A state-of-the-art

public-key signature system
D. J. Bernstein

Thanks to:

University of lllinois at Chicago
NSF CCR-9983950

Alfred P. Sloan Foundation

Handwritten signatures

Want to transmit message:
“Pay $1000."

Sender attaches his signature:

b & "
Pay $1000. /ﬁff#ﬁmﬁ‘/ﬂé

Recipient checks sender’s signature:

W LS

Recipient accepts message:
“Pay $1000."

Forging signed messages

Attacker intercepts
the signed message:

“Pay $1000. /%Fgﬁ/ﬂé
Attacker modifies the message:

“Pay $3000. /jﬁgﬁ"/ﬂé
Recipient checks sender’s signature:

eSS

Recipient accepts message:
“Pay $3000.”

How do we stop forgeries?

The signature has to depend on
the message. Define set V' of
valid signed-message pairs (m, s).

Sender, given m, must be able to
generate s such that (m,s) € V.

Recipient must be able to
check whether (m, s) € V.

Attacker, given (m,s) € V,
must not be able to find
(m', ') € V with m’ £ m.

Public-key signature systems

Sender has a secret key
and a public key.
Recipient knows the public key.

Sender uses secret key to
find (m, s) € V, given m.

Recipient uses public key
to check whether (m, s) € V.

Hopefully attacker can't
figure out secret key,
and can't figure out (m/, s')

without secret key.

A state-of-the-art signature system

Sender’s public key is an integer &
with 21930 < < 21537

More restrictions on k,

discussed later.

(m,e, f,r,s) e Viffeec{-1,1},
fed{l2}, re{0,1,...,15}

s € {0,1,...,21536—1},

and efs® — Ho(r,m) € kZ.

Hq : {strings} — {1, 2 ..., 21536}
is a complicated public function,
discussed later.

Given m, e, f,r, s, recipient
computes efs® — Ho(r, m), divides
by k, checks that remainder is 0.

Attacker might select €', f/, ¢/,
compute remainder e’ f'(s')? mod &,
hope to invert Hy to find (7', m/);

but we conjecture that
inverting Hy is difficult.

Attacker might select 7/, m’,
compute Hy(r', m'), hope to
find square root modulo k;

out we conjecture that
finding square roots is difficult.

Square roots modulo primes
are easy to compute—
but £ will never be prime.

Particularly easy

for primes p € 3 + 4Z:

2 mod p, compute

2

Given 1

4 mod p)? mod p,

2" mod p = (1
°mod p=(i*mod p)(i°mod p)mod p,
12 mod p = (3° mod p)? mod p,
., iPtD/2 mod p.

By Fermat’s little theorem, this is

a square root of i2 modulo p.

About Ig p multiplications.

Sender's secret key is (p, g, z)
where z Is a 256-bit string,

D IS prime, g IS prime,
pe3+8Z g€ 7+ 8L,

D767 gy « 9768 o D769
and pg = k.

Sender finds square roots mod k£
using factorization of k.

Attacker isn't given factorization,
and conjecturally can't do this.

Given m, sender computes

o r = Hi(z,m);

e h = Hy(r, m);

eec—=11if hisasquare
modulo g, otherwise e = —1;

o f =1 1if eh is a square
modulo p, otherwise f = 2;

e s —the unique square root
of eh/f modulo pq
with s €{0,1,...,(pg — 1)/2}
and with s a square modulo pg.

Signed message is (m, e, f, 7, 8).

H1 is another public function.

The hash functions Hp, Hj

static u_int32_t K[) = { 0x5a827999, Oxbed9ebal, Ox8fibbcdc, Oxcab2cids };
#define K(t) _K[(t) / 20]

#define FO(b, c, d) B & (@) 1 (b)) & @)

#define F1(b, c, d) Ww) = @) °

u
(@)
#define F2(b, c, d) B & (@) 1 (B & @) | (&) & @)
#define F3(b, c, d) o) = (@) @)
#define S(n, x) (G << @) | (G > (32 - m))
#define H(n) (ctxt->h.b32[(@)])
#define COUNT (ctxt->count)

#define BCOUNT (ctxt->c.b64[0] / 8)
#define W(n) (ctxt->m.b32[(m)])
#define PUTBYTE(x)

ctxt->m.b8[(COUNT % 64)] = ()

COUNT++;

COUNT %= 64;

™ ctxt->c.b64[0]
if (COUNT % 64 == 0)
shat_step(ctxt) ;
¥
#define PUTPAD(x) 0\
™ ctxt->n.bBI(COUNT % 64)] = (x);

COUNT++

COUNT %= 64;

if (COUNT % 64 == 0)
shat_step(ctxt);

¥
static void shal_step __P((struct shal_ctxt +);

static void

n n
shat_step(ctxt)
struct shal_ctxt *ctxt;
s
’ u_int32_t a, b, c, d, e;

size_t t, s;
w_int32_t tmp;

a = H(0); b=H(1); c = H2); d=HE); e = H@);

for (t = 0; © < 205 t+4) {
= t & 0x0f;

n s
if (v >= 16) {
W(s) = S(1, W((s+13) & 0x0f) ~ W((s+8) & 0x0f) ~ W((s+2) & 0x0f) ~ W(s));
¥
tmp = S(5, a) + FO(b, c, d) + e + W(s) + K(t);
e=d;d=c; c=5(30, b); b=a;a= tup;
u b

for (t = 20; t < 40; t+) {
5 =t & Ox0f;
W(s) = S(1, W((s+13) & Ox0f) ~ W((s+8) & O0xOf) ~ W((s+2) & 0x0f) ° W(s));
tmp = S(5, a) + F1(b, ¢, d) + e + W(s) + K(t);
e=d;d=c; c=5@0, b); b=a;a=tmp;

}

for (v = 40; © < 60; t+4) {
s = t & 0x0f;

W(s) = S(1, W((s+13) & 0x0f) ~ W((s+8) & 0x0) ~ W((s+2) & OX0f) ~ W(s));

tap = S(5, a) + F2(b, ¢, d) + e + W(s) + K(t);

e=d;id=c; c=5@0, b); b=a; a= tmp;

}
" for (t = 60; t < 80; t++) {
5 = t & Ox0f;
W(s) = S(1, W((s+13) & OX0f) ~ W((s+8) & 0x0f) ~ W((s+2) & 0x0f) ~ W(s));
tmp = (5, a) + F3(b, c, d) + e + W(s) + K(t);
e=d;d=c; c=5@0, b); b=a;a=tm;
}

H(0) = H(0) + a;
H(1) = H(1) + b;
H(2) = H2) + c;
H(3) = H(3) + d;
H(4) = H(4) + e;
bzero(ketxt->n.b8[0], 64);
— ’
void
— shal_init(ctxt)
struct shal_ctxt *ctxt;
{

bzero(ctxt, sizeof(struct shal_ctxt));
H(0) = 0x67452301
H(1) = Oxefcdab89;
H(2) = 0x98badcfe;
H(3) = 0x10325476;

H(4) = 0xc3d2e1£0;
}
void
shal_pad(ctxt)
, struct shal_ctxt *ctxt;
{

size_t padlen; /+pad length in bytess/
size t padstart;

PUTPAD(0x80) ;

padstart = COUNT 7% 64;

padlen = 64 - padstart;
if (padlen < 8) {
bzero(kctxt->n. b8 padstart], padlen);
COUNT += padlen;
COUNT %= 64;
, shal_step(ctxt);

padstart = COUNT % 64; /* should be 0 */
padlen = 64 - padstart; /+ should be 64 */

bzero(kctxt->n. b8 [padstart], padlen - 8);
COUNT += (padlen - 8);

COUNT %= 64
PUTPAD (ctxt->c.b8[0]); PUTPAD(ctxt->c.b8[1]);
PUTPAD (ctxt->c.b8[2]); PUTPAD(ctxt->c.b8[3]1);
PUTPAD(ctxt->c.b8(4]); PUTPAD(ctxt->c.b8(5]);
PUTPAD (ctxt->c.b8[6]); PUTPAD(ctxt->c.b8[71);

[] [] [] ¥

void

shal_loop(ctxt, input, len)
struct shal_ctxt *ctxt;
const u_int8_t *input;
size_t len;

size_t gaplen;

size_t gapstart;
size_t off;
size_t copysiz;
off
, u while (off < len) {

gapstart = COUNT % 64;
gaplen = 64 - gapstart;

copysiz = (gaplen < len - off) 7 gaplen : lem - off;
beopy (kinput [0f£] , ketxt->n.bBlgapstart], copysiz);
COUNT += copysiz;

L] COUNT %= 64;
ctxt->c.b64[0] += copysiz + 8;
— if (COUNT % 64 == 0)
shal_step(ctxt);
— off += copysiz;
}

b

void
shal_result(ctxt, digest0)
t shal_ctxt ctxt;
caddr_t digest0;
{

u_int8_t *digest;

digest = (u_int8_t *)digest0;

shal_pad(ctxt) ;

beopy (kctxt->h.b8[0), digest, 20);
, [] ¥

Many other possibilities.

General belief: Almost every
reasonably-easy-to-compute
function is safe.

Can choose a function randomly!

Some varieties of functions
seem safe at higher speeds.

But nothing has been proven.

Wang et al. 2004 constructed
collision in popular function MD5:

m, m’' with MD5(m) = MD5(m").

Some credits

Concept of public key signatures:
1976 Dithie Hellman. No examples.

ssomething mod k = m.
1977 Rivest Shamir Adleman:;
independently Rabin, unpublished.

Bad system: allows trivial forgeries.

ssomething od k = Hy(m):
1979 Rabin. Seems to be secure.

Small exponent: 1979 Rabin.
Saves verification time.

s® mod k = Ho(m): 1979 Rabin.
Saves more time. Adds problem:
Ho(m) has only 25% chance
of being a square modulo k.

s®> mod k = Ho(r, m), with r chosen
randomly by signer: 1979 Rabin.
Fixes the problem,

if r has enough bits.

Choosing r as secret function of m,
i.e., function of z and m: 1997
Barwood; independently Wigley.
Eliminates randomness from signing.

Extra factors

ec{-1,1} fe{l,2}

with p € 3+ 8Z, g € 7 + 8Z:
1980 Williams. Now efs? covers
all integers mod k, so no need
to try more than one 7.

Can even omit 7.
We'll see later why
state-of-the-art system
includes 4-bit 7.

Security

An attack is an algorithm.
Algorithm receives public key k.
Algorithm selects message my,
receives signature sg of myg.
Algorithm selects message m7,
receives signature sy of my.

Et cetera.

Algorithm then prints (m/, s').

Attack is successful if

m' ¢ {mg, mi,...}
and s’ is a signature of m/.

Conjecture: Every fast attack
has negligible chance of success
against a random public key.

(Typical formalization: Every attack
using < 200 steps on a 2-tape
Turing machine has probability

at most 2739 of success.)

Of course, real signers restrict

mg, mi, etc. Restricted

conjecture: Every fast restricted
attack has negligible chance of
success against a random public key.

Best attack method we know:
Factor public key £

to discover p and q.

Then choose m' and compute
s’ the same way sender does.

Best factorization method we know:
number-field sieve (NFS).
(1988 Pollard, et al.)

Some successful factorizations
of 512 bits and slightly beyond,
but nowhere near 1536 bits.

Conjecture: NFS costs ~ 2¢

to factor integers =~ 2°,

where ¢/61/3(1g b)2/3 — constant
as b — 0o0. (1993 Buhler

Lenstra Pomerance, et al.)

Constant =~ 1.976 for circuits.
(2001 Bernstein)

Another algorithm has proven cost 2¢
where ¢/b1/2(Ig b)1/2 — constant.
(1981 Dixon; better constants:

1987 Pomerance, 1991 Vallée,
1992 Lenstra Pomerance)

In factorization attack, Hp and Hj
are generic: they can be oracles
that compute arbitrary functions.
Attack succeeds no matter what

Hp and Hj are.

Given any generic attack

that succeeds against all Hp, Hy,
can build an algorithm that
factors k£ at comparable speed.

Enough to assume that
success probability,
averaged over all Hyp, H1,
s high.

Sketch of construction:

Factorization algorithm
chooses random integer c;
chooses random string z;

chooses random H;7 values;

chooses each Hyo(H1(z, m), m) as
efs? for random e, f, s;

and chooses each Hg(other, m) as
ef(sc)2 for random e, f, s.

Can compute exactly
the right e, f, s distribution.

Factorization algorithm
can now simulate signer
with these functions Hpy, Hj.

Factorization algorithm
runs the attack, obtaining
a forgery (m/, e, f',r',s').

If Hi(z,m') = 7', give up;
chance < 1/16 + €.

Now ef(sc)? = e’ f/(s")?.

Check ged {k, s'}, ged {k, s’ — sc};
chance < 1/2 of both in {1, k£}.

So generic attacks can't be
easier than factorization.

If r is omitted, this proof
breaks down. Fix: can build a
slower tfactorization algorithm:;
so generic attacks can't be
much easier than factorization.

Conjecture: No attacks are
easier than factorization.
(Counterargument: MD5 collision.)

Conjecture: Factorization is hard.
(Counterargument: NFS.)

More credits

Converting generic attacks

into factorization algorithms:
1987 Fiat Shamir, for a signature
system; 1993 Bellare Rogaway,
for some encryption systems.

Quantified conversions:
1996 Bellare Rogaway:;
1998 Bernstein: 2000 Coron: et al.

Exploiting non-random 7:
2003 Katz Wang; 2003 Bernstein.

Expanded signatures

(1997 Bernstein)

Expand e, f,7,s In

toe, f, 7 s, t

where t = (fs? — eHo(r, m))/k.
Verifier can check whether

(f(s mod €)% — (k

— e(Hp(r, m) moc

mod £)(t mod £)
£)) mod £ =0

for a random 128-bit prime £.

This is very fast.

If input is valid, says yes.

Otherwise, chance
of saying yes.

< 2—115

Compressed signatures

(2003 Bleichenbacher)

Compress e, f,r,stoe, f, 7, v
where v € {1, 2, ..., 27069 _ 1}
and efv?Ho(r, m) mod k is in
{0%,12,2%,...,(278 — 1)2}.

97 bytes instead of 193 bytes.

Easy to find v from
continued fraction of fs/k.

Easy to uncompress,
or to check e, f, r, v directly.

Compressed keys

(2003 Coppersmith)

Require |k/2°12| = 179870286739608
11090879398643377928295.27004371869801110276348368
0668010543030620350477 2087244157651 762853656940
33578669620218590704325758404909386 7308114568020
B028015726391074333854880135338238893595433658057
30639724297 106495248013808227417948954846 71657643
1759705516797612912096782118234207449553304447817.

Transmit only k& mod 2°12.
04 bytes instead of 192 bytes.

How to generate p, g with
2512, < pg < 2512(a 4+ 1)?

First generate random pg.
Compute gg ~ 2°%(a +1/2)/po.

Find 256-bit integers z, y
with poy + gox close to

2512 4 1/2) — pogo.

Set p=m9+x and g =qgg + v.
Check that p, g are primes

in the right range;

if not, try a new pg.

Advertisement

MCS 590, High-Speed Cryptography,
Spring 2005

Prerequisite: Computer algorithms.

Other necessary background
from computer architecture,
numerical analysis,
commutative algebra,
number theory, and
cryptography will be
introduced on the fly.

