
How to find

smooth parts of integers

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF DMS–0140542

Alfred P. Sloan Foundation

Integer-factorization bottleneck:

Given sequence of numbers,

find nonempty subsequence

with square product.

e.g. given 6 � 7 � 8 � 10 � 15,

discover 6 � 10 � 15 = 302.

Discrete-log bottleneck:

Given sequence of numbers,

find 1 as nontrivial

product of powers.

e.g. given 6 � 7 � 8 � 10 � 15,

discover 63708
� 210315

� 3 = 1.

More generally: find th power.

This is a bottom-up talk

aiming at these bottlenecks.

Will focus on integers.

Can use same techniques,

and more, for polynomials

in function-field sieve etc.

Will focus on

conventional architectures:

e.g. multitape Turing machines.

Optimization is very different

for mesh architectures.

Multiplication and division

Given �
��� Z, can compute � �

in time (lg)1+ � (1)
where is number of input bits.

(1971 Pollard; independently

1971 Nicholson; independently

1971 Schönhage Strassen)

Also time (lg)1+ � (1)
where is number of input bits:

Given �
��� Z with � = 0,

compute
� � � � and � mod � .

(reduction to product: 1966 Cook)

Product trees

Time (lg)2+ � (1)
where is number of input bits:

Given � 1 � � 2 � � � � � � � Z,

compute � 1 � 2
� � � � � .

Actually compute

product tree of � 1 � � 2 � � � � � � � .

Root is � 1 � 2
� � � � � .

Has left subtree if � 2:

product tree of � 1 � � � � � � � � � 2 � .
Also right subtree if � 2:

product tree of � � � � 2 � +1 � � � � � � � .

e.g. tree for 23 � 29 � 84 � 15 � 58 � 19:

926142840

56028

<<zzz
16530

hhRRRRR

667

<<zzz
84

YY222

870

<<zzz
19

YY222

23

EE���
29

YY222

15

EE���
58

YY222

Tree has (lg)1+ � (1) levels.

Each level has (lg)0+ � (1) bits.

Obtain each level

in time (lg)1+ � (1)
by multiplying lower-level pairs.

Remainder trees

Remainder tree

of �
� � 1 � � 2 � � � � � � � has

one node � mod � for each node �
in product tree of � 1 � � 2 � � � � � � � .

e.g. remainder tree of

223092870 � 23 � 29 � 84 � 15 � 58 � 19:

223092870
||zz

z
((RRRRRR

45402
||zz

z
��2

22
3990

||zz
z

��2
22

46
����� ��2

22
42 510

����� ��2
22

0

0 17 0 46

Time (lg)2+ � (1):
Given �

Z and

nonzero � 1 � � � � � � � Z,

compute remainder tree

of �
� � 1 � � � � � � � .

In particular, compute
� mod � 1 � � � � �

� mod � � .

In particular, see which of

� 1 � � � � � � � divide � .
(1972 Moenck Borodin,

for “single precision” � � ’s,

whatever exactly that means)

Small primes, union

Time (lg)2+ � (1):
Given � 1 � � 2 � � � � � � � Z and

finite set Z � 0 , compute

: � 1 � 2
� � � � � mod = 0 .

In particular, when is prime,

see whether divides

any of � 1 � � 2 � � � � � � � .

Algorithm:

1. Use a product tree to

compute � = � 1 � 2
� � � � � .

2. Use a remainder tree to see

which divide � .

Small primes, separately

Time (lg)3+ � (1):
Given � 1 � � 2 � � � � � � � Z and

finite set of primes,

compute : � 1 mod = 0 ,

� � � , : � � mod = 0 .

(2000 Bernstein)

Algorithm for � 1:

1. Replace with

: � 1
� � � � � mod = 0 .

2. If � = 1, print and stop.

3. Recurse on � 1 � � � � � � � � � 2 � � .

4. Recurse on � � � � 2 � +1 � � � � � � � � .

Factor 2543 � 6766 � 8967 � 7598
over 2 � 3 � 5 � 7 � 11 � 13 � 17

��

��1
11

11
11

1

2543 � 6766
over

2 � 3 � 7 � 17

����
��
��

��(
((

((
(

8967 � 7598
over

2 � 3 � 7 � 17

����
��
��

��(
((

((
(

2543
over
2 � 17

6766
over
2 � 17

8967
over
2 � 3 � 7

7598
over
2 � 3 � 7

Each level has (lg)0+ � (1) bits.

Exponents of a small prime

Time (lg)2+ � (1):
Given nonzero � � Z,

find �
�

�

� �
�

with maximal � .

Algorithm:

1. If � mod = 0:

Print 0 � 1 � � and stop.

2. Find � (2) �

� = (�) (2)

with maximal .

3. If � mod = 0: Print

2 + 2 � (2) 2
�

� and stop.

4. Print 2 + 1 � (2) �

� .

Exponents of small primes

Time (lg)3+ � (1):
Given finite set of primes

and nonzero � Z, find maximal
�

� � �
� (�)

� � � �
� (�).

Algorithm:

1. Replace with

: � mod = 0 .

2. Find maximal � � �

� with

� = (2) (� 2), � = (�) � .
3. Find = : � mod = 0 .

4. Answer is �
� � � � � �

�
� � �

where � () = 2 (2) + [].

Smooth parts, old approach

Time (lg)3+ � (1):
Given nonzero � 1 � � 2 � � � � � � � Z

and finite set of primes,

compute -smooth part of � 1,

-smooth part of � 2, � � � ,
-smooth part of � � .

-smooth means

product of powers of elements of .

-smooth part means

largest -smooth divisor.

In particular, see which of

� 1 � � 2 � � � � � � � are smooth.

Algorithm:

1. Find 1 = : � 1 mod = 0 ,

� � � , � = : � � mod = 0 .

2. For each � separately:

Find maximal �
��� �

� with

� = � � � � (�), � = � � � .
Print � .

e.g. factoring 2543 � 6766 � 8967 � 7598

over 2 � 3 � 5 � 7 � 11 � 13 � 17 :

2543 over , smooth part 1;

6766 over 2 � 17 , smooth part 34;

8967 over 3 � 7 , smooth part 147;

7598 over 2 , smooth part 2.

Smooth multiplicative dependencies

Recall cryptanalytic bottleneck:

find th power nontrivially as

product of powers of

� 1 � � 2 � � � � � � � .

Choose ; imagine = 240.

Define as set of primes .

See which of � 1 � � 2 � � � � � � �
are -smooth, i.e., -smooth.

Know their factorizations.

Do linear algebra over Z

on the exponent vectors.

Sieving

In linear sieve (1977 Schroeppel),

number-field sieve, etc.,

� ’s are consecutive values

of a low-degree polynomial.

Choose ; imagine = 0 � 5.

Sieve to discover primes
�

;

say time per number.

Keep most promising � ’s.

See which ones are -smooth;

say time per number.

Time to find each smooth number is

roughly
�

1 �

�

after optimization.

Smooth parts, new approach

Given nonzero � 1 � � 2 � � � � � � � Z

and finite set of primes:

Time typically (lg)2+ � (1)
to obtain smooth parts of � ’s.

(2004 Franke Kleinjung

Morain Wirth, in ECPP context)

Algorithm:

Compute � = � � .

Compute � mod � 1 � � � � �

� mod � � .

For each � separately:

Replace � � by � � gcd � � �

� mod � �

repeatedly until gcd is 1.

Slight variant (2004 Bernstein):

Time always (lg)2+ � (1).
Compute smooth part of � � as

gcd � � � (� mod � �)2
�

mod � �

where =
�
lg lg � ��� .

Subroutine: Computing gcd

takes time (lg)2+ � (1).
(1971 Schönhage;

core idea: 1938 Lehmer;

(lg)5+ � (1): 1971 Knuth)

Or, to see if � � is smooth,

see if (� mod � �)2
�

mod � � = 0.

Minor problem: New algorithm

finds the smooth numbers

but doesn’t factor them.

Solution: Feed the smooth numbers

to the old algorithm.

Very few smooth numbers,

so this is very fast.

Bottom line: , time per number

to find and factor smooth numbers,

has dropped by (lg)1+ � (1).
This is big news for cryptanalysis!

Is smooth the right question?

After finding smooth numbers,

do first step of linear algebra:

Throw away primes that appear

only once; throw away

numbers with those primes;

repeat until stable.

Don’t want all smooth numbers.

Want smooth numbers only if

they are built from primes that

divide the other numbers.

An alternate approach

Given nonzero � 1 � � 2 � � � � � � � Z:

Compute � = � 1 � 2
� � � � � .

Compute (� � 1) mod � 1, � � � ,
(� � �) mod � � .

For each � separately: see if

((� � �) mod � �)2
�

mod � � = 0

where =
�
lg lg � ��� .

Finds � � iff all primes in � �

are divisors of other � ’s.

Time (lg)2+ � (1).
(2004 Bernstein)

Compute (� � 1) mod � 1, � � � ,
(� � �) mod � � by computing
� mod � 2

1
� � � � �

� mod � 2� .

(1972 Moenck Borodin)

Problem: Recognizing the

interesting � ’s is not enough;

also need their factorizations.

Solution: Again, very few of them.

Have ample time to

use rho method (1974 Pollard)

or use ECM (1987 Lenstra)

or factor into coprimes.

Factoring into coprimes

Time (lg) (1):

Given positive � 1 � � 2 � � � � � � � ,

find coprime set

and complete factorization

of each � � over .

(announced 1995 Bernstein;

now at second-galley stage

for J. Algorithms)

Immediately gives (lg) (1)

for the other factoring problems.

Subsequent research: lg speedups,

constant-factor speedups, etc.

Speedup: aligning roots

Original FFT (1805 Gauss, et al.):

(4 � 5 + � (1)) � lg � operations in C

to multiply in C[�] (� �
� 1); or

(15 + � (1)) � lg � operations in R.

Split-radix FFT (1968 Yavne;

Duhamel, Hollmann, Martens,

Stasinski, Vetterli, Nussbaumer):

(4 � 5 + � (1)) � lg � operations in C

to multiply in C[�] (� �
� 1); only

(12 + � (1)) � lg � operations in R.

Why fewer operations in R?

Multiplications in C for original FFT:

1 � 5 � by primitive 4th roots of 1,

1 � 5 � by primitive 8th roots of 1,

1 � 5 � by primitive 16th roots of 1,

etc.

For split-radix FFT:

0 � 5 � lg � by primitive 4th roots of 1,

� by primitive 8th roots of 1,

� by primitive 16th roots of 1,

etc.

Split-radix FFT

aligns many of the roots

to be 4th roots of 1.

In Schönhage-Strassen context,

aligning roots produces much

larger speedups. (2000 Bernstein)

Consider size-65536 FFT over

where = Z (216384 + 1);

212288
� 24096 is a

square root of 2 in .

Multiplications by powers of 2

usually mean annoying shifts

across word boundaries.

Alignment avoids almost all of this.

Also sometimes makes slightly

larger FFT sizes practical.

Speedup: better caching

Multiply in Z (21048576000
� 1)

by lifting to Z[�] (� 65536
� 1),

mapping to [�] (� 65536
� 1),

using FFT. (1971 Schönhage

Strassen for negacyclic case)

Reorganize FFT operations

to reduce communication costs.

(1966 Gentleman Sande, et al.)

Can reduce communication costs

even more by aligning roots and

violating operation atomicity.

(2004 Bernstein)

Speedup: FFT doubling

(2004 Kramer)

Consider product tree for

� 1 � � 2 � � 3 � � 4, each 4 bits.

Compute � 1 � 2 as

FFT
� 1� � 2

(FFT � � 2(� 1) FFT � � 2(� 2)).

Compute � 1 � 2 � 3 � 4 as

FFT
� 1� (FFT � (� 1 � 2) FFT � (� 3 � 4)).

First half of FFT � (� 1 � 2) is

FFT � � 2(� 1 � 2), already known!

For large product trees,

1 � 5 + � (1) speedup.

Some additional speedups

Start Newton for 1 � 1 � 2

at product of approximations

to 1 � 1 and 1 � 2.

Remove redundancy in division.

Use 2-adic division.

Eliminate tiny primes.

Further reduce the 2
�

by using powers of small primes.

Balance gcd and powering.

