How to find smooth parts of integers
D. J. Bernstein

Thanks to:

University of Illinois at Chicago
NSF DMS-0140542
Alfred P. Sloan Foundation

Prototypical factorization algorithm: continued-fraction method.
(1931 Lehmer Powers, 1975 Morrison Brillhart)

Given $n=314159265358979323$:
Compute good approximations
$\sqrt{n} \approx 560499122 / 1$,
$\sqrt{n} \approx 1120998243 / 2$,
$\sqrt{n} \approx 1681497365 / 3$,
$\sqrt{n} \approx 6165490338 / 11$
$\sqrt{n} \approx 14012478041 / 25$,
etc. via Euclid's algorithm.
$p^{2} \equiv \operatorname{small}(\bmod n)$ if $\sqrt{n} \approx p / q$: $560499122^{2} \equiv 403791561$,
$1120998243^{2} \equiv-626830243$,
$1681497365^{2} \equiv 271129318$,
$6165490338^{2} \equiv-465143839$,
$14012478041^{2} \equiv 145120806$, etc.
Find nonempty subsequence of 403791561, -626830243, . . .
with square product.
The p^{2} 's also have square product. Hope $1<\operatorname{gcd}\{\sqrt{ }-\sqrt{ }, n\}<n$.

How to find square product among first few thousand numbers?

Numbers with large prime factors are useless.

But many numbers are smooth:
$145120806=2 \cdot 3^{2} \cdot 17 \cdot 647 \cdot 733$;
$-521969851=-13^{3} \cdot 193 \cdot 1231$; etc.

Recognize these smooth numbers; find their exponent vectors;
do linear algebra on vectors mod 2 to
find nonempty subset with even sum.

```
    -5421351 = -3 13 13 13 17 17 37,
    454304721=3\cdot13\cdot31\cdot613\cdot613,
    401224998 = 2 \cdot 3 \cdot193 \cdot317 1093,
    -362966643 = -3\cdot3\cdot3\cdot13\cdot17\cdot59\cdot1031,
    -461281298 = - 2 \cdot17 \cdot 83 223 · 733,
        68104737=3\cdot3\cdot17\cdot31\cdot83\cdot173,
    278236113 = 3 101 (859 1069,
    -443339082 = -2 3 3 3 3 3 3 3 89 97 . 317,
    258865542=2\cdot3\cdot3\cdot13\cdot29\cdot37\cdot1031,
        13005213=3\cdot13\cdot31\cdot31\cdot347,
-185619402 = -2 \cdot3\cdot3\cdot131\cdot223\cdot353,
-308945194 = - 2.31.47\cdot97\cdot1093,
    88949286 = 2 \cdot3\cdot3\cdot3\cdot47\cdot101\cdot347,
    733202886 = 2 \cdot3\cdot13\cdot31 · 353\cdot859,
    162594973 = 59 \cdot109 131 193,
    143972541 = 3 · 3 17 89 '97 109,
    312539253 = 3 \cdot13 · 89 127 709,
        96382078=2 1 13 1 17 \cdot17 101 127,
```



```
    244225878=2 (3\cdot13\cdot29\cdot101\cdot1069,
-219831831 = -3\cdot3\cdot47\cdot709\cdot733.
```

These have square product.
Obtain divisor 990371647 of n.

Given set P of primes and sequence S of numbers,
can factor S over P
in time $b(\lg b)^{3+o(1)}$
where b is number of input bits.
(2000 Bernstein)
Much faster than handling each element of S separately
by trial division,
Pollard's rho method,
Pollard-Williams-Lenstra
smooth-sized-group methods, etc.

Batch factorization algorithm:

1. Compute $y=\prod_{x \in S} x$.
(Product tree; standard.)
2. Compute $y \bmod p$ for each $p \in P$.
(1972 Moenck Borodin.)
3. Discard p 's not dividing y.
4. If $\# S \leq 1$, done.
(For exponents: 1995 Bernstein.)
5. Recursively handle halves of S.

Use fast multiplication everywhere.
(1971 Pollard, 1971 Nicholson,
1971 Schönhage Strassen)

This is not the best way to recognize P-smooth numbers!
Can usually achieve $b(\lg b)^{2+o(1)}$.
(2004 Franke Kleinjung Morain
Wirth; buried inside paper on ECPP; no recognition of speedup; no serious analysis; grrr)

Then use previous algorithm to factor the smooth numbers. Usually not many smooth numbers, so this is fast.
batch time usually $b(\lg b)^{2+o(1)}$ (2004 Franke Kleinjung Morain Wirth);
Positive integer x batch time $b(\lg b)^{2+o(1)}$
batch time
(2004 Bernstein)

$$
\begin{gathered}
b(\lg b)^{3+o(1)} \\
(2000 \text { Bernstein })
\end{gathered}
$$

Small factors of $x \longrightarrow$ Is x smooth?

if x is smooth
usually negligible

The usually-better algorithm:

1. Compute $z=\prod_{p \in P} p$.
2. Compute $z \bmod x$ for each $x \in S$.
3. Repeatedly divide x by
$\operatorname{gcd}\{z \bmod x, x\}$.
Step 3 might take many iterations.
Better, guaranteeing $b(\lg b)^{2+o(1)}$: Compute $(z \bmod x)^{\text {big }} \bmod x$.
(2004 Bernstein; many precedents)
Many constant-factor speedups:
FFT doubling (2004 Kramer) et al.

In newer algorithms for
factorization, discrete logs, etc.:
Often numbers are sieveable.
(introduced by 1977 Schroeppel)
Sieve up to (largest prime) ${ }^{\theta}$; discard if not too promising; then use batch smoothness method.

Total time is roughly $R S^{\theta} T^{1-\theta}$ where R is smoothness ratio, S is sieve time per number,
T is batch time per number.
(see 1982 Pomerance)
S is annoyingly high if
sieve doesn't fit into DRAM,
so take $\theta<1$.
(standard; e.g. factorization of
RSA-155 used non-optimal $\theta=0.8$)
Consequence: Reducing T helps.
When T is small enough, should choose θ to sieve in L2 cache, maybe even L1 cache, so as to reduce S further; makes T even more important. (2000 Bernstein)
http://cr.yp.to/papers.html
\#dcba "Factoring into coprimes in essentially linear time"
\#sf "How to find small factors of integers"
\#multapps "Fast multiplication and its applications"
\#smoothparts "How to find smooth parts of integers"

Forthcoming: "Sieving in cache"

