A new proof that 83 is prime

D. J. Bernstein

Thanks to:
University of Illinois at Chicago
NSF DMS–0140542
Alfred P. Sloan Foundation
Math Sciences Research Institute
University of California at Berkeley
Theorem: 83 is prime.

Proof: Define R as the ring $(\mathbb{Z}/83)[i]/(i^2 + 1)$.

Map R onto a field k.

(There exists a prime p dividing 83, since $83 > 1$.

There exists an irreducible

$\varphi \in (\mathbb{Z}/p)[i]$ dividing $i^2 + 1$.

Define $k = (\mathbb{Z}/p)[i]/\varphi$.)
Use calculator to see that
\[83^2 - 1 = 14 \cdot 492 \text{ in } \mathbb{Z} \]
and \((2 + i)^{492} = 34 + 16i \text{ in } \mathbb{R} .\)

(Square repeatedly:
\[(2 + i)^2 = 3 + 4i \text{ in } \mathbb{R} ;\]
\[(2 + i)^3 = 2 + 11i \text{ in } \mathbb{R} ;\]
\[(2 + i)^6 = -34 - 39i \text{ in } \mathbb{R} ;\]
\[\ldots;\]
\[(2 + i)^{123} = 16 + 18i \text{ in } \mathbb{R} ;\]
\[(2 + i)^{246} = 15 - 5i \text{ in } \mathbb{R} ;\]
\[(2 + i)^{492} = 34 + 16i \text{ in } \mathbb{R} .\]
Use calculator to see that
\[(34 + 16i)^2 - 1 = -14 + 9i\]
is in \(R^*\), reciprocal \(41 - 27i\);
\[(34 + 16i)^7 - 1 = -2\]
is in \(R^*\), reciprocal \(41\);
and \((34 + 16i)^{14} = 1\) in \(R\).

Thus \((2 + i)^{#R-1} = 1\) in \(R\);
\((2 + i)^{(\#R-1)/2} - 1\) and
\((2 + i)^{(\#R-1)/7} - 1\) are in \(R^*\);
also, \((2 + i) - 1\) is in \(R^*\).
Define ζ as the image in k of $(2 + i)^{(\#R - 1)/14}$.
Then $\zeta^2 \neq 1$, $\zeta^7 \neq 1$, $\zeta^{14} = 1$, so ζ has order 14, and 14 divides $\#k - 1$.

$(2 + i)^{\#k - 1} = 1$ in k so $(2 + i)^{(\#k - 1)/14} = \zeta^l$ in k for some $l \in \mathbb{Z}$.
Use calculator to see that

\[(x - 1)^{83^2} = (2 + i)^{(83^2 - 1)/14} x - 1\]

in the ring \(R[x]/(x^{14} - (2 + i))\).

(Square repeatedly:

\[(x - 1)^2 = x^2 - 2x + 1,\]
\[(x - 1)^3 = x^3 - 3x^2 + 3x - 1,\]

\[
\ldots,
\]
\[(x - 1)^{1722} = (-10 + 40i)x^{13} + \ldots,\]
\[(x - 1)^{3444} = (-39 - 24i)x^{13} + \ldots,\]
\[(x - 1)^{6888} = (-17 + 33i)x^{13} + \ldots,\]
\[(x - 1)^{6889} = (34 + 16i)x - 1.\]
Define \(S = k[x]/(x^{14} - (2 + i)) \).
\((x - 1)^R = \zeta x - 1 \) in \(S \).

Substitute \(\zeta^m x \) for \(x \):
\((\zeta^m x - 1)^R = \zeta^{m+1} x - 1 \)
in \(k[x]/((\zeta^m x)^{14} - (2 + i)) = S \).
\((x - 1)^{R^m} = \zeta^m x - 1 \) in \(S \).
\((x - 1)^{R^m} #^k j = \zeta^{m+j} x - 1 \) in \(S \).
Define C as the set of $(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}$ such that $|\alpha \log(\#R/\#k)|$, $|\beta \log \#k|$, and $|\alpha \log(\#R/\#k) + \beta \log \#k|$ are $\leq \sqrt{\frac{14}{3}} \log \#R$.

If $\#k = \#R$ then can skip to end of proof, so assume $\#k < \#R$.
\[\left(0, \frac{\sqrt{14/3 \log \#R}}{\log \#k} \right) \]

\[\left(\frac{\sqrt{14/3 \log \#R}}{\log(\#R/\#k)}, 0 \right) \]
C is a closed convex symmetric set of area $3(14/3) \frac{(\lg \# R)^2}{(\lg \# k) \lg(\# R/\# k)},$ which is at least $4 \cdot 14.$

By Minkowski’s theorem, C has a nonzero point (α, β) in the determinant-14 lattice

\[\{(\alpha, \beta) \in \mathbb{Z} \times \mathbb{Z} : \alpha + (\beta - \alpha)l \in 14\mathbb{Z}\}.\]

Assume wlog that $\alpha \geq 0.$
If $\beta \geq 0$, define

$$u = (\#R/\#k)^\alpha \#k^\beta$$

and $v = 1$.

Then u and v are positive integers; u and v are $\leq \#R^{\sqrt{14/3}}$; and

$$(x - 1)^u \#k^\alpha = (x - 1)^R^\alpha \#k^\beta$$

$$= \zeta^{\alpha + \beta \ell} x - 1 = \zeta^{\alpha l} x - 1$$

$$= (x - 1)^k^\alpha = (x - 1)^v \#k^\alpha$$

in S.

Similar results if $\beta < 0$: define

$$u = (\#R/\#k)^\alpha$$

and $v = \#k^{-\beta}$.
\(x - 1 \) is in \(S^* \):

\[x^{14} - (2 + i) \mod x - 1 \text{ is } 1 - (2 + i), \text{ which is in } k^*. \]

\((x - 1)\#k^{14} = x - 1 \text{ in } S \text{ so order of } x - 1 \text{ is coprime to } \#k.\]

\((x - 1)^{u\#k^\alpha - v\#k^\alpha} = 1 \text{ in } S^* \text{ so } (x - 1)^{u - v} = 1 \text{ in } S^*.\]

Note that \(|u - v| < (83^2)\sqrt[3]{14/3} \sqrt[3]{14/3}. \]

Use calculator to see that \((83^2)\sqrt[3]{14/3} < (83^2)\sqrt[3]{169/36} = 83^{13/3} < 210000000.\)
If $a_0, a_1, \ldots, a_{13} \in \mathbb{Z}$ then
$$(x - 1)^{a_0} \cdots (\zeta^{13} x - 1)^{a_{13}}$$
is a power of $x - 1$ in S^*.

Consider vectors $(a_0, a_1, \ldots, a_{13})$ with $\#\{m : a_m < 0\} = 4$,
$\sum_m -a_m[a_m < 0] \leq 6$,
$\sum_m a_m[a_m \geq 0] \leq 7$.

Number of such vectors a is
$${14 \choose 4} {6 \choose 4} {17 \choose 7};$$ use calculator to see that $${14 \choose 4} {6 \choose 4} {17 \choose 7} = 292011720.$$
Say two such vectors a, b have
\[\prod_m (\zeta^m x - 1)^{a_m} = \prod_m (\zeta^m x - 1)^{b_m} \]
in S^*.

Then $A = B$ in S where
\[A = \prod ((\zeta^m x - 1)^{a_m[a_m \geq 0]} - b_m[b_m < 0]), \]
\[B = \prod ((\zeta^m x - 1)^{b_m[b_m \geq 0]} - a_m[a_m < 0]). \]

\[\deg A, \deg B \text{ are at most } 6 + 7 < 14 \]
so $A = B$ in $k[x]$.
\[x - 1, \zeta x - 1, \ldots, \zeta^{13} x - 1 \]
are coprime in $k[x]$ so $a = b$.
So there are \(\geq 292011720 \)
powers of \(x - 1 \) in \(S^* \).

Thus \(u = v \), i.e., \(\#R^\alpha = \#k^{\alpha-\beta} \).
If \(\alpha = 0 \) then \(\beta = 0 \), contradiction.
Thus 83 is a power of a prime.

Use calculator to see that
83 is not a square, cube, etc.
Thus 83 is prime.

\textbf{Q.E.D.}
This is a really stupid way to prove that 83 is prime.
But it scales really well!
Any prime n has a similar proof of primality. Verify in time $(\lg n)^{4+o(1)}$. Find in expected time $(\lg n)^{2+o(1)}$; GRH guarantees time $(\lg n)^{2+o(1)}$.
Proving primality of
\[n = 31415926535897932384626433832795028841: \]

Use \(R = \mathbb{Z}/n \). Check that

- 840 divides \(n - 1 \);
- \(17^{(n-1)/840} \) is a primitive 840th root of 1 in \(R \);
- \((x - 1)^n = 17^{(n-1)/840}x - 1 \) in \(R[x]/(x^{840} - 17) \); and
- \(\binom{840}{246} \binom{419}{246} \binom{1014}{420} \geq n \left\lfloor \sqrt[3]{840/3} \right\rfloor \).
Basic ideas introduced August 2002 by Agrawal-Kayal-Saxena.

Kummer and twists introduced November 2002 by Berrizbeitia: verify in time \((\lg n)^{4+o(1)}\)
if \(n \pm 1\) has large power of 2.

Generalized to any \(n\)
January 2003 by Bernstein, analogously to 1985 Lenstra.
Constant-factor speedups: parameter choice by Bernstein; negative powers by Voloch, with optimization by Vaaler; \#R/\#k by Lenstra; Minkowski by Lenstra.

Can we achieve \((\lg n)^{3+o(1)}\)? Want to prove that there are many more powers of \(x - 1\) in \(S^*\).