
A state-of-the-art

public-key signature system

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF CCR–9983950

Alfred P. Sloan Foundation

Handwritten signatures

Want to transmit message:

“Pay $1000.”

Sender attaches his signature:

“Pay $1000. ”

Recipient checks sender’s signature:

“ ”

Recipient accepts message:

“Pay $1000.”

Forging signed messages

Attacker intercepts

the signed message:

“Pay $1000. ”

Attacker modifies the message:

“Pay $3000. ”

Recipient checks sender’s signature:

“ ”

Recipient accepts message:

“Pay $3000.”

How do we stop forgeries?

The signature has to depend on

the message. Define set of

valid signed-message pairs (�
�).

Sender, given , must be able to

generate � such that (�
�) .

Recipient must be able to

check whether (�
�) .

Attacker, given (�
�) ,

must not be able to find

(
�

�
�

�

) with
�

= .

Public-key signature systems

Sender has a secret key

and a public key.

Recipient knows the public key.

Sender uses secret key to

find (�
�) , given .

Recipient uses public key

to check whether (�
�) .

Hopefully attacker can’t

figure out secret key,

and can’t figure out (
�

�
�

�

)

without secret key.

A state-of-the-art signature system

Sender’s public key is an integer

with 21536 21537.

More restrictions on ,

discussed later.

(��� � ��� �
�) iff � � 1 � 1 ,

1 � 2 , � 0 � 1 � � � � � 15 ,
� 0 � 1 � � � � � 21536 � 1 ,

and � � 2 � 0(� �) Z.

0 : strings 1 � 2 � � � � � 21536

is a complicated public function,

discussed later.

Given ��� � ��� �
� , recipient

computes � � 2 � 0(� �), divides

by , checks that remainder is 0.

Attacker might select �
�

�

�

�
�

�

,

compute remainder �
� �

(�
�

)2 mod ,

hope to invert 0 to find (�
�

�

�

);

but we conjecture that

inverting 0 is difficult.

Attacker might select �
�

�

�

,

compute 0(�
�

�

�

), hope to

find square root modulo ;

but we conjecture that

finding square roots is difficult.

Square roots modulo primes

are easy to compute—

but will never be prime.

Particularly easy

for primes 3 + 4Z:

Given
� 2 mod , compute

� 4 mod = (
� 2 mod)2 mod ,

� 6mod =(
� 4mod)(

� 2mod)mod ,
� 12 mod = (

� 6 mod)2 mod ,

� � � ,
� (� +1) � 2 mod .

By Fermat’s little theorem, this is

a square root of
� 2 modulo .

About lg multiplications.

Sender’s secret key is (��� ���)

where � is a 256-bit string,

is prime, � is prime,

3 + 8Z, � 7 + 8Z,

2767 2768 � 2769,

and � = .

Sender finds square roots mod

using factorization of .

Attacker isn’t given factorization,

and conjecturally can’t do this.

Given , sender computes
� � = 1(� �);
� = 0(� �);
� � = 1 if is a square

modulo � , otherwise � = � 1;
� = 1 if � is a square

modulo , otherwise = 2;
� � = the unique square root

of � modulo �

with � 0 � 1 � � � � � (� � 1) 2

and with � a square modulo � .

Signed message is (� � � � � �
�).

1 is another public function.

The hash functions 0 � 1

Start from this

function SHA.

String input,

160-bit output.

Define

0(�) = 6 +

296 SHA(1 � �) +

2256 SHA(2 � �) +
� � � +

21376 SHA(9 � �).

Define 1(�) =

SHA(0 � �) mod 16.

static u_int32_t _K[] = { 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xca62c1d6 };
#define K(t) _K[(t) / 20]
#define F0(b, c, d) (((b) & (c)) | ((~(b)) & (d)))
#define F1(b, c, d) (((b) ^ (c)) ^ (d))
#define F2(b, c, d) (((b) & (c)) | ((b) & (d)) | ((c) & (d)))
#define F3(b, c, d) (((b) ^ (c)) ^ (d))
#define S(n, x) (((x) << (n)) | ((x) >> (32 - n)))
#define H(n) (ctxt->h.b32[(n)])
#define COUNT (ctxt->count)
#define BCOUNT (ctxt->c.b64[0] / 8)
#define W(n) (ctxt->m.b32[(n)])
#define PUTBYTE(x) { \

ctxt->m.b8[(COUNT % 64)] = (x); \
COUNT++; \
COUNT %= 64; \
ctxt->c.b64[0] += 8; \
if (COUNT % 64 == 0) \

sha1_step(ctxt); \
}

#define PUTPAD(x) { \
ctxt->m.b8[(COUNT % 64)] = (x); \
COUNT++; \
COUNT %= 64; \
if (COUNT % 64 == 0) \

sha1_step(ctxt); \
}

static void sha1_step __P((struct sha1_ctxt *));

static void
sha1_step(ctxt)

struct sha1_ctxt *ctxt;
{

u_int32_t a, b, c, d, e;
size_t t, s;
u_int32_t tmp;

a = H(0); b = H(1); c = H(2); d = H(3); e = H(4);

for (t = 0; t < 20; t++) {
s = t & 0x0f;
if (t >= 16) {

W(s) = S(1, W((s+13) & 0x0f) ^ W((s+8) & 0x0f) ^ W((s+2) & 0x0f) ^ W(s));
}
tmp = S(5, a) + F0(b, c, d) + e + W(s) + K(t);
e = d; d = c; c = S(30, b); b = a; a = tmp;

}
for (t = 20; t < 40; t++) {

s = t & 0x0f;
W(s) = S(1, W((s+13) & 0x0f) ^ W((s+8) & 0x0f) ^ W((s+2) & 0x0f) ^ W(s));
tmp = S(5, a) + F1(b, c, d) + e + W(s) + K(t);
e = d; d = c; c = S(30, b); b = a; a = tmp;

}
for (t = 40; t < 60; t++) {

s = t & 0x0f;
W(s) = S(1, W((s+13) & 0x0f) ^ W((s+8) & 0x0f) ^ W((s+2) & 0x0f) ^ W(s));
tmp = S(5, a) + F2(b, c, d) + e + W(s) + K(t);
e = d; d = c; c = S(30, b); b = a; a = tmp;

}
for (t = 60; t < 80; t++) {

s = t & 0x0f;
W(s) = S(1, W((s+13) & 0x0f) ^ W((s+8) & 0x0f) ^ W((s+2) & 0x0f) ^ W(s));
tmp = S(5, a) + F3(b, c, d) + e + W(s) + K(t);
e = d; d = c; c = S(30, b); b = a; a = tmp;

}

H(0) = H(0) + a;
H(1) = H(1) + b;
H(2) = H(2) + c;
H(3) = H(3) + d;
H(4) = H(4) + e;

bzero(&ctxt->m.b8[0], 64);
}

void
sha1_init(ctxt)

struct sha1_ctxt *ctxt;
{

bzero(ctxt, sizeof(struct sha1_ctxt));
H(0) = 0x67452301;
H(1) = 0xefcdab89;
H(2) = 0x98badcfe;
H(3) = 0x10325476;
H(4) = 0xc3d2e1f0;

}

void
sha1_pad(ctxt)

struct sha1_ctxt *ctxt;
{

size_t padlen; /*pad length in bytes*/
size_t padstart;

PUTPAD(0x80);

padstart = COUNT % 64;
padlen = 64 - padstart;
if (padlen < 8) {

bzero(&ctxt->m.b8[padstart], padlen);
COUNT += padlen;
COUNT %= 64;
sha1_step(ctxt);
padstart = COUNT % 64; /* should be 0 */
padlen = 64 - padstart; /* should be 64 */

}
bzero(&ctxt->m.b8[padstart], padlen - 8);
COUNT += (padlen - 8);
COUNT %= 64;
PUTPAD(ctxt->c.b8[0]); PUTPAD(ctxt->c.b8[1]);
PUTPAD(ctxt->c.b8[2]); PUTPAD(ctxt->c.b8[3]);
PUTPAD(ctxt->c.b8[4]); PUTPAD(ctxt->c.b8[5]);
PUTPAD(ctxt->c.b8[6]); PUTPAD(ctxt->c.b8[7]);

}

void
sha1_loop(ctxt, input, len)

struct sha1_ctxt *ctxt;
const u_int8_t *input;
size_t len;

{
size_t gaplen;
size_t gapstart;
size_t off;
size_t copysiz;

off = 0;

while (off < len) {
gapstart = COUNT % 64;
gaplen = 64 - gapstart;

copysiz = (gaplen < len - off) ? gaplen : len - off;
bcopy(&input[off], &ctxt->m.b8[gapstart], copysiz);
COUNT += copysiz;
COUNT %= 64;
ctxt->c.b64[0] += copysiz * 8;
if (COUNT % 64 == 0)

sha1_step(ctxt);
off += copysiz;

}
}

void
sha1_result(ctxt, digest0)

struct sha1_ctxt *ctxt;
caddr_t digest0;

{
u_int8_t *digest;

digest = (u_int8_t *)digest0;
sha1_pad(ctxt);
bcopy(&ctxt->h.b8[0], digest, 20);

}

Many other possibilities.

General belief: Almost every

reasonably-easy-to-compute

function is safe.

Can choose a function randomly!

Some varieties of functions

seem safe at higher speeds.

But nothing has been proven.

Wang et al. 2004 constructed

collision in popular function MD5:

�

�

with MD5() = MD5(
�

).

Some credits

Concept of public key signatures:

1976 Diffie Hellman. No examples.

� something mod = :

1977 Rivest Shamir Adleman;

independently Rabin, unpublished.

Bad system: allows trivial forgeries.

� something mod = 0():

1979 Rabin. Seems to be secure.

Small exponent: 1979 Rabin.

Saves verification time.

� 2 mod = 0(): 1979 Rabin.

Saves more time. Adds problem:

0() has only 25% chance

of being a square modulo .

� 2 mod = 0(� �), with � chosen

randomly by signer: 1979 Rabin.

Fixes the problem,

if � has enough bits.

Choosing � as secret function of ,

i.e., function of � and : 1997

Barwood; independently Wigley.

Eliminates randomness from signing.

Extra factors

� � 1 � 1 , 1 � 2 ,

with 3 + 8Z, � 7 + 8Z:

1980 Williams. Now � � 2 covers

all integers mod , so no need

to try more than one � .

Can even omit � .

We’ll see later why

state-of-the-art system

includes 4-bit � .

Security

An attack is an algorithm.

Algorithm receives public key .

Algorithm selects message 0,

receives signature �

0 of 0.

Algorithm selects message 1,

receives signature �

1 of 1.

Et cetera.

Algorithm then prints (
�

�
�

�

).

Attack is successful if
�

0 � 1 � � � �

and �
�

is a signature of
�

.

Conjecture: Every fast attack

has negligible chance of success

against a random public key.

(Typical formalization: Every attack

using 260 steps on a 2-tape

Turing machine has probability

at most 2 �
30 of success.)

Of course, real signers restrict

0, 1, etc. Restricted

conjecture: Every fast restricted

attack has negligible chance of

success against a random public key.

Best attack method we know:

Factor public key

to discover and � .

Then choose
�

and compute
�

�

the same way sender does.

Best factorization method we know:

number-field sieve (NFS).

(1988 Pollard, et al.)

Some successful factorizations

of 512 bits and slightly beyond,

but nowhere near 1536 bits.

Conjecture: NFS costs 2
�

to factor integers 2
�
,

where � 1 � 3(lg)2 � 3 constant

as . (1993 Buhler

Lenstra Pomerance, et al.)

Constant 1 � 976 for circuits.

(2001 Bernstein)

Another algorithm has proven cost 2
�

where � 1 � 2(lg)1 � 2 constant.

(1981 Dixon; better constants:

1987 Pomerance, 1991 Vallée,

1992 Lenstra Pomerance)

In factorization attack, 0 and 1

are generic: they can be oracles

that compute arbitrary functions.

Attack succeeds no matter what

0 and 1 are.

Given any generic attack

that succeeds against all 0 � 1,

can build an algorithm that

factors at comparable speed.

Enough to assume that

success probability,

averaged over all 0 � 1,

is high.

Sketch of construction:

Factorization algorithm

chooses random integer � ;

chooses random string � ;

chooses random 1 values;

chooses each 0(1(� �) �) as

� � 2 for random � � �
� ;

and chooses each 0(other �) as

� (� �)2 for random � � �
� .

Can compute exactly

the right � � �
� distribution.

Factorization algorithm

can now simulate signer

with these functions 0, 1.

Factorization algorithm

runs the attack, obtaining

a forgery (
�

� �
�

�

�

���
�

�
�

�

).

If 1(� �

�

) = �
�

, give up;

chance 1 16 + � .

Now � (� �)2 �
� �

(�
�

)2.

Check gcd �
�

�

, gcd �
�

�

� � � ;

chance 1 2 of both in 1 � .

So generic attacks can’t be

easier than factorization.

If � is omitted, this proof

breaks down. Fix: can build a

slower factorization algorithm;

so generic attacks can’t be

much easier than factorization.

Conjecture: No attacks are

easier than factorization.

(Counterargument: MD5 collision.)

Conjecture: Factorization is hard.

(Counterargument: NFS.)

More credits

Converting generic attacks

into factorization algorithms:

1987 Fiat Shamir, for a signature

system; 1993 Bellare Rogaway,

for some encryption systems.

Quantified conversions:

1996 Bellare Rogaway;

1998 Bernstein; 2000 Coron; et al.

Exploiting non-random � :

2003 Katz Wang; 2003 Bernstein.

Expanded signatures

(1997 Bernstein)

Expand � � ��� �
� into � � ��� �

�
���

where � = (� 2 � � 0(� �)) .

Verifier can check whether

((� mod)2 � (mod)(� mod)

� � (0(� �) mod)) mod = 0

for a random 128-bit prime .

This is very fast.

If input is valid, says yes.

Otherwise, chance 2 �
115

of saying yes.

Compressed signatures

(2003 Bleichenbacher)

Compress � � � � �
� to � � � � ���

where � 1 � 2 � � � � � 2769 � 1

and � � 2
0(� �) mod is in

02
� 12

� 22
� � � � � (2768 � 1)2 .

97 bytes instead of 193 bytes.

Easy to find � from

continued fraction of � .

Easy to uncompress,

or to check � � ��� ��� directly.

Compressed keys

(2003 Coppersmith)

Require 2512 =
����������������	���
���	����

����������������
�����	
��
�
������������������������
��
�������	�������������������	�
�������	��

��	�	����������
��
���
���	�����
����������������������
����������	���������	�������
�	���	������

�
�������	�	���	�����������������������
��������������
��������
���	���
���������������	��������

������������������	�
��������
��
�
�
���������������
���
�
�����
�������
���������
�
�	����������

���	�
������
������������	��������
��������
�����������������������������������	�����	�����	���

������������������	�������	���������������	���������������
��������
����������
�
����������������
.

Transmit only mod 2512.

64 bytes instead of 192 bytes.

How to generate � � with

2512 � � 2512(� + 1)?

First generate random 0.

Compute � 0 2512(� + 1 2) 0.

Find 256-bit integers � �

with 0 + � 0 � close to

2512(� + 1 2) � 0 � 0.

Set = 0 + � and � = � 0 + .

Check that ��� are primes

in the right range;

if not, try a new 0.

Advertisement

MCS 590, High-Speed Cryptography,

Spring 2005

Prerequisite: Computer algorithms.

Other necessary background

from computer architecture,

numerical analysis,

commutative algebra,

number theory, and

cryptography will be

introduced on the fly.

