             /*pad length in bytes*/
                                                   PUTPAD(0x80);
                                                                          start = CDUNT % 64;

en = 64 - padstart;

padlen < 8) (
bzero(&ctxt=>n.b8[padstart], padlen);

CDUNT += padlen;

CDUNT %= 64;
                                                                                          COUNT % 64;
sha1_step(ctxt);
padstart = COUNT % 64; /* should be 0 */
padlen = 64 - padstart; /* should be 64 */
                                                                            copysiz = (gaples < len - off) 7 gaples : len - off;
beopy(kinput[off], &ctxt->m.bb[gapstart], copysiz);
OUDUT % ed:
ctxt->c.b64[0] *= copysiz * 8;
if (CODUT % 64 *= 0)
shal_step(ctxt);
off *= copysic;
                                             u int8 t *digest:
                                               digest = (u_int8_t *)digest0;
sha1_pad(ctxt);
bcopy(&ctxt->h.b8[0], digest, 20);
```

Many other possibilities.

General belief: Almost *every* reasonably-easy-to-compute function is safe.

Can choose a function randomly!

Some varieties of functions seem safe at higher speeds.

But nothing has been proven.

Wang et al. 2004 constructed collision in popular function MD5: m, m' with MD5(m) = MD5(m').

Some credits

Concept of public key signatures: 1976 Diffie Hellman. No examples.

 $s^{\mathsf{something}} \mod k = m$:

1977 Rivest Shamir Adleman; independently Rabin, unpublished.

Bad system: allows trivial forgeries.

 $s^{\text{something}} \mod k = H_0(m)$:

1979 Rabin. Seems to be secure.

Small exponent: 1979 Rabin.

Saves verification time.

 s^2 mod $k = H_0(m)$: 1979 Rabin. Saves more time. Adds problem: $H_0(m)$ has only 25% chance of being a square modulo k.

 s^2 mod $k = H_0(r, m)$, with r chosen randomly by signer: 1979 Rabin. Fixes the problem, if r has enough bits.

Choosing r as secret function of m, i.e., function of z and m: 1997
Barwood; independently Wigley.
Eliminates randomness from signing.

Extra factors

 $e \in \{-1, 1\}, f \in \{1, 2\},$ with $p \in 3 + 8\mathbf{Z}, q \in 7 + 8\mathbf{Z}$: 1980 Williams. Now efs^2 covers all integers mod k, so no need to try more than one r.

Can even omit r.
We'll see later why state-of-the-art system includes 4-bit r.

Security

An attack is an algorithm. Algorithm receives public key k. Algorithm selects message m_0 , receives signature s_0 of m_0 . Algorithm selects message m_1 , receives signature s_1 of m_1 . Et cetera. Algorithm then prints (m', s').

Attack is **successful** if $m' \notin \{m_0, m_1, \ldots\}$ and s' is a signature of m'.

Conjecture: Every fast attack has negligible chance of success against a random public key.

(Typical formalization: Every attack using $\leq 2^{60}$ steps on a 2-tape Turing machine has probability at most 2^{-30} of success.)

Of course, real signers restrict m_0 , m_1 , etc. Restricted conjecture: Every fast restricted attack has negligible chance of success against a random public key.

Best attack method we know:

Factor public key k to discover p and q.

Then choose m' and compute s' the same way sender does.

Best factorization method we know: number-field sieve (NFS). (1988 Pollard, et al.)

Some successful factorizations of 512 bits and slightly beyond, but nowhere near 1536 bits.

Conjecture: NFS costs $\approx 2^c$ to factor integers $\approx 2^b$, where $c/b^{1/3}(\lg b)^{2/3} \to \text{constant}$ as $b \to \infty$. (1993 Buhler Lenstra Pomerance, et al.)

Constant \approx 1.976 for circuits. (2001 Bernstein)

Another algorithm has *proven* cost 2^c where $c/b^{1/2}(\lg b)^{1/2} \rightarrow \text{constant}$. (1981 Dixon; better constants: 1987 Pomerance, 1991 Vallée, 1992 Lenstra Pomerance)

In factorization attack, H_0 and H_1 are **generic**: they can be oracles that compute arbitrary functions. Attack succeeds no matter what H_0 and H_1 are.

Given any generic attack that succeeds against all H_0 , H_1 , can build an algorithm that factors k at comparable speed.

Enough to assume that success probability, averaged over all H_0 , H_1 , is high.

Sketch of construction:

Factorization algorithm chooses random integer c; chooses random string z; chooses random H_1 values; chooses each $H_0(H_1(z,m),m)$ as efs^2 for random e, f, s; and chooses each $H_0(\text{other}, m)$ as $ef(sc)^2$ for random e, f, s.

Can compute exactly the right e, f, s distribution.

Factorization algorithm can now simulate signer with these functions H_0 , H_1 .

Factorization algorithm runs the attack, obtaining a forgery (m', e', f', r', s').

If $H_1(z,m')=r'$, give up; chance $\leq 1/16+\epsilon$.

Now $ef(sc)^2 \equiv e'f'(s')^2$. Check $\gcd\{k, s'\}$, $\gcd\{k, s' - sc\}$; chance $\leq 1/2$ of both in $\{1, k\}$. So generic attacks can't be easier than factorization.

If r is omitted, this proof breaks down. Fix: can build a slower factorization algorithm; so generic attacks can't be *much* easier than factorization.

Conjecture: No attacks are easier than factorization.

(Counterargument: MD5 collision.)

Conjecture: Factorization is hard. (Counterargument: NFS.)

More credits

Converting generic attacks into factorization algorithms: 1987 Fiat Shamir, for a signature system; 1993 Bellare Rogaway, for some encryption systems.

Quantified conversions:

1996 Bellare Rogaway;

1998 Bernstein; 2000 Coron; et al.

Exploiting non-random r:

2003 Katz Wang; 2003 Bernstein.

Expanded signatures

(1997 Bernstein)

Expand e, f, r, s into e, f, r, s, t where $t = (fs^2 - eH_0(r, m))/k$. Verifier can check whether $(f(s \mod \ell)^2 - (k \mod \ell)(t \mod \ell) - e(H_0(r, m) \mod \ell)) \mod \ell = 0$ for a random 128-bit prime ℓ . This is very fast.

If input is valid, says yes. Otherwise, chance $\leq 2^{-115}$ of saying yes.

Compressed signatures

(2003 Bleichenbacher)

Compress e, f, r, s to e, f, r, v where $v \in \{1, 2, ..., 2^{769} - 1\}$ and $efv^2H_0(r, m) \mod k$ is in $\{0^2, 1^2, 2^2, ..., (2^{768} - 1)^2\}$. 97 bytes instead of 193 bytes.

Easy to find v from continued fraction of fs/k.

Easy to uncompress, or to check e, f, r, v directly.

Compressed keys

(2003 Coppersmith)

Require $\lfloor k/2^{512} \rfloor = 179870286739608$ 1109087939864337792829527094371869801110276348868 0668010543030620350477208772441576518762853656940 3357866962021859070432575840490938673081114568020 8028015726391074333854880135338238893595433658057 39639724297106495248013808227417948954846716576431759705516797612912096782118234207449553394447817.

Transmit only $k \mod 2^{512}$.
64 bytes instead of 192 bytes.

How to generate p, q with $2^{512}\alpha < pq < 2^{512}(\alpha + 1)$?

First generate random p_0 . Compute $q_0 pprox 2^{512} (lpha + 1/2)/p_0$.

Find 256-bit integers x, y with p_0y+q_0x close to $2^{512}(\alpha+1/2)-p_0q_0$.

Set $p = p_0 + x$ and $q = q_0 + y$. Check that p, q are primes in the right range; if not, try a new p_0 .

Advertisement

MCS 590, High-Speed Cryptography, Spring 2005

Prerequisite: Computer algorithms.

Other necessary background from computer architecture, numerical analysis, commutative algebra, number theory, and cryptography will be introduced on the fly.