More news
from the Rabin-Williams front

D. J. Bernstein

Thanks to:
University of Illinois at Chicago
NSF CCR-9983950
Alfred P. Sloan Foundation Math Sciences Research Institute University of California at Berkeley
American Institute of Mathematics

Signature length
30-digit public key pq.
Rabin-Williams signature of message m under public key $p q$ is vector (e, f, r, s) such that $s^{2} \equiv$ blah $\quad(\bmod p q)$.

Three bits to store e, f, r; but 30 digits to store s.

Compressing signatures to $1 / 2$ size

(Bleichenbacher 2003)
Compute $s / p q$ continued fraction:
$\frac{s}{p q}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\cdots}}$.
Define v_{i} as denominator of
$a_{0}+\frac{1}{a_{1}+\frac{1}{\cdots+\frac{1}{a_{i}}}}$.
Find maximum i with $v_{i} \leq 10^{15}$.
Print $\left(e, f, r, v_{i}\right)$.

Only 15 digits plus 3 bits.
Using $p q$, can convert e, f, r, v back to e, f, r, s.

To verify e, f, r, v directly,
check that $1 \leq v \leq 10^{15}$ and that $v^{2}($ blah $) \bmod p q$ is a square in \mathbf{Z}.

Larger pq for security

For 1536-bit pq:
Compress keys to 512 bits.
Compress signatures to 771 bits.
Total key+signature size: 1283 bits.
Without compression: 3072 bits.
Still not as small as
elliptic-curve key+signature with comparable conjectured security.
But much faster verification.

Expanded signatures

Signature: (e, f, r, s) such that $s^{2} \equiv$ blah $\quad(\bmod p q)$.

Expanded: (e, f, r, s, t) such that $s^{2}-$ blah $-p q t=0$.

Fast randomized verification: Check $\left((s \bmod n)^{2}-(b l a h \bmod n)-\right.$ $(p q \bmod n)(t \bmod n)) \bmod n=0$ for secret random 100-bit prime n.

Primality proofs

(Selfridge Weinberger, improved by Lukes Patterson Williams 1996)

An integer $n \in\left[2^{20}, 2^{100}\right]$ is prime iff - $r^{(n-1) / 2} \equiv \pm 1 \quad(\bmod n)$
for all primes $r \leq 367$;

- $r^{(n-1) / 2} \equiv-1 \quad(\bmod n)$
for some odd prime $r \leq 367$
if $n \bmod 8=1$;
- $2^{(n-1) / 2} \equiv-1$ if $n \bmod 8=5$;
- n is not a perfect power; and
- n has no prime divisors below 2^{20}.

Use Pollard's rho method: define $x_{0}=0, x_{i}=\left(x_{i-1}^{2}+11\right) \bmod n$; if n coprime to
$\left(x_{1}-x_{2}\right)\left(x_{2}-x_{4}\right) \cdots\left(x_{3575}-x_{7150}\right)$
then no prime divisors below 2^{20}.
(Somewhat messier with converse.)
Also 73 exponentiations.
<20000 mults total.
Various speedups available.
Fastest known proving method.

Proof relies on big computation: every nonsquare $x<2^{80}, x \in 1+8 \mathbf{Z}$, is nonsquare mod some prime ≤ 367. (Williams, Wooding 2003)
2^{80} is scary but save
$\approx 2^{10}$ from focused enumeration; $\approx 2^{10}$ more, doubly focused; and lots of streamlining.

This is doable even though 100-bit primes are unguessable.

