
The DNS security mess

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF CCR–9983950

Alfred P. Sloan Foundation

Math Sciences Research Institute

University of California at Berkeley

Rabin’s public-key signature system

Message

��

Secret � �

��

//
Signed
message

��� ���

��

Public
key � //

Verify
� 2 (� �)

(mod �)

The Internet

Web-browsing procedure:

1. Figure out web page’s URL.

2. Figure out server’s IP address.

3. Figure out server’s public key.

4. Retrieve page.

Similar procedure for mail et al.

Need to protect each step

against forgery.

(And against denial of service.)

Assuming URL is protected:

Why not put IP address into URL?

Protects IP address for free.

Answer: IP addresses often change.

Want old links to keep working.

Why not put public key into URL?

Protects public key for free.

Will come back to this.

This talk focuses on step 2:

given web-page URL,

find server’s IP address.

e.g. if URL is

http://www.uiuc.edu/Library/

then need to find IP address

of www.uiuc.edu.

The Domain Name System

'& %$! "#Browser at panic.mil

'& %$! "#Administrator at uiuc.edu

“The web server

www.uiuc.edu

has IP address

128.174.5.130.”

OO

Many DNS software security holes:

BIND libresolv buffer overflow,

Microsoft cache promiscuity,

BIND 8 TSIG buffer overflow,

BIND 9 dig promiscuity, etc.

Fix: Use better DNS software.

But what about protocol holes?

Attacker can forge DNS packets.

Blind attacker must guess cookie;

32 bits in best current software.

Could make cookie larger by

extending or abusing protocol.

Sniffing attacker succeeds easily,

no matter how big cookie is.

Solution: public-key signatures.

Paul Vixie, June 1995:
This sounds simple but it has deep
reaching consequences in both the
protocol and the implementation—
which is why it’s taken more than a
year to choose a security model and
design a solution. We expect it to
be another year before DNSSEC is in
wide use on the leading edge, and at
least a year after that before its use
is commonplace on the Internet.

BIND 8.2 blurb, March 1999:
[Top feature:] Preliminary DNSSEC.

BIND 9 blurb, September 2000:

[Top feature:] DNSSEC.

Paul Vixie, November 2002:
We are still doing basic research on
what kind of data model will work
for DNS security. After three or
four times of saying “NOW we’ve
got it, THIS TIME for sure” there’s
finally some humility in the picture

� � � “Wonder if THIS’ll work?” � � �

It’s impossible to know how many
more flag days we’ll have before it’s
safe to burn ROMs � � � It sure isn’t
plain old SIG+KEY, and it sure isn’t
DS as currently specified. When will
it be? We don’t know. � � �

2535 is already dead and buried.
There is no installed base. We’re
starting from scratch.

Paul Vixie, 20 April 2004,

announcing BIND 9.3 beta:

BIND 9.3 will ship with DNSSEC

Paul Vixie, 20 April 2004,

announcing BIND 9.3 beta:

BIND 9.3 will ship with DNSSEC
support turned off by default in the
configuration file. � � �

ISC will also begin offering direct
support to users of BIND through
the sale of annual support contracts.

DNS in more detail

Browser at panic.mil

DNS cache

WV UT
PQ RS

OO

.uiuc.edu
DNS server

OO

.uiuc.edu
database

OO

Administrator at uiuc.edu

WV UT

PQ RS
OO

“The web server

www.uiuc.edu

has IP address

128.174.5.130.”

_g

DNS cache learns location of

.uiuc.edu DNS server from

.edu DNS server:

at panic.mil DNS cache
'& %$! "#

.edu
DNS server

OO

.edu
Database

WV UT

PQ RS
OO

at uiuc.edu Administrator
'& %$! "#

OO

“The DNS server

for .uiuc.edu

is dns1.cso

with IP address

128.174.5.103.”

5=

Packets to/from DNS cache

God sayeth unto the DNS cache:
“DNS Root K.Heaven 193.0.14.129”

193.0.14.129
“DNS .edu a3 192.5.6.32”

// DNS cache
“Web www.uiuc.edu?”oo

192.5.6.32
“DNS .uiuc.edu dns1.cso 128.174.5.103”

// DNS cache
“Web www.uiuc.edu?”oo

128.174.5.103
“Web www.uiuc.edu 128.174.5.130”

// DNS cache
“Web www.uiuc.edu?”oo

GodWV UT

PQ RS

&&NNNNNNNNNNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.edu
DNS
server

::
uuuuuuuuuuu .uiuc.edu

DNS
server

OO

.edu
data

at Internet
Central HQ

base

OO

.uiuc.edu
database

OO

at uiuc.edu

Administrator

WV UT

PQ RS
OOhhPPPPPPPP

\d

7?

Making DNS secure

Many popular ways to authenticate

cache browser: e.g., IPSEC, or

put cache on same box as browser.

Same for other local communication.

Limited risk for God cache:

data set is small, stable, widespread.

Keep safe local copy of result.

Can also keep copies of

data from root server.

Many popular ways to authenticate

Urbana admin .edu: e.g.,

SSL-encrypted passwords.

Be careful: In January 2001,

someone fooled Internet HQ into

accepting fake Microsoft data.

Want to use public-key signatures for

.edu server cache and

.uiuc.edu server cache.

Who should check signatures?

Caches have responsibility

for verifying signatures.

Could check in browser instead,

but caches are easier than browsers

to upgrade and redeploy.

(Also, without cache support,

can’t stop denial of service.)

How does the cache obtain keys?

Urbana administrator signs

www.uiuc.edu information

under .uiuc.edu public key.

Cache needs safe copy of that key.

Old DNSSEC approach:

.uiuc.edu server

sends its key, signed by .edu key,

to the cache.

Current DNSSEC approach:

.edu server sends

second Urbana key to cache,

signed by .edu key;

.uiuc.edu server sends

first Urbana key to cache,

signed by second key.

New software for DNS servers,

.edu database to store keys,

and .uiuc.edu database.

No reason to change software!

.edu server has to sign

“.uiuc.edu dns1.cso 128.174.5.103”

anyway. Embed Urbana key

into dns1.cso field as � 1

where 1 is a magic number.

Cache sees 1, extracts ,

rejects data not signed by .

Another solution:

Put public keys into URLs.

Use www � � 2 � uiuc � edu

instead of www.uiuc.edu.

Cache sees 2, extracts ,

rejects data not signed by .

Doesn’t need HQ cooperation.

In fact, secure against HQ!

(But HQ can still deny service.)

How does cache obtain signatures?

How are signatures encoded

in DNS responses?

DNSSEC: Servers are responsible

for volunteering signatures

in a new signature format.

(Sometimes cache has to

go track down signatures;

makes denial of service easier.)

New software for DNS servers.

No reason to change software!

Put signed data into existing servers.

Cache wants ab.cd.uiuc.edu

data from .uiuc.edu

with signature under key .

Instead requests data for

� � 3.ab.cd. � 3.uiuc.edu

where � is a cookie.

Rejects unsigned results.

(Cookie stops blind attacks.)

Simplified example in BIND format:

.uiuc.edu server has

*.123.www.8675309.123.uiuc.edu.

TXT "A 128.174.5.130 ..."

where ... is a signature of

www A 128.174.5.103

under Urbana’s key 8675309.

.edu server has

*.uiuc.3141592.123.edu.

TXT "uiuc NS

8675309.789 128.174.5.103 ...".

Cache wants data for

www.uiuc.edu or

www.8675309.456.uiuc.edu.

Asks .edu server about

237.123.www.uiuc

.3141592.123.edu.

Checks signature under key 3141592.

Asks .uiuc.edu server about

291.123.www.

.8675309.123.uiuc.edu.

Checks signature under key 8675309.

Packet space limitations

DNS packets over UDP are

limited to 512 bytes.

DNS packets over TCP are

much more costly. (And allow

much easier denial of service.)

DNSSEC uses RSA keys

too small for comfort,

and changes servers to use

larger packets; still has to

fall back to TCP frequently.

Could use signature systems

with slower verification,

but that could overload caches

(and help denial of service).

Better: Compress Rabin keys

to 1 3 size; Coppersmith.

Then replace keys with hashes.

Compress signatures

to 1 2 size; Bleichenbacher.

Helps dramatically to use

only one signature per packet.

Precomputation hassles

Many DNS servers receive

several thousand queries per second.

Can’t keep up without

precomputing some signatures.

To avoid changing server

(and to prevent denial of service),

need to precompute all signatures.

Can’t use client’s fresh cookie

in precomputation, so need

secure global clocks for freshness.

Can’t precompute signatures for

all possible responses:

.uiuc.edu controls

quizno357.uiuc.edu etc.

DNSSEC approach: Sign wildcards

such as “there are no names

between quaalude.uiuc.edu

and quizzical.uiuc.edu.”

Saves time for snoops.

Better: Skip it. Users don’t care.

Handle SRV silliness separately.

The .com database is 2GB.

With signatures, several times larger;

won’t fit into memory.

(VM allows easy denial of service.)

DNSSEC approach: “opt-in.”

Useless signatures such as

“This is a signature for

any data you might receive

for x.com through y.com.”

Better: Buy enough memory!

What’s next?

Next release of dnscache

checks 1536-bit signatures,

using mechanisms 1 � 2 � 3.

dnssec2 tool creates public key

and precomputes signatures.

floatasm lower-level tools:

new programming language for

straight-line floating-point code.

Planned: dnsforge tool.

