
Factorization myths

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF DMS–0140542

Alfred P. Sloan Foundation

Sieving � and 611 + � for small � :

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

612 2 2 3 3
613
614 2
615 3 5
616 2 2 2 7
617
618 2 3
619
620 2 2 5
621 3 3 3
622 2
623 7
624 2 2 2 2 3
625 5 5 5 5
626 2
627 3
628 2 2
629
630 2 3 3 5 7
631

etc.

Factoring 611 by the Q sieve:

Have complete factorization of
� (611 + �) for several � ’s.

14 � 625 = 21305471.

64 � 675 = 26335270.

75 � 686 = 21315273.

14 � 64 � 75 � 625 � 675 � 686

= 28345874 = (24325472)2.

gcd 14 � 64 � 75 � 24325472
� 611

= 47.

611 = 47 � 13.

Myth #1: We want to

find all relations,

so we need to know exactly

which inputs are smooth.

“Inputs”: 1 � 2 � 3 � � � � ; 612 � 613 � � � � .

“Smooth”: no prime divisors 10.

“Relation”: smooth � (611 + �).

e.g. 1994 Golliver Lenstra McCurley:

give up on annoying inputs? no—

“some relations get lost which

is something we try to avoid.”

Reality: We want to

minimize price-performance ratio.

Inputs are potentially useful if

we can completely factor them.

Particularly useful if

largest prime factor is small.

Price is different: low if

many tiny prime factors and

second-largest prime factor is small.

Best to abort high-priced inputs,

including most of the useful inputs.

Myth #2: Sieving is the ultimate

test for fully factored inputs.

Small-factor tests in CFRAC:

trial division, rho, ECM, et al.

All obsolete in context of

Q sieve, quadratic sieve, etc.

e.g. 2000 Lenstra:

sieving “much faster” than ECM.

Inputs are sieveable;

sieving is fast; so sieve.

Simple algorithm.

Sole parameter: largest prime.

Reality: Much more complicated.

Sieving is not the best algorithm;

random access to big memory is slow.

Other tests are not obsolete.

Can gain speed by

combining sieving with other tests.

Sieve up to (largest prime)
�

;

abort if not too promising;

then use second small-factor test.

Parameters: largest prime;

; sieve length; second test.

e.g. 1994 Golliver Lenstra McCurley:

sieve using primes up to 221;

abort unfactored parts above 260;

then use SQUFOF and ECM

to find primes up to 230.

Here = 21 30 = 0 � 7.

But they said no aborts! Huh?

Pointless change in perspective:

they view their relations as

superset of 221-smooth

rather than subset of 230-smooth.

Myth #3: The second small-factor

test (rho, SQUFOF, ECM, etc.)

is not a bottleneck.

e.g. 1996 Boender, te Riele:

“sieving takes more than

85% of the total computing time.”

Reality: If second test

isn’t taking much time,

should abort fewer inputs.

Balance time for second test

with time for sieving.

Total time after balancing:

roughly
�

1 �

�

where is smoothness ratio,

is sieve time per number,

is second-test time per number.

Why
�

1 �

�

?

1982 Pomerance, analyzing aborts

for trial division and rho:

Aborting at (largest prime)
�

reduces # inputs

by a certain factor

and reduces # smooth inputs

by 1 �

�
+ � (1),

in typical parameter ranges.

Balancing means (1)

so 1 �

� �
1 �

�

.

cr.yp.to/bib/entries.html#1982/pomerance

Better analysis and optimization:

use tight bounds on probability

of smoothness (2002 Bernstein);

use measurements of

for various sieve lengths

in L1 cache, L2 cache, DRAM, disk;

account for NFS input sizes;

balance NFS input sizes across

multiple lattices (1995 Bernstein);

etc.

cr.yp.to/papers.html#mlnfs
cr.yp.to/papers.html#psi

Myth #4: ECM is the ultimate

non-sieving small-factor test.

e.g. 2002 Leyland Lenstra Dodson

used ECM to find primes 230

in numbers 290.

Reality: On these computers,

for large factorizations,

batch small-factor tests are faster.

cr.yp.to/papers.html#sf
cr.yp.to/papers.html#smoothparts

Given set of primes

and sequence of numbers,

can factor over

in time (lg)3+
� (1)

where is number of input bits.

(2000 Bernstein)

Variant (2004 Franke Kleinjung

Morain Wirth, in ECPP context):

Identify -smooth elements of

in time usually (lg)2+
� (1).

Slight variant (2004 Bernstein):

time always (lg)2+
� (1).

Myth #5: Must prespecify primes:

e.g., all primes below 230.

Find many inputs that

fully factor over those primes;

weed out non-repeated primes.

Have to keep 230 small

to speed up small-factor tests,

limit number of inputs found,

avoid processing huge number

of non-repeated primes.

Reality: Can quickly identify

inputs built from

primes that divide other inputs,

without prespecifying primes.

(2004 Bernstein)

Unlike the other algorithms,

doesn’t allow split into

moderate-size independent batches;

communication costs comparable

to linear algebra.

Maybe benefit outweighs cost.

What’s the algorithm?

Inputs � 1 � � 2 � � � � .

Compute = � 1 � 2 � � � .

Compute (� 1) mod � 1,

(� 2) mod � 2, etc.

Output � � if (� �)big mod � � = 0.

(In practice can take big = 1;

anyway, not a bottleneck.)

Can iterate algorithm,

then factor into coprimes.

cr.yp.to/papers.html#dcba
cr.yp.to/papers.html#smoothparts
cr.yp.to/papers.html#multapps

Why is this so fast?

Can compute quickly

with a product tree. (standard)

To compute (� �) mod � � :

compute mod � 2
1

� mod � 2
2

� � � �

with a remainder tree;

divide mod � 2� by � � .

(1972 Moenck Borodin; alternative:

1997 Bürgisser Clausen Shokrollahi)

Many constant-factor speedups:

FFT doubling (2004 Kramer) et al.

Myth #6: NFS involves two sieves,

“rational” and “algebraic.”

Sieve � and sieve 611 + � .

e.g. 1993 Lenstra Lenstra Manasse

Pollard: second sieve is “much

faster” than the alternative.

e.g. 1993 Buhler Lenstra

Pomerance: Coppersmith’s variant

not “practical.”

Reality: One sieve is enough.

Identify smooth values 611 + � ;

then check smoothness of � ’s.

Or vice versa.

Have time to check other

functions of � . (1993 Coppersmith)

Have time to check for

very large primes in � ’s.

All quite practical.

Obviously beneficial as soon as

smoothness chance .

Many parameters to optimize.

Myth #7: The direct square-root

method—computing

14 � 64 � 75 � 625 � 675 � 686, then

14 � 64 � 75 � 625 � 675 � 686—

is a bottleneck.

Must use prime factorizations.

(generalization to number fields:

1993 Buhler Lenstra Pomerance,

1994 Montgomery, 1998 Nguyen)

e.g. 2001 Crandall Pomerance:

this is of “great consequence

for the overall running time.”

Reality: The direct square-root

method is not a bottleneck.

Standard square-root algorithms,

using fast multiplication,

take time only 1+ � (1)

where is prime bound.

Smaller exponent than,

e.g., linear algebra.

No need to bother

using prime factorizations.

Timings on previous slides are

for a conventional computer:

a general-purpose processor

attached to a large memory.

(1945 von Neumann)

Myth #8: We want to minimize

time on a conventional computer.

This minimizes real time.

Okay, okay, parallel computers

aren’t conventional computers,

but processors achieve

at most a -fold speedup.

Reality: We want to minimize

price-performance ratio.

Conventional computers do not

minimize price-performance ratio.

Can often split a conventional

computer into two parallel

computers each of half the size,

with mild communication costs.

A mesh architecture

achieves smaller cost exponents

than a von Neumann architecture.

cr.yp.to/papers.html#nfscircuit
cr.yp.to/nfscircuit.html

VLSI literature makes this point

for a wide variety of computations.

Consider, e.g.,

multiplying two � -bit integers.

Time Θ(� lg � lg lg �)

on a conventional computer

with Θ(�) bits of memory.

(1971 Schönhage Strassen,

using FFT)

Knuth: “we leave the domain of

conventional computer

programming � � � ”

Time Θ(�)

on a 1-dimensional mesh

of size Θ(�).

(1965 Atrubin, elementary)

Time � 0 � 5+ � (1)

on a 2-dimensional mesh

of size Θ(�).

(1983 Preparata, using FFT)

Similar speedups for factoring:

Want to factor � . Write
�

= exp((log �)1 � 3(log log �)2 � 3).

NFS takes time
� 1 � 901 � � � + � (1)

on a conventional computer

of size
� 0 � 950 � � � + � (1).

(1993 Coppersmith)

Can perform the same computation

in time
� 1 � 426 � � � + � (1)

on a 2-dimensional mesh

of size
� 0 � 950 � � � + � (1).

(2001 Bernstein)

New parameters: Time
� 2 � 012 � � � + � (1)

on a conventional computer

of size
� 0 � 748 � � � + � (1).

(2002 Pomerance)

Time
� 1 � 185 � � � + � (1)

on a 2-dimensional mesh

of size
� 0 � 790 � � � + � (1).

(2001 Bernstein)

NFS cost (price-performance ratio)

has much lower exponent

on a 2-dimensional mesh

than on a conventional computer.

Myth #9: Mesh architectures

simply make everything faster.

We can continue

designing algorithms

and writing programs

for conventional computers,

and then put them on

mesh computers to reduce cost.

e.g. Preparata multiplication mesh

is straightforward implementation

of traditional FFT-based algorithm.

Reality: Optimizing cost

on a 2-dimensional mesh

is very different from

optimizing time

on a conventional computer.

Example: ECM vs. my batch test.

Time on von Neumann architecture:

batch test is better.

Cost on mesh architecture:

ECM is better;

early-abort ECM is even better.

Current algorithm-analysis culture—

talk all about time;

maybe mention machine size,

but only as a secondary issue—

will eventually be considered

shortsighted, archaic, obsolete.

Yes, it’s fun, but it’s doomed!

Have to redesign algorithms

and rewrite programs

from the ground up,

focusing on cost rather than time.

A computational number theorist’s

adventures in mesh programming:

“Verilog”: “circuit design” language,

not hard to learn.

(Alternative to Verilog: VHDL.

Skip VHDL unless you like Ada.)

“Icarus Verilog”: free software to

compile and run Verilog programs

(“simulate circuits”)

on, e.g., Pentium running Linux.

Very slow, of course.

“FPGA”: mesh device that can run

moderately large Verilog programs

at reasonable speed.

“Manual place and route”:

equivalent of assembly-language

programming, when compiler isn’t

smart enough to use mesh sensibly.

“ASIC”: chip that runs one

Verilog program even more quickly.

Expensive except in high volumes.

Several companies writing

higher-level programming tools:

SRC, StarBridge, OctigaBay, et al.

Willing to sacrifice

quite noticeable constant factor

for the sake of easy programming.

I’m doing this too.

Goal: Make it very easy

to build large meshes

for zero-communication operations

and for sorting, multiplication, etc.

Myth #10: MPQS beats ECM

for finding huge factors;

conjecturally (lg �)1+
� (1) faster.

ECM wants to find one

-smooth number near � .

Time (lg �)1+
� (1) per number.

MPQS wants to find (lg) � 1+ � (1)

-smooth numbers below � ;

smoothness chance is lowered by

((lg �) lg)1+
� (1) = (lg)1+

� (1).

Time (lg �)
� (1) per number.

Reality: ECM beats MPQS

on mesh architectures

for all sufficiently large inputs.

Linear algebra is costly.

Reduce to compensate.

Best MPQS cost still has

larger exponent than ECM cost.

My first public circuits

will be ECM circuits.

Note to chip designers:

Use Schönhage-Strassen!

Avoid carries; align roots.

