Doubly focused enumeration
in two dimensions
D. J. Bernstein

Thanks to:
University of Illinois at Chicago
NSF DMS-0140542
Alfred P. Sloan Foundation

A taste of computational geometry

Fix $d \in\{1,2,3, \ldots\}$.
The near-neighbor problem:
Given $R \in \mathbf{Z}$,
$u_{1}, u_{2}, \ldots, u_{m} \in \mathbf{Z}^{d}$, and
$v_{1}, v_{2}, \ldots, v_{n} \in \mathbf{Z}^{d}$,
find all pairs (i, j)
such that $\left|u_{i}-v_{j}\right|^{2} \leq R$.
Several standard solutions.
(1975 Bentley, et al.;
usually stated for $u=v$)

Sort-and-merge solution for $d=1$:
Assume $u_{1} \leq u_{2} \leq \cdots \leq u_{m}$ and $v_{1} \leq v_{2} \leq \cdots \leq v_{n}$.
Tabulate $i \mapsto(\min \{j\}, \max \{j\})$.
Partitioning solution for $d=1$:
Cover v range with intervals.
For each interval,
enumerate v 's in interval,
then u 's near interval.
For any d : Cover v range with boxes. For each box, enumerate v 's in box, then u 's near box.

Proving primality

An integer $n \in\left[2^{20}, 2^{100}\right]$ is prime eff

- $r^{(n-1) / 2} \equiv \pm 1 \quad(\bmod n)$
for all primes $r \leq 367$;
- $r^{(n-1) / 2} \equiv-1 \quad(\bmod n)$
for some odd prime $r \leq 367$
if $n \bmod 8=1$;
- $2^{(n-1) / 2} \equiv-1$ if $n \bmod 8=5$;
- n is not a perfect power; and
- n has no prime divisors below 2^{20}.
(1996 Lukes Patterson Williams,
improving Selfridge Weinberger)

Proof relies on big computation: each nonsquare in $\left\{1, \ldots, 2^{80}\right\}$
is nonsquare at some prime ≤ 367.
(2003 Williams Wooding)
2^{80} is scary but save roughly
2^{10} by focusing (standard);
save 2^{10} more by doubly focusing
(2001 Bernstein); streamline.
Generalize to arbitrary dimensions.
(2004 Bernstein, this talk)

In ring $R=\mathbf{Z}[i] /\left(i^{2}+1\right)$:
$837947981+2833822740 i$
is a unit square $\bmod 8,3,5,7,11$,
$13,17,29,37,41,53,61,73,89,97$,
$101,109,113,137,149,157,173$,
$181,193,197,229,233,241,257$
but not a square mod 269 .
Have computed all examples in
$\left\{0,1,2, \ldots, 2^{32}-1\right\}$
$+\left\{0,1,2, \ldots, 2^{32}-1\right\} i$.
Computation took $1.3 \cdot 2^{50}$ cycles on an 1800 MHz Athlon MP.

Focused enumeration

2^{64} small elements of R.
Focus on 4 possibilities $\bmod 5$, namely the unit squares mod 5 :
$1+5 R,-1+5 R, 2 i+5 R,-2 i+5 R$. $\approx 0.16 \cdot 2^{64}$ elements.

Or 224737099776 possibilities mod $199191720=8 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \cdot 29 \cdot 37$. $\approx 0.00000566 \cdot 2^{64}$ elements.

Enumerating possibilities becomes a bottleneck, so limit modulus.

Doubly focused enumeration

Define $m_{1}=8 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \cdot 37 \cdot 53$, $m_{2}=5 \cdot 29 \cdot 41 \cdot 61 \cdot 73$. Choose fundamental domain $\bmod m_{1} m_{2}$.

Write each element of R
as $u-v$ where
u is a multiple of m_{1},
v is a multiple of m_{2},
v is in fundamental domain.
$u-v$ is unit square $\bmod m_{1} m_{2}$
iff u is unit square $\bmod m_{2}$,
$-v$ is unit square $\bmod m_{1}$.

Want near neighbors between $S=$ $\left\{u: u\right.$ is a multiple of m_{1},
u is near fundamental domain, u is unit square $\left.\bmod m_{2}\right\}$ and $T=$
$\left\{v: v\right.$ is a multiple of m_{2},
v is in fundamental domain,
$-v$ is unit square $\left.\bmod m_{1}\right\}$.
e.g. $837947981+2833822740 i=u-v$ where $u=(15960557+4504845 i) m_{1}$
$=1162056361740456+327988790798760 i$,
$v=(43895735+12389412 i) m_{2}$
$=1162055523792475+327985956976020 i$.
$m \approx 2^{51}$ where $m=m_{1} m_{2}$.
$\# S \approx 2^{39} . \# T \approx 2^{38}$.
I covered fundamental domain
$\{0, \ldots, m-1\}+\{0, \ldots, m-1\} i$ with boxes of size $\approx 2^{34} \times 2^{32}$.
Number of boxes $\approx 2^{36}$.
Number of near neighbors $\approx 2^{39}$.
Also traded memory for time to generate S and T in lex order. Used $\approx 2^{31}$ bits of memory with further split of m_{1}, m_{2}. Bad for mesh computers but good for conventional computers.

The doubly-focused advantage

Sieve N points for local squares.
Focused enumeration
takes time $N^{1-(1+o(1)) / \lg \log N}$.
Doubly focused enumeration takes time $N^{1-(2+o(1)) / \lg \log N}$ on average; conjecturally always.
Allows about twice as many primes.
Speedup factor is roughly 2^{10}
for, e.g., $N \approx 2^{64}$.

