How to find smooth parts of integers

D. J. Bernstein

Thanks to:
University of Illinois at Chicago
NSF DMS–0140542
Alfred P. Sloan Foundation

Given \(n = 314159265358979323 \):

Compute good approximations

\[
\sqrt{n} \approx \frac{560499122}{1},
\]

\[
\sqrt{n} \approx \frac{1120998243}{2},
\]

\[
\sqrt{n} \approx \frac{1681497365}{3},
\]

\[
\sqrt{n} \approx \frac{6165490338}{11},
\]

\[
\sqrt{n} \approx \frac{14012478041}{25},
\]

etc. via Euclid’s algorithm.
\(p^2 \equiv \text{small (mod } n \text{)} \text{ if } \sqrt{n} \approx p/q: \\
560499122^2 \equiv 403791561, \\
1120998243^2 \equiv -626830243, \\
1681497365^2 \equiv 271129318, \\
6165490338^2 \equiv -465143839, \\
14012478041^2 \equiv 145120806, \text{ etc.}

Find nonempty subsequence of
403791561, -626830243, \ldots
with square product.
The \(p^2 \)'s also have square product.
Hope 1 < gcd \{\sqrt{\cdot} - \sqrt{\cdot}, n\} < n.
How to find square product among first few thousand numbers? Numbers with large prime factors are useless.

But many numbers are smooth:

$145120806 = 2 \cdot 3^2 \cdot 17 \cdot 647 \cdot 733$;

$-521969851 = -13^3 \cdot 193 \cdot 1231$;

eetc.

Recognize these smooth numbers; find their exponent vectors; do linear algebra on vectors mod 2 to find nonempty subset with even sum.
\[-5421351 = -3 \cdot 13 \cdot 13 \cdot 17 \cdot 17 \cdot 37, \\
454304721 = 3 \cdot 13 \cdot 31 \cdot 613 \cdot 613, \\
401224998 = 2 \cdot 3 \cdot 193 \cdot 317 \cdot 1093, \\
-362966643 = -3 \cdot 3 \cdot 3 \cdot 13 \cdot 17 \cdot 59 \cdot 1031, \\
-461281298 = -2 \cdot 17 \cdot 83 \cdot 223 \cdot 733, \\
68104737 = 3 \cdot 3 \cdot 17 \cdot 31 \cdot 83 \cdot 173, \\
278236113 = 3 \cdot 101 \cdot 859 \cdot 1069, \\
-443339082 = -2 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 89 \cdot 97 \cdot 317, \\
258865542 = 2 \cdot 3 \cdot 3 \cdot 13 \cdot 29 \cdot 37 \cdot 1031, \\
13005213 = 3 \cdot 13 \cdot 31 \cdot 31 \cdot 347, \\
-185619402 = -2 \cdot 3 \cdot 3 \cdot 131 \cdot 223 \cdot 353, \\
-308945194 = -2 \cdot 31 \cdot 47 \cdot 97 \cdot 1093, \\
88949286 = 2 \cdot 3 \cdot 3 \cdot 3 \cdot 47 \cdot 101 \cdot 347, \\
733202886 = 2 \cdot 3 \cdot 13 \cdot 31 \cdot 353 \cdot 859, \\
162594973 = 59 \cdot 109 \cdot 131 \cdot 193, \\
143972541 = 3 \cdot 3 \cdot 17 \cdot 89 \cdot 97 \cdot 109, \\
312539253 = 3 \cdot 13 \cdot 89 \cdot 127 \cdot 709, \\
96382078 = 2 \cdot 13 \cdot 17 \cdot 17 \cdot 101 \cdot 127, \\
-70194923 = -47 \cdot 89 \cdot 97 \cdot 173, \\
244225878 = 2 \cdot 3 \cdot 13 \cdot 29 \cdot 101 \cdot 1069, \\
-219831831 = -3 \cdot 3 \cdot 47 \cdot 709 \cdot 733.

These have square product.
Obtain divisor 990371647 of n.
Given set P of primes and sequence S of numbers, can factor S over P in time $b (\lg b)^{3+o(1)}$ where b is number of input bits. (2000 Bernstein)

Much faster than handling each element of S separately by trial division, Pollard’s rho method, Pollard-Williams-Lenstra smooth-sized-group methods, etc.
Batch factorization algorithm:
1. Compute $y = \prod_{x \in S} x$. (Product tree; standard.)
2. Compute $y \mod p$ for each $p \in P$. (1972 Moenck Borodin.)
3. Discard p’s not dividing y.
4. If $\#S \leq 1$, done. (For exponents: 1995 Bernstein.)
5. Recursively handle halves of S.

This is not the best way to recognize P-smooth numbers! Can usually achieve $b(\lg b)^{2+o(1)}$.

(2004 Franke Kleinjung Morain Wirth; buried inside paper on ECPP; no recognition of speedup; no serious analysis; grrr)

Then use previous algorithm to factor the smooth numbers. Usually not many smooth numbers, so this is fast.
Positive integer x

| batch time usually $b(\lg b)^{2+o(1)}$
| (2004 Franke, Kleinjung, Morain, Wirth) |
| batch time $b(\lg b)^{2+o(1)}$
| (2004 Bernstein) |

Small factors of x

- batch time $b(\lg b)^{3+o(1)}$
 - (2000 Bernstein)

Small factors of x
if x is smooth

| batch time at worst $b(\lg b)^{3+o(1)}$
| usually negligible |

Is x smooth?
The usually-better algorithm:
1. Compute $z = \prod_{p \in P} p$.
2. Compute $z \mod x$ for each $x \in S$.
3. Repeatedly divide x by $\gcd \{z \mod x, x\}$.

Step 3 might take many iterations.

Better, guaranteeing $b(\lg b)^{2+o(1)}$:
Compute $(z \mod x)^{\text{big}} \mod x$.
(2004 Bernstein; many precedents)

Many constant-factor speedups:
FFT doubling (2004 Kramer) et al.
In newer algorithms for factorization, discrete logs, etc.: Often numbers are sieveable. (introduced by 1977 Schroeppel)

Sieve up to \((\text{largest prime})^\theta\); discard if not too promising; then use batch smoothness method.

Total time is roughly \(RS^\theta T^{1-\theta}\) where \(R\) is smoothness ratio, \(S\) is sieve time per number, \(T\) is batch time per number. (see 1982 Pomerance)
S is annoyingly high if sieve doesn’t fit into DRAM, so take $\theta < 1$.

(standard; e.g. factorization of RSA-155 used non-optimal $\theta = 0.8$)

Consequence: Reducing T helps.

When T is small enough, should choose θ to sieve in L2 cache, maybe even L1 cache, so as to reduce S further; makes T even more important. (2000 Bernstein)
Factoring into coprimes in essentially linear time

How to find small factors of integers

Fast multiplication and its applications

How to find smooth parts of integers

Forthcoming: “Sieving in cache”