How to find
smooth parts of integers

D. J. Bernstein

Thanks to:

University of lllinois at Chicago
NSF DMS—-0140542

Alfred P. Sloan Foundation

Integer-factorization bottleneck:
Given sequence of numbers,
find nonempty subsequence

with square product.
e.g. given 0, 7, 3, 10, 15,
discover 6 - 10 - 15 = 302.

Discrete-log bottleneck:

Given sequence of numbers,
find 1 as nontrivial

product of powers.

e.g. given 6,7, 8, 10, 15,
discover 6379872103153 = 1.

More generally: find kth power.

This is a bottom-up talk
aiming at these bottlenecks.

Will focus on integers.

Can use same techniques,
and more, for polynomials
in function-field sieve etc.

Will focus on

conventional architectures:

e.g. multitape Turing machines.
Optimization is very different
for mesh architectures.

Multiplication and division

Given r,s € Z, can compute s
in time < b(lg b)1to(1)
where b is number of input bits.

(1971 Pollard; independently
1971 Nicholson; independently
1971 Schonhage Strassen)

Also time < b(Ig b)11o(1)

where b is number of input bits:
Given r,s € Z with s # 0,
compute |r/s| and r mod s.

(reduction to product: 1966 Cook)

Product trees

Time < b(Igb)2to(1)

where b is number of input bits:
Given z1,Z>,...,Zn € Z,
compute £1xo - - - Tp,.

Actually compute

product tree of 1, x>,...,Ty.
Root iIs z1x7 - - - Ty

Has left subtree if n > 2:
product tree of 1, ..., Ty /2]
Also right subtree it n > 2:
product tree of Tr, /0741, Ty,

e.g. tree for 23,29, 84, 15, 58, 19:

026142840
ST
56028 16530
XN 7N
667 84 870 19
7N\ 7N\
23 29 15 58

Tree has < (Igb)1T°() Jevels.
Each level has < b(lg 6)%+°(1) bits.

Obtain each level
in time < b(Ig b)1to(1)

by multiplying lower-level pairs.

Remainder trees

Remainder tree

of r,x1,xo, ..., T, has

one node r mod t for each node ¢t
in product tree of x1, x>, ..., T, .

e.g. remainder tree of
223092870, 23, 29, 84, 15, 58, 19:

223092870
TN
45402 3990
/// ‘\ <\
510 0
/"\ /N
17 0 46

Time < b(lg b)>+o(1).
Given r € Z and
nonzero x1,...,Zn € Z,
compute remainder tree
of r,x1,...,ZTn.

In particular, compute
r mod z1,...,7 mod .

In particular, see which of
x1,...,Tn divide 7.

(1972 Moenck Borodin,
for “single precision” x;'s,
whatever exactly that means)

Small primes, union

Time < b(lg b)>+o(1).

Given z1,Z>,...,Zn € Z and
finite set @ C Z — {0}, compute
{peQ:z1z - Tn, mod p =0},

In particular, when p Is prime,

see whether p divides
any of £1,xo,...,Zn.

Algorithm:

1. Use a product tree to
compute r = 1Ty - Typ.

2. Use a remainder tree to see
which p € @ divide 7.

Small primes, separately

Time < b(Igb)31+o(1).
Given z1, o, . .., T, € Z and

finite set) of primes,

compute {p € Q : 1 mod p = 0},
.., {p e @ :zp, modp =0}
(2000 Bernstein)

Algorit
1. Rep

nm for n > 1:

ace () with

{pe@ :z1 - zyn mod p =0}

2. 1t n

= 1, print and stop.

3. Recurse on zq, ..., x[n/ﬂ'Q-

4. Recurse on Tn/2]+1r - - » T, , .

Factor 2543, 67660, 8967, 7598
over {2,3,5,7,11,13,17}

/ \

2543,6766 8967, 7598
over over
2,3,7,17 2,3,7,17

AV

2043 6766 3967 7593
over over over over
2,17 2,17 2,3, 7 2,3, 7

Each level has < b(lg 6)%+°(1) bits.

Exponents of a small prime

Time < b(Igb)2t+o(1).
Given nonzero p,x € Z,
find e, p®, /p® with maximal e.

Algorithm:
1. If £ mod p # O:
Print 0, 1, z and stop.
2. Find £, (p°)], 7 = (z/p)/(p*)
with maximal f.
3. If r mod p =0: Print
2f + 2, (p?) p?, r/p and stop.
4. Print 2f 4+ 1, (p*)7 p, 7.

Exponents of small primes

Time < b(Igb)31+o(1).
Given finite set of primes
and nonzero £ € Z, find maximal

e, HPEQ pe(p), .’E/ HPEQ pe(p)_

Algorithm:
1. Replace @ with
{pe@:zmodp=0}%
2. Find maximal f, s, r with
s =[1(p*) "), r = (2/[p)/s.
3. Find 7T ={p € @ : 7 mod p =0}
4. Answer is e, s| e o, 7/| |per P
where e(p) = 2f(p°) + [p € T].

Smooth parts, old approach
Time < b(lg b)3+o(1).

Given nonzero £1,Z>,...,Zn € Z

and finite set () of primes,
compute -smooth part of 7,
X-smooth part of zy, ...,

X-smooth part of z,,.

(?-smooth means
product of powers of elements of Q.

(?-smooth part means
largest (Q-smooth divisor.
In particular, see which of
T1,Zo,...,Tn are smooth.

Algorithm:
1. Find Q1 = {p: 1 mod p = 0},

.., Qn ={p:zy mod p =0}
2. For each 1 separately:

Find maximal e, s, r with

5 = HpEQi pe('p), T =1T;/s.
Print s.

e.g. factoring 2543, 6766, 8967, 7598
over {2,3,5,7,11,13,17}:

2543 over {}, smooth part 1,

6766 over {2,17}, smooth part 34;
8967 over {3,7}, smooth part 147;
7598 over {2}, smooth part 2.

Smooth multiplicative dependencies

Recall cryptanalytic bottleneck:
find kth power nontrivially as
product of powers of

L1,L2,...,ITn.

Choose y; imagine y = 240,
Define @ as set of primes < y.
See which of z1,z>,...,Zn
are y-smooth, i.e., @-smooth.
Know their factorizations.

Do linear algebra over Z/k

on the exponent vectors.

Sieving

In linear sieve (1977 Schroeppel),
number-field sieve, etc.,

x's are consecutive values

of a low-degree polynomial.

Choose 6; imagine 8 = 0.5.
Sieve to discover primes < yY;
say time S per number.

Keep most promising x's.
See which ones are y-smooth;
say time [per number.

Time to find each smooth number is
roughly S?T179 after optimization.

Smooth parts, new approach

Given nonzero z1,Z>,...,Zn € Z
and finite set () of primes:

Time typically < b(Ig b)21°(1)

to obtain smooth parts of z's.
(2004 Franke Kleinjung

Morain Wirth, in ECPP context)

Algorithm:
Compute r = | co P
Compute r mod z1, ..., mod .

For each 1 separately:
Replace z; by z; /gcd {z;, mod z;}
repeatedly until ged is 1.

Slight variant (2004 Bernstein):
Time always < b(Ig b)2to)

Compute smooth part of ; as

ok

gcd {:cz (r mod z;)° mod a:z}

where k = [Iglgz;].

Subroutine: Computing gcd
takes time < b(Ig b)2o(1).
(1971 Schonhage;

core idea: 1938 Lehmer:;
b(Ig b)°T°(1): 1971 Knuth)

Or, to see if z; is smooth,

ok

see if (r mod z;)° mod z; = 0.

Minor problem: New algorithm
finds the smooth numbers
but doesn't factor them.

Solution: Feed the smooth numbers
to the old algorithm.

Very few smooth numbers,

so this is very fast.

Bottom line: T, time per number
to find and factor smooth numbers,

has dropped by (Igb)1+o(l),

This is big news for cryptanalysis!

Is smooth the right question?

After finding smooth numbers,
do first step of linear algebra:
Throw away primes that appear
only once; throw away

numbers with those primes;

repeat until stable.

Don't want all smooth numbers.
Want smooth numbers only if
they are built from primes that
divide the other numbers.

An alternate approach

Given nonzero z1,Z>,...,Zn € Z:
Compute r =12y - - - Tns,.

Compute (r/z1) mod zq, ...,
(r/2y) mod z,.

For each 1 separately: see if
((r/z;) mod a:z-)2/~C mod z; = 0
where k = [lglgz;|.

Finds z; iff all primes in z;
are divisors of other x's.
Time < b(lg b)2+o(1),

(2004 Bernstein)

Compute (r/x1) mod z1, ...,
(r/zyn) mod z,, by computing
7 mod m%r mod 2.
(1972 Moenck Borodin)

Problem: Recognizing the
interesting x's Is not enough;
also need their factorizations.

Solution: Again, very few of them.
Have ample time to

use rho method (1974 Pollard)

or use ECM (1987 Lenstra)

or factor into coprimes.

Factoring into coprimes

Time < b(Ig6)°(D).
Given positive 1, T2, ..., T,

find coprime set

and complete factorization
of each z; over Q.

(announced 1995 Bernstein;
now at second-galley stage
for J. Algorithms)

Immediately gives b(lg 6)°(1)

for the other factoring problems.
Subsequent research: |lg speedups,
constant-factor speedups, etc.

Speedup: aligning roots

Original FFT (1805 Gauss, et al.):
(4.5 + o(1))n Ign operations in C
to multiply in C[z]/(z™ — 1); or

(15 4+ o(1))n Ign operations in R.

Split-radix FFT (1968 Yavne;
Duhamel, Hollmann, Martens,
Stasinski, Vetterli, Nussbaumer):
(4.5 + o(1))n Ign operations in C
to multiply in Cl|z]/(z™ — 1); only
(12 4+ o(1))n Ign operations in R.

Why fewer operations in R?

Multiplications in C for original FFT:
1.5n by primitive 4th roots of 1,
1.5 by primitive 8th roots of 1,

1.5n by primitive 16th roots of 1,
etc.

For split-radix FFT:
0.5n Ign by primitive 4th roots of 1,
n by primitive 8th roots of 1,

n by primitive 16th roots of 1,

etc.

Split-radix FFT
aligns many of the roots
to be 4th roots of 1.

In Schonhage-Strassen context,
aligning roots produces much
larger speedups. (2000 Bernstein)

Consider size-65536 FFT over A
where A = Z/(210384 4 1),
212288 o 24096 ic 3

square root of 2 in A.

Multiplications by powers of 2
usually mean annoying shifts
across word boundaries.
Alignment avoids almost all of this.

Also sometimes makes slightly
larger FFT sizes practical.

Speedup: better caching

Multiply in Z /(21048576000 _ 1)

by lifting to Z[z]/(x®>°3° — 1),
65536 1)’

mapping to Alz]/(z
using FFT. (1971 Schonhage
Strassen for negacyclic case)

Reorganize FF T operations
to reduce communication costs.

(1966 Gentleman Sande, et al.)

Can reduce communication costs
even more by aligning roots and
violating A operation atomicity.

(2004 Bernstein)

Speedup: FFT doubling

(2004 Kramer)

Consider product tree for
T1, T2, T3, T4, €ach b/4 bits.

Compute z1x> as

FET, 5 (FFTa(21) FFTy0(22)).

Compute £1Z2T3T4 as
FFT, (FFT(z122) FFT(z324)).
First half of FFTy(z122) is

FFTy/o(z122), already known!

For large product trees,
1.5 4 o(1) speedup.

Some additional speedups

Start Newton for 1/z1x)

at product of approximations
to 1/x1 and 1/z».

Remove redundancy in division.
Use 2-adic division.
Eliminate tiny primes.

Further reduce the 2%
by using powers of small primes.

Balance gcd and powering.

