Randomized primality proving in essentially quartic time

D. J. Bernstein

Thanks to:

University of Illinois at Chicago NSF DMS-0140542 Alfred P. Sloan Foundation Math Sciences Research Institute University of California at Berkeley Thm: If

- n > 1;
- \bullet *e* divides n-1;
- $e 1 \ge c \ge b \ge 0$;
- $ullet \binom{e}{b}\binom{c}{b}\binom{2e-1-c-b}{e-1-c}\geq n^{\left\lceil \sqrt{e/3} \right\rceil};$
- $r^{n-1} = 1$ in **Z**/n;
- $r^{(n-1)/q} 1$ is a unit in \mathbb{Z}/n for each prime q dividing e;
- ullet r-1 is a unit in ${f Z}/n$; and
- $ullet (x-1)^n = r^{(n-1)/e}x 1$ in the ring $(\mathbf{Z}/n)[x]/(x^e-r)$; then n is a power of a prime.

 $m{n}=31415926535897932384626433832795028841:$ 840 divides $m{n}-1;$

$$\binom{840}{246}\binom{419}{246}\binom{1014}{420} \geq n^{\lceil \sqrt{840/3} \rceil};$$

$$17^{n-1} = 1 \text{ in } \mathbf{Z}/n;$$

$$17^{(n-1)/2} - 1$$
 is a unit in **Z**/n;

$$17^{(n-1)/3} - 1$$
 is a unit in **Z**/n;

$$17^{(n-1)/5} - 1$$
 is a unit in **Z**/*n*;

$$17^{(n-1)/7} - 1$$
 is a unit in **Z**/n;

$$(x-1)^n = 17^{(n-1)/840}x - 1$$

in the ring $(\mathbf{Z}/n)[x]/(x^{840}-17)$;

so n is a power of a prime.

There is an algorithm that, given a prime n, finds (randomly) and verifies (deterministically) a proof of primality of n in time $(\lg n)^{4+o(1)}$.

Algorithm relies on generalization of thm to extensions of \mathbf{Z}/n , although most n's don't need this. Also helpful to use $x-2,x-3,\ldots$ http://cr.yp.to/papers.html#quartic

Pf of thm:

Choose prime p dividing n.

Define ζ as image in \mathbf{F}_p of $r^{(n-1)/e}$. $\zeta^e=1$, but $\zeta^{e/q}-1$ is a unit in \mathbf{F}_p for each prime q dividing e, so ζ has order e, and e divides p-1.

 $r^{p-1}=1$ in \mathbf{F}_p so $r^{(p-1)/e}=\zeta^\ell$ in \mathbf{F}_p for some $\ell\in\mathbf{Z}$.

Define
$$S = \mathbf{F}_p[x]/(x^e-r)$$
. $(x-1)^n = \zeta x - 1$ in S .

Substitute $\zeta^i x$ for x:

$$(\zeta^i x-1)^n=\zeta^{i+1}x-1$$
 in $\mathbf{F}_p[x]/((\zeta^i x)^e-r)=\mathcal{S}.$

$$(x-1)^{n^i}=\zeta^ix-1$$
 in S .

$$(x-1)^{n^ip^j}=\zeta^{i+j\ell}x-1$$
 in S .

Define C as the set of $(\alpha, \beta) \in \mathbf{R} \times \mathbf{R}$ such that $|\alpha \lg(n/p)|, |\beta \lg p|,$ and $|\alpha \lg(n/p) + \beta \lg p|$ are $\leq \sqrt{e/3} \lg n.$

If p = n, done. Assume p < n.

C is a closed convex symmetric set of area $3(e/3)\frac{(\lg n)^2}{(\lg p)\lg(n/p)}$, which is at least 4e.

By Minkowski's theorem, C has a nonzero point (α, β) in the determinant-e lattice $\{(\alpha, \beta) \in \mathbf{Z} \times \mathbf{Z} : \alpha + (\beta - \alpha)\ell \in e\mathbf{Z}\}.$

Assume wlog that $\alpha \geq 0$.

If $eta \geq 0$, define $u = (n/p)^{lpha} p^{eta}$ and v = 1.

Then u and v are positive integers; u and v are $\leq n^{\sqrt{e/3}}$; and $(x-1)^{up^{\alpha}} = (x-1)^{n^{\alpha}p^{\beta}}$ $= \zeta^{\alpha+\beta\ell}x-1=\zeta^{\alpha\ell}x-1$ $= (x-1)^{p^{\alpha}}=(x-1)^{vp^{\alpha}}$ in S.

Similar results if eta < 0: define $u = (n/p)^{lpha}$ and $v = p^{-eta}$.

x-1 is in S^* :

 $x^e-r \mod x-1$ is in \mathbf{F}_p^* .

 $(x-1)^{p^e}=x-1$ in S so

order of x-1 is coprime to p.

 $(x-1)^{up^{lpha}-vp^{lpha}}=1 ext{ in } S^*$

so $(x-1)^{u-v} = 1$ in S^* .

Note that $|u-v| < n^{\sqrt{e/3}}$.

If $a_0,a_1,\ldots,a_{e-1}\in \mathbf{Z}$ then $(x-1)^{a_0}\cdots(\zeta^{e-1}x-1)^{a_{e-1}}$ is a power of x-1 in S^* .

Consider vectors $(a_0, a_1, \ldots, a_{e-1})$ with $\#\{i: a_i < 0\} = b$, $\sum_i -a_i[a_i < 0] \le c$, $\sum_i a_i[a_i \ge 0] \le e-1-c$.

Number of such vectors a is $\binom{e}{b}\binom{c}{b}\binom{c}{b}\binom{2e-1-c-b}{e-1-c} \geq n^{\left\lceil \sqrt{e/3} \right\rceil}$.

Say two such vectors a,b have $\prod_i (\zeta^i x - 1)^{a_i} = \prod_i (\zeta^i x - 1)^{b_i}$ in S^* .

Then A=B in S where $A=\prod (\zeta^ix-1)^{a_i[a_i\geq 0]-b_i[b_i<0]},$ $B=\prod (\zeta^ix-1)^{b_i[b_i\geq 0]-a_i[a_i<0]}.$

 $\deg A$, $\deg B$ are at most e-1 so A=B in $\mathbf{F}_p[x]$. $x-1,\zeta x-1,\ldots,\zeta^{e-1}x-1$ are coprime in $\mathbf{F}_p[x]$ so a=b.

So there are > |u-v| powers of x-1 in S^* .

Thus u=v, i.e., $n^{\alpha}=p^{\alpha-\beta}$. If $\alpha=0$ then $\beta=0$, contradiction. Thus n is a power of p.

Q.E.D.

History: proving compositeness

Displaying a factorization: proof for every composite n; verify in time $(\lg n)^{1+o(1)}$; often very hard to find.

Fermat base 2 ("2-prp"): proof for nearly every composite n; find+verify in time $(\lg n)^{2+o(1)}$.

1966 Artjuhov ("sprp"), 1976 Rabin, 1980 Monier, 1982 Atkin-Larson: proof for every composite n; verify in time $(\lg n)^{2+o(1)}$; find in random time $(\lg n)^{2+o(1)}$.

Recognize failure of this algorithm as guaranteeing that n is prime. What if we want proof?

Conjecturally certifying primality

1976 Miller, with 1979 Oesterlé: conjectured cert for every prime n; find+verify in time $(\lg n)^{4+o(1)}$.

1995 Lukes-Patterson-Williams (or using idea of 1982 Yao): conjectured cert for every prime n; find+verify in time $(\lg n)^{3+o(1)}$.

1980 Baillie et al.: shakily conjectured cert for every prime n; find+verify in time $(\lg n)^{2+o(1)}$.

Proving primality

1876 Lucas: proof for every prime n; verify in time at most $(\lg n)^{3+o(1)}$ (with Lehmer improvements), conjectured $(\lg n)^{2+o(1)}$; conjecturally can find for infinitely many primes n in time $(\lg n)^{O(1)}$, but often very hard to find.

1914 Pocklington, 1975 Morrison, 1975 Brillhart-Lehmer-Selfridge: similar, but findable for more n's.

1979 Adleman-Pomerance-Rumely: proof for every prime n; find+verify in time $(\lg n)^{O(\lg \lg \lg n)}$.

1989 Pintz-Steiger-Szemerédi: proof for infinitely many primes n; verify in time $(\lg n)^{O(1)}$; find in time $(\lg n)^{O(1)}$.

```
1986 Goldwasser-Kilian, using
1985 Schoof: conjecturally,
proof for every prime n;
verify in time (\lg n)^{3+o(1)};
conjecturally,
find in random time (\lg n)^{O(1)}.
1992 Adleman-Huang ("HECPP"):
proof for every prime n;
verify in time (\lg n)^{O(1)};
find in random time (\lg n)^{O(1)}.
```

1993 Atkin-Morain: conjecturally, proof for every prime n; verify in time $(\lg n)^{3+o(1)}$; conjecturally, find in random time $(\lg n)^{5+o(1)}$.

Current ECPP: conjecturally, proof for every prime n; verify in time $(\lg n)^{3+o(1)}$; conjecturally, find in random time $(\lg n)^{4+o(1)}$.

2002.08 Agrawal-Kayal-Saxena: proof for every prime n; find+verify in time $(\lg n)^{O(1)}$, conjectured $(\lg n)^{6+o(1)}$.

Introduced basic ideas of thm.

2003.03 Lenstra-Pomerance: proof for every prime n; find+verify in time $(\lg n)^{6+o(1)}$.

2002.11 Berrizbeitia:

proof for every prime n; verify in time $(\lg n)^{4+o(1)}$ if $\operatorname{ord}_2(n^2-1) \geq (2+o(1))\lg\lg n;$ find in random time $(\lg n)^{2+o(1)}$.

Introduced idea of using Kummer extensions, twisting by powers of ζ .

2003.01 Cheng: proof for every prime n; verify in time $(\lg n)^{4+o(1)}$ if n-1 has prime divisor $e \approx (\lg n)^2$;

2003.01 Bernstein: proof for every prime n; verify in time $(\lg n)^{4+o(1)}$; find in random time $(\lg n)^{2+o(1)}$.

find in random time $(\lg n)^{2+o(1)}$.

Many constant-factor speedups: parameter choice by Bernstein; negative powers by Voloch, with optimization by Vaaler; n/p by Lenstra; Minkowski by Lenstra.

Casual implementation using Granlund et al.'s GMP 4.1.2: primality proof for $2^{1024} + 643$ in $\approx 3.8 \cdot 10^{13}$ PIII cycles.

Serious implementation will still be an order of magnitude slower than current ECPP.

But within striking distance!