Randomized primality proving in essentially quartic time

D. J. Bernstein

Thanks to:
University of Illinois at Chicago
NSF DMS–0140542
Alfred P. Sloan Foundation
Math Sciences Research Institute
University of California at Berkeley
Thm: If

- $n > 1$;
- e divides $n - 1$;
- $e - 1 \geq c \geq b \geq 0$;
- $\binom{e}{b} \binom{c}{b} \left(\frac{2e-1-c-b}{e-1-c} \right) \geq n \left\lfloor \sqrt{e/3} \right\rfloor$;
- $r^{n-1} = 1$ in \mathbb{Z}/n;
- $r^{(n-1)/q - 1}$ is a unit in \mathbb{Z}/n for each prime q dividing e;
- $r - 1$ is a unit in \mathbb{Z}/n; and
- $(x - 1)^n = r^{(n-1)/e}x - 1$

in the ring $(\mathbb{Z}/n)[x]/(x^e - r)$;

then n is a power of a prime.
\(n = 31415926535897932384626433832795028841: \)

840 divides \(n - 1; \)

\[
\binom{840}{246} \binom{419}{246} \binom{1014}{420} \geq n \left\lfloor \sqrt{840/3} \right\rfloor
\]

17\(^{n-1}\) = 1 in \(\mathbb{Z}/n; \)

17\(^{(n-1)/2}\) - 1 is a unit in \(\mathbb{Z}/n; \)

17\(^{(n-1)/3}\) - 1 is a unit in \(\mathbb{Z}/n; \)

17\(^{(n-1)/5}\) - 1 is a unit in \(\mathbb{Z}/n; \)

17\(^{(n-1)/7}\) - 1 is a unit in \(\mathbb{Z}/n; \)

\((x - 1)^n = 17^{(n-1)/840} x - 1\)

in the ring \((\mathbb{Z}/n)[x]/(x^{840} - 17); \)

so \(n \) is a power of a prime.
There is an algorithm that, given a prime \(n \), finds (randomly) and verifies (deterministically) a proof of primality of \(n \) in time \((\log n)^{4+o(1)}\).

Algorithm relies on generalization of thm to extensions of \(\mathbb{Z}/n \), although most \(n \)'s don’t need this. Also helpful to use \(x - 2, x - 3, \ldots \). http://cr.yp.to/papers.html#quartic
Pf of thm:
Choose prime p dividing n.

Define ζ as image in \mathbb{F}_p of $r^{(n-1)/e}$.
$\zeta^e = 1$, but $\zeta^{e/q} - 1$ is a unit in \mathbb{F}_p for each prime q dividing e, so
ζ has order e, and e divides $p - 1$.

$r^{p-1} = 1$ in \mathbb{F}_p so
$r^{(p-1)/e} = \zeta^l$ in \mathbb{F}_p for some $l \in \mathbb{Z}$.
Define $S = \mathbb{F}_p[x]/(x^e - r)$.

$(x - 1)^n = \zeta x - 1$ in S.

Substitute $\zeta^i x$ for x:

$(\zeta^i x - 1)^n = \zeta^{i+1} x - 1$

in $\mathbb{F}_p[x]/(((\zeta^i x)^e - r) = S$.

$(x - 1)^{n^i} = \zeta^i x - 1$ in S.

$(x - 1)^{n^i p^j} = \zeta^{i+j\ell} x - 1$ in S.
Define C as the set of $(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}$ such that
$|\alpha \lg(n/p)|, |\beta \lg p|,$
and $|\alpha \lg(n/p) + \beta \lg p|$
are $\leq \sqrt{\frac{e}{3} \lg n}.$

If $p = n$, done.
Assume $p < n.$
\[
\left(0, \frac{\sqrt{e/3 \log n}}{\log p}\right)
\]

\[
\left(\frac{\sqrt{e/3 \log n}}{\log(n/p)}, 0\right)
\]
C is a closed convex symmetric set of area $3(e/3)\frac{(\lg n)^2}{(\lg p) \lg(n/p)}$, which is at least $4e$.

By Minkowski’s theorem, C has a nonzero point (α, β) in the determinant-e lattice
\[
\{(\alpha, \beta) \in \mathbb{Z} \times \mathbb{Z} : \alpha + (\beta - \alpha) \ell \in e\mathbb{Z}\}.
\]
Assume wlog that $\alpha \geq 0$.
If $\beta \geq 0$, define
\[u = (n/p)^{\alpha} p^\beta \] and $v = 1$.

Then u and v are positive integers; u and v are $\leq n \sqrt{e/3}$; and
\[(x - 1)^{u p^\alpha} = (x - 1)^{n^\alpha p^\beta} \]
\[= \zeta^{\alpha + \beta} l x - 1 = \zeta^{\alpha l} x - 1 \]
\[= (x - 1)^{p^\alpha} = (x - 1)^{v p^\alpha} \] in S.

Similar results if $\beta < 0$: define
\[u = (n/p)^{\alpha} \] and $v = p^{-\beta}$.
$x - 1$ is in S^*:

$x^e - r \mod x - 1$ is in \mathbb{F}^*_p.

$(x - 1)^p^e = x - 1$ in S so order of $x - 1$ is coprime to p.

$(x - 1)^{u \rho^\alpha - v \rho^\alpha} = 1$ in S^*

so $(x - 1)^{u - v} = 1$ in S^*.

Note that $|u - v| < n \sqrt{e/3}$.
If \(a_0, a_1, \ldots, a_{e-1} \in \mathbb{Z} \) then
\((x - 1)^{a_0} \cdots (\zeta^{e-1} x - 1)^{a_{e-1}}\)
is a power of \(x - 1 \) in \(S^* \).

Consider vectors \((a_0, a_1, \ldots, a_{e-1})\) with \(\#\{i : a_i < 0\} = b \),
\(\sum_i -a_i [a_i < 0] \leq c \),
\(\sum_i a_i [a_i \geq 0] \leq e - 1 - c \).

Number of such vectors \(a \) is
\((e) (c) (\frac{2e-1-c-b}{e-1-c}) \geq n \left\lfloor \sqrt{\frac{e}{3}} \right\rfloor \).
Say two such vectors a, b have
\[\prod_i (\zeta^i x - 1)^{a_i} = \prod_i (\zeta^i x - 1)^{b_i} \]
in S^*. Then $A = B$ in S where
\[A = \prod_i (\zeta^i x - 1)^{a_i[a_i \geq 0] - b_i[b_i < 0]}, \]
\[B = \prod_i (\zeta^i x - 1)^{b_i[b_i \geq 0] - a_i[a_i < 0]} \].

$\text{deg } A, \text{deg } B$ are at most $e - 1$ so $A = B$ in $\mathbb{F}_p[x]$.

$x - 1, \zeta x - 1, \ldots, \zeta^{e-1} x - 1$
are coprime in $\mathbb{F}_p[x]$ so $a = b$.
So there are $> |u - v|$
powers of $x - 1$ in S^*.

Thus $u = v$, i.e., $n^\alpha = p^{\alpha - \beta}$.
If $\alpha = 0$ then $\beta = 0$, contradiction.
Thus n is a power of p.

Q.E.D.
History: proving compositeness

Displaying a factorization: proof for every composite \(n \); verify in time \((\lg n)^{1+o(1)} \); often very hard to find.

Fermat base 2 ("2-prp"): proof for nearly every composite \(n \); find + verify in time \((\lg n)^{2+o(1)} \).
1966 Artjuhov ("sprp"), 1976 Rabin, 1980 Monier, 1982 Atkin-Larson: proof for every composite \(n \); verify in time \((\lg n)^{2+o(1)}\); find in random time \((\lg n)^{2+o(1)}\).

Recognize failure of this algorithm as \textit{guaranteeing} that \(n \) is prime. What if we want \textit{proof}?
Conjecturally certifying primality

1976 Miller, with 1979 Oesterlé: conjectured cert for every prime n; find+verify in time $(\lg n)^{4+o(1)}$.

1995 Lukes-Patterson-Williams (or using idea of 1982 Yao): conjectured cert for every prime n; find+verify in time $(\lg n)^{3+o(1)}$.

1980 Baillie et al.: shakily conjectured cert for every prime n; find+verify in time $(\lg n)^{2+o(1)}$.
Proving primality

1876 Lucas: proof for every prime n; verify in time at most $(\lg n)^{3+o(1)}$
(with Lehmer improvements), conjectured $(\lg n)^{2+o(1)}$;
conjecturally can find
for infinitely many primes n
in time $(\lg n)^{O(1)}$,
but often very hard to find.
1914 Pocklington, 1975 Morrison, 1975 Brillhart-Lehmer-Selfridge: similar, but findable for more n’s.

1979 Adleman-Pomerance-Rumely: proof for every prime n; find + verify in time $(\lg n)^{O(\lg \lg \lg n)}$.

1989 Pintz-Steiger-Szemerédi: proof for infinitely many primes n; verify in time $(\lg n)^{O(1)}$; find in time $(\lg n)^{O(1)}$.
1986 Goldwasser-Kilian, using 1985 Schoof: conjecturally, proof for every prime n; verify in time $(\lg n)^{3+o(1)}$; conjecturally, find in random time $(\lg n)^{O(1)}$.

1992 Adleman-Huang ("HECPP"): proof for every prime n; verify in time $(\lg n)^{O(1)}$; find in random time $(\lg n)^{O(1)}$.
1993 Atkin-Morain: conjecturally, proof for every prime n; verify in time $(\lg n)^{3+o(1)}$; conjecturally, find in random time $(\lg n)^{5+o(1)}$.

Current ECPP: conjecturally, proof for every prime n; verify in time $(\lg n)^{3+o(1)}$; conjecturally, find in random time $(\lg n)^{4+o(1)}$.
2002.08 Agrawal-Kayal-Saxena: proof for every prime n; find+verify in time $(\lg n)^{O(1)}$, conjectured $(\lg n)^{6+o(1)}$.

Introduced basic ideas of thm.

2003.03 Lenstra-Pomerance: proof for every prime n; find+verify in time $(\lg n)^{6+o(1)}$.
2002.11 Berrizbeitia: proof for every prime \(n\); verify in time \((\lg n)^{4+o(1)}\) if \(\text{ord}_2(n^2 - 1) \geq (2 + o(1)) \lg \lg n\); find in random time \((\lg n)^{2+o(1)}\).

Introduced idea of using Kummer extensions, twisting by powers of \(\zeta\).
2003.01 Cheng:
proof for every prime \(n \);
verify in time \((\lg n)^{4+o(1)} \) if
\(n - 1 \) has prime divisor \(e \approx (\lg n)^2 \);
find in random time \((\lg n)^{2+o(1)} \).

2003.01 Bernstein:
proof for every prime \(n \);
verify in time \((\lg n)^{4+o(1)} \);
find in random time \((\lg n)^{2+o(1)} \).
Many constant-factor speedups: parameter choice by Bernstein; negative powers by Voloch, with optimization by Vaaler; \(n/p \) by Lenstra; Minkowski by Lenstra.

Casual implementation using Granlund et al.’s GMP 4.1.2: primality proof for \(2^{1024} + 643 \) in \(\approx 3.8 \cdot 10^{13} \) PIII cycles.
Serious implementation will still be an order of magnitude slower than current ECPP.

But within striking distance!