
How to find

smooth parts of integers

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF DMS–0140542

Alfred P. Sloan Foundation

Prototypical factorization algorithm:

continued-fraction method.

(1931 Lehmer Powers,

1975 Morrison Brillhart)

Given � = 314159265358979323:

Compute good approximations
� 560499122 1,
� 1120998243 2,
� 1681497365 3,
� 6165490338 11,
� 14012478041 25,

etc. via Euclid’s algorithm.

2 small (mod �) if � � :

5604991222 403791561,

11209982432 � 626830243,

16814973652 271129318,

61654903382 � 465143839,

140124780412 145120806, etc.

Find nonempty subsequence of

403791561 � � 626830243 � � � �

with square product.

The 2’s also have square product.

Hope 1 gcd � �
� � .

How to find square product

among first few thousand numbers?

Numbers with large prime factors

are useless.

But many numbers are smooth:

145120806 = 2 � 32
� 17 � 647 � 733;

� 521969851 = � 133
� 193 � 1231;

etc.

Recognize these smooth numbers;

find their exponent vectors;

do linear algebra on vectors mod 2 to

find nonempty subset with even sum.

� 5421351 = � 3 � 13 � 13 � 17 � 17 � 37 �

454304721 = 3 � 13 � 31 � 613 � 613 �

401224998 = 2 � 3 � 193 � 317 � 1093 �

� 362966643 = � 3 � 3 � 3 � 13 � 17 � 59 � 1031 �

� 461281298 = � 2 � 17 � 83 � 223 � 733 �

68104737 = 3 � 3 � 17 � 31 � 83 � 173 �

278236113 = 3 � 101 � 859 � 1069 �

� 443339082 = � 2 � 3 � 3 � 3 � 3 � 89 � 97 � 317 �

258865542 = 2 � 3 � 3 � 13 � 29 � 37 � 1031 �

13005213 = 3 � 13 � 31 � 31 � 347 �

� 185619402 = � 2 � 3 � 3 � 131 � 223 � 353 �

� 308945194 = � 2 � 31 � 47 � 97 � 1093 �

88949286 = 2 � 3 � 3 � 3 � 47 � 101 � 347 �

733202886 = 2 � 3 � 13 � 31 � 353 � 859 �

162594973 = 59 � 109 � 131 � 193 �

143972541 = 3 � 3 � 17 � 89 � 97 � 109 �

312539253 = 3 � 13 � 89 � 127 � 709 �

96382078 = 2 � 13 � 17 � 17 � 101 � 127 �

� 70194923 = � 47 � 89 � 97 � 173 �

244225878 = 2 � 3 � 13 � 29 � 101 � 1069 �

� 219831831 = � 3 � 3 � 47 � 709 � 733 �

These have square product.

Obtain divisor 990371647 of � .

Given set of primes

and sequence of numbers,

can factor over

in time (lg)3+
� (1)

where is number of input bits.

(2000 Bernstein)

Much faster than handling

each element of separately

by trial division,

Pollard’s rho method,

Pollard-Williams-Lenstra

smooth-sized-group methods, etc.

Batch factorization algorithm:

1. Compute = � � � .

(Product tree; standard.)

2. Compute mod for each .

(1972 Moenck Borodin.)

3. Discard ’s not dividing .

4. If # 1, done.

(For exponents: 1995 Bernstein.)

5. Recursively handle halves of .

Use fast multiplication everywhere.

(1971 Pollard, 1971 Nicholson,

1971 Schönhage Strassen)

This is not the best way to

recognize -smooth numbers!

Can usually achieve (lg)2+
� (1).

(2004 Franke Kleinjung Morain

Wirth; buried inside paper on ECPP;

no recognition of speedup;

no serious analysis; grrr)

Then use previous algorithm

to factor the smooth numbers.

Usually not many smooth numbers,

so this is fast.

���������	��
� �������������
�

��������� �	��� �

(lg)3+
� (1)

 "!$#�#$# % ���&����������('

��

��������� �	��� �)�*)���+,+.-
(lg)2+

� (1)
 "!$#�#0/ 1 �2�3�345� 67+8�����:9;)<�� = �>�2�<��� ���?�5�('�@

�A������� �	��� �
(lg)2+

� (1)
 "!�#$#0/ % ���&�����������0'

��B � �3+�+>CD�A���E�>�F� �$C
� �	��� �

(lg)2+
� (1)

 ���;�3��G3���HG>'

//

��

IJ�
�

�K� �L�3�5�0M

��������� �	��� �
���ONP�>�F���

(lg)3+
� (1) @

)�*)���+�+Q- ������+R�8�L�S�<+8�
uuB � �3+�+>CD�A���E�>�F� �$C

��8C
�

��� �K� �L�3�5�

The usually-better algorithm:

1. Compute � = � � � .

2. Compute � mod � for each � .

3. Repeatedly divide � by

gcd � mod � � � .

Step 3 might take many iterations.

Better, guaranteeing (lg)2+
� (1):

Compute (� mod �)big mod � .

(2004 Bernstein; many precedents)

Many constant-factor speedups:

FFT doubling (2004 Kramer) et al.

In newer algorithms for

factorization, discrete logs, etc.:

Often numbers are sieveable.

(introduced by 1977 Schroeppel)

Sieve up to (largest prime)
�

;

discard if not too promising;

then use batch smoothness method.

Total time is roughly
�

1 �
�

where is smoothness ratio,

is sieve time per number,

is batch time per number.

(see 1982 Pomerance)

is annoyingly high if

sieve doesn’t fit into DRAM,

so take 1.

(standard; e.g. factorization of

RSA-155 used non-optimal = 0 � 8)

Consequence: Reducing helps.

When is small enough,

should choose to sieve in L2 cache,

maybe even L1 cache,

so as to reduce further;

makes even more important.

(2000 Bernstein)

http://cr.yp.to/papers.html

#dcba “Factoring into coprimes

in essentially linear time”

#sf “How to find

small factors of integers”

#multapps “Fast multiplication

and its applications”

#smoothparts “How to find

smooth parts of integers”

Forthcoming: “Sieving in cache”

