Sharper ABC-based bounds
for congruent polynomials
Or: Fun with radical combinatorics
D. J. Bernstein

Thanks to:
University of Illinois at Chicago
NSF DMS-0140542
Alfred P. Sloan Foundation
Math Sciences Research Institute University of California at Berkeley

How to prove that n is prime

Select group scheme G over \mathbf{Z} / n.
Typical examples: $(\mathbf{Z} / n)^{*}$;
$\left((\mathbf{Z} / n)[x] /\left(x^{2}+1\right)\right)^{*}$; an elliptic curve over \mathbf{Z} / n.

Prove that $G(\mathbf{Z} / p)$ is large
for all primes p dividing n.
Conclude that p is large.

How to prove that group is large

Old strategy (Pocklington et al.):
Identify order- q element of group,
for various prime powers q
dividing presumed group order.
New strategy (Fellows-Koblitz,
Agrawal-Kayal-Saxena, et al.):
Combinatorially identify many
distinct elements of group.

Typical example

Given $h \in k[x], \operatorname{deg} h=e$,
$S \subseteq k, \# S=e$, with
$x-s \in(k[x] / h)^{*}$ for each $s \in S$.
Consider group $G \subseteq(k[x] / h)^{*}$ generated by $\{x-s: s \in S\}$.
$\# G \geq 2^{e}-1$: products of proper subsets of $\{x-s\}$ are all distinct modulo h.

Better bounds

$\# G \geq\binom{ 2 e-1}{e} \approx 2^{2 e}:$
count polynomials of degree $\leq e-1$.
$\# G \geq\binom{ e}{z}\binom{\lfloor e / 2\rfloor}{ z}\binom{\lceil e / 2\rceil-1+e-z}{e-z}$
$\approx 2^{2.54 e}$ with $z \approx 0.29 e$
count rational functions
with numerator degree $\leq\lfloor e / 2\rfloor$
and denominator degree $\leq\lceil e / 2\rceil-1$.
Lower bound $2^{\alpha e}$ produces
α^{4} speedup in AKS algorithm,
α^{2} speedup in newer variants.

Applying ABC

Look at polynomials of larger degree.
Use ABC theorem to see that three such polynomials cannot be the same modulo h.

Suggested by Voloch.
Further improvements by Bernstein:
$\# G \geq \frac{1}{3}\binom{\lfloor 2.1 e\rfloor}{ e} \approx 2^{2.096 e}$.

Thm: If $h \in k[x], \operatorname{deg} h>0$, $1,2,3, \ldots, 3 \operatorname{deg} h-2 \in k^{*}$, $a, b, c \in k[x]$, distinct, nonzero, $\operatorname{gcd}\{a, b, c\}=1$,
$a \equiv b \equiv c \quad(\bmod h)$
then deg rad $a b c>$
$2 \operatorname{deg} h-\max \{\operatorname{deg} a, \operatorname{deg} b, \operatorname{deg} c\}$.
Typical example:
$a=x^{20}, b=x^{10}, c=1$,
$\operatorname{rad} a b c=x, h=x^{10}-1$.

Pf: Assume deg a largest. Define $u=\frac{b-c}{h}, v=\frac{c-a}{h}, w=\frac{a-b}{h}$, $d=\operatorname{gcd}\{u a, v b, w c\}$.
$\operatorname{deg} a>0$ so deg rad $a b c>0$.
Done unless deg $a \leq 2 \operatorname{deg} h-1$.
Idea when $d=1:(u a)^{\prime} \neq 0$ since $1 \leq \operatorname{deg} u a \leq 3 \operatorname{deg} h-2$. $u a+v b+w c=0$ so deg rad uvwabc $>\operatorname{deg} u a$ so $\operatorname{deg} u v w+\operatorname{deg} r a d a b c>\operatorname{deg} u a$. Use $\operatorname{deg} v w \leq 2(\operatorname{deg} a-\operatorname{deg} h)$.

For arbitrary d :
Done unless $\operatorname{deg} d<\operatorname{deg} u a$.
$(u a / d)^{\prime} \neq 0$ since
$1 \leq \operatorname{deg}(u a / d) \leq 3 \operatorname{deg} h-2$.
$u a / d+v b / d+w c / d=0$ so
$\operatorname{deg} \operatorname{rad}\left(u v w a b c / d^{3}\right)>\operatorname{deg}(u a / d)$.
Voloch continuation: d divides
$\operatorname{gcd}\{u v w a, u v w b, u v w c\}=u v w$ so
2 deg $u v w+\operatorname{deg} r a d a b c>\operatorname{deg} u a$.

Bernstein continuation:
$d \operatorname{rad}\left(u v w a b c / d^{3}\right)$ divides uv rad abc.
(Exponents: If $\min \{a, b, c\}=0$ and $d=\min \{u+a, v+b, w+c\}$ then $d+[u+v+w+a+b+c>3 d]$ $\leq u+v+w+[a+b+c>0]$.)

So for any d obtain $\operatorname{deg} u v w+\operatorname{deg} \operatorname{rad} a b c>\operatorname{deg} u a$.

Thm: If $h \in k[x], \operatorname{deg} h>0$,
$1,2,3, \ldots, 3 \operatorname{deg} h-2 \in k^{*}$,
$a, b, c \in k[x]$, distinct, nonzero,
$\operatorname{gcd}\{a, b, c\}$ coprime to h,
$a \equiv b \equiv c \quad(\bmod h)$
then $\max \{\operatorname{deg} a, \operatorname{deg} b, \operatorname{deg} c\}>$
2 deg h

- deg rad $a-\operatorname{deg}$ rad $b-\operatorname{deg} \operatorname{rad} c$ $+\operatorname{deg} \operatorname{rad} \operatorname{gcd}\{a, b\}$ + deg rad $\operatorname{gcd}\{a, c\}$ + deg rad ged $\{b, c\}$.

Pf: Divide by ged; incl-excl.

What about $a_{1} \equiv a_{2} \equiv a_{3} \equiv a_{4}$?
Sum previous inequality for
$\left\{a_{1}, a_{2}, a_{3}\right\},\left\{a_{1}, a_{2}, a_{4}\right\}$, etc.:
$4 \max \left\{\operatorname{deg} a_{i}\right\}>8 \operatorname{deg} h$
-3 deg rad $a_{1}-3$ deg rad a_{2}
-3 deg rad $a_{3}-3$ deg rad a_{4}
+2 deg rad $\operatorname{gcd}\left\{a_{1}, a_{2}\right\}$
+2 deg rad $\operatorname{gcd}\left\{a_{1}, a_{3}\right\}$
+2 deg rad $\operatorname{gcd}\left\{a_{1}, a_{4}\right\}$
+2 deg rad $\operatorname{gcd}\left\{a_{2}, a_{3}\right\}$
+2 deg rad $\operatorname{gcd}\left\{a_{2}, a_{4}\right\}$
+2 deg rad $\operatorname{gcd}\left\{a_{3}, a_{4}\right\}$.
deg rad $a_{1} a_{2} a_{3} a_{4} \geq$
deg rad $a_{1}+$ deg rad a_{2} deg rad $a_{3}+$ deg rad a_{4}

- deg rad ged $\left\{a_{1}, a_{2}\right\}$
- deg rad $\operatorname{gcd}\left\{a_{1}, a_{3}\right\}$
- deg rad ged $\left\{a_{1}, a_{4}\right\}$
- deg rad $\operatorname{gcd}\left\{a_{2}, a_{3}\right\}$
- deg rad ged $\left\{a_{2}, a_{4}\right\}$
- deg rad $\operatorname{gcd}\left\{a_{3}, a_{4}\right\}$
by incl-excl, so
3 deg rad $a_{1} a_{2} a_{3} a_{4}+4 \max \left\{\operatorname{deg} a_{i}\right\}$
>8 deg h
$-\operatorname{deg} \operatorname{rad} \operatorname{gcd}\left\{a_{1}, a_{2}\right\}-\cdots$.

Use deg rad ged $\left\{a_{1}, a_{2}\right\} \leq$ $\max \left\{\operatorname{deg} a_{i}\right\}-\operatorname{deg} h$.
deg rad $a_{1} a_{2} a_{3} a_{4}>$
$(14 / 3) \operatorname{deg} h-(10 / 3) \max \left\{\operatorname{deg} a_{i}\right\}$.
In particular, if deg $h=e$
and deg rad $a_{1} a_{2} a_{3} a_{4} \leq e$,
then $\max \left\{\operatorname{deg} a_{i}\right\}>1.1 e$.
So 4 products of degree $\leq\lfloor 1.1 e\rfloor$ cannot all be the same modulo h.
$\# G \geq \frac{1}{3}\binom{\lfloor 2.1 e\rfloor}{ e}$.

More polynomials

Consider distinct $a_{1}, a_{2}, \ldots, a_{m}$, all congruent modulo h.
Average all subsets of 3 : max degree $>\frac{3 m^{2}-5 m-6}{3 m^{2}-7 m} e$.

Challenge: Prove max degree $\geq 2 e$ for some moderate m. Would give lower bound $\approx 2^{2.75 e}$ for $\# G$.

Don't have to use $A B C$ per se; play with many derivatives directly.

