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Thm: If
onn > 1;
e ¢ divides n — 1;
ec—1>c>b6>0;
¢ (SIS = n VRl
o v 1 —1in Z/n;
o r(»1)/4 _1isaunitinZ/n
for each prime g dividing e;
e r —1isaunitinZ/n; and
o (z—1)"=rnl/eg _1
in the ring (Z/n)[z]/(z® — r);
then n is a power of a prime.



n = 31415926535897932384626433832795028841 :
3840 divides n — 1;

(522) (349 (%) = ml VOO

17" 1 =1in Z/n;

17(n=1)/2 _ 1 is a unit in Z/n;
17(n=1)/3 _ 1 is a unit in Z/n;
17(n=1/5 _ 1 is a unit in Z/n;
17(n=1/7 _ 1 is a unit in Z/n;
(z — 1)" = 17(n—1)/8405 _ 1
in the ring (Z/n)[z]/(z%° — 17);
so . Is a power of a prime.




There i1s an algorithm that,
given a prime n,

finds (randomly) and
verifies (deterministically)

a proof of primality of n
in time (Ign)*to(l),

Algorithm relies on generalization
of thm to extensions of Z/n,
although most n's don't need this.

Also helpful tousez — 2,2 — 3, .. ..
http://cr.yp.to
/papers.html#quartic



Pt of thm:
Choose prime p dividing n.

Define ¢ as image in F; of r(n—1)/e
¢¢ =1, but ¢¢/9 — 1 is a unit in F,
for each prime g dividing e, so

¢ has order e, and e divides p — 1.

rP~1 — 1 in F, so
r(p—1)/e — ¢4 in F, for some { € Z.



Define S = Fplz]/(z° — 7).
(z—1)"=(xz—1inS.

Substitute (*z for z:

(sz o 1)n : <i+1$ 1

in Fplz]/((¢C*z)® —7) = 5.
(z—1)" =¢iz—1in S.

(z — 1)"'P = (il —1in S.



Define C as the set of
(a,B) € R x R such that
alg(n/p)|, |1Blgpl,

and |alg(n/p) +Blgp
are < (/e/3lgmn.

If p = n, done.
Assume p < n.
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C is a closed convex symmetric set

(Igm)? .
of area 3(e/3) (2p)lg(n/p) which

Is at least 4e.

By Minkowski's theorem,
C has a nonzero point (a, 3)
in the determinant-e lattice

{(a,8) € Z X Z:
a+ (B8 —a)lcel}l

Assume wlog that a > 0.



If B > 0, define
u = (n/p)*pP and v = 1.

Then u and v are positive integers;
u and v are < n\/m; and
(z — 1)%7° = (z — 1)
= (atPly 1 = (g 1
—(z— 1" =(z—1)""" in S.

Similar results if 8 < 0: define
u=(n/p)®and v=p7F.



z —1isin 5§%:

z¢ —r mod z —1isin Fj,.
(z—1P" =z—1in S so
order of £ — 1 is coprime to p.
(z — 1)4P"—vP% — 1 in G*
so (z—1)*"Y=1in S*.

Note that |u — v| < nVe/3.



If ag, aq, ..., Qo1 € Z then
(z —1)% ... (¢ 1p — 1)%-1
is a power of z — 1 in §*.

Consider vectors (ag, a1, ..., Qe 1)
with #{1:a; <0} = b,

> s —asla; < 0] <ec,

> saila; >0 <e—1-c.

Number of such vectors a is

(e) (C) (2e—1—c—b) > n[ e/ﬂ |

b/ \b e—1—c



Say two such vectors a, b have
[1;(¢Cx — 1)% =[];(¢Cx — 1)
in S*.

Then A= B in S where
A=[|((tz — 1)% a; >0]—b;[b; <0]
B =[(¢tz — 1)b:lbi=0]—asla; <0]

deg A, deg B are at most e — 1
so A= B in Fy[z].
r—1,(xz—1,..., Ce_la:—l
are coprime in Fp[z] so a = 0.



So there are > |u — |
powers of £ — 1 in §*.

Thus u = v, i.e., n® = p* P,
If a« = 0 then B = 0, contradiction.
Thus n is a power of p.

Q.E.D.



History: proving compositeness

Displaying a factorization:
proof for every composite n;
verify in time (Ign)to(l);
often very hard to find.

Fermat base 2 (“2-prp”):

proof for nearly every composite n;
find-+verify in time (Ign)2to(l).



1966 Artjuhov (“sprp”), 1976 Rabin,
1980 Monier, 1982 Atkin-Larson:
proof for every composite n;
verify in time (Ign)to(l);

find in random time (Ign)2to(1).

Recognize failure of this algorithm
as guaranteeing that n Is prime.
What if we want proof?



Conjecturally certifying primality

1976 Miller, with 1979 QOesterlé:

conjectured cert for every prime n;
find-+verify in time (Ign)*to(l).

1995 Lukes-Patterson-Williams

(or using idea of 1982 Yao):
conjectured cert for every prime n;
find-+verify in time (Ign)3to(l).

1980 Balllie et al.: shakily

conjectured cert for every prime n;
find-+verify in time (Ign)2to(l).



Proving primality

1876 Lucas: proof for every prime n;
verify in time at most (Ign)3to(l)
(with Lehmer improvements),
conjectured (Ign)2toll);

conjecturally can find

for infinitely many primes n
in time (Ign)°W),
but often very hard to find.



1914 Pocklington, 1975 Morrison,
1975 Brillhart-Lehmer-Selfridge:
similar, but findable for more n's.

1979 Adleman-Pomerance-Rumely:

proof for every prime n;
find-+verify in time (Ign)°glglgn)

1989 Pintz-Steiger-Szemerédi:
proof for infinitely many primes n;
verify in time (Ign)°W);

find in time (Ign)°().



1986 Goldwasser-Kilian, using

1985 Schoof: conjecturally,

proof for every prime n;
verify in time (Ign)3+o(l);

conjectural

Y;

find in random time (Ign)°().

1992 Adleman-Huang (“HECPP"):
proof for every prime n;
verify in time (Ign)°(L);
find in random time (Ign)°().



1993 Atkin-Morain: conjecturally,
proof for every prime n;

verify in time (Ign)3to(l);
conjecturally,

find in random time (Ign)>*to(1).

Current ECPP: conjecturally,
proof for every prime n;
verify in time (Ign)3to();
conjecturally,

find in random time (Ign)*toll).



2002.08 Agrawal-Kayal-Saxena:
proof for every prime n;

find+verify in time (Ign)°W),
conjectured (Ign)0to(l).

Introduced basic ideas of thm.

2003.03 Lenstra-Pomerance:
proof for every prime n;
find-+verify in time (Ign)0to(l).



2002.11 Berrizbeitia:

proof for every prime n;

verify in time (Ign)*to) if
ordr(n® — 1) > (24 o(1)) Iglg n;
find in random time (Ign)2to(1).

Introduced idea of
using Kummer extensions,
twisting by powers of (.



2003.01 Cheng:

proof for every prime n;
verify in time (Ign)*to) if
n — 1 has prime divisor e ~ (Ign)?;
find in random time (Ign)2to(1).

2003.01 Bernstein:

proof for every prime n;

verify in time (Ign)*to(l);

find in random time (Ign)2toll).



Many constant-factor speedups:
parameter choice by Bernstein;
negative powers by Voloch,

with optimization by Vaaler;
n/p by Lenstra;
Minkowski by Lenstra.

Casual implementation using
Granlund et al.'s GMP 4.1.2:
primality proof for 21924 1 643
in ~ 3.8 - 1013 PIII cycles.



Serious implementation will still be
an order of magnitude slower
than current ECPP.

But within striking distance!



