Proving primality

D. J. BernsteinUniversity of Illinois at Chicago

Thm (Agrawal, Kayal, Saxena 2002): "PRIMES \in P."

i.e. there is a deterministic polynomial-time algorithm A such that A(s) = 1 iff s is the decimal expansion of a prime number.

Proving compositeness

e.g. 3141592653589793238 is not prime.

e.g. 314159265358979323 is not prime: it is 317213509 · 990371647.

Thm: Assume that a > 1, b > 1, and ab = n. Then n is not prime.

For every non-prime n: can find suitable a, b by trying all a's in $\{2, 3, \ldots, \lfloor \sqrt{n} \rfloor \}$.

Verifying compositeness proof: $\log t ime \simeq \log d$ where d is length of input. "PRIMES \in coNP."

Finding compositeness proof: log time $\approx d$.

One way to prove primality: Fail to prove compositeness; $\log time \approx d$.

Faster factoring

Many ways to find a more quickly than trial division.

Number field sieve: conjectured log time $\approx d^{1/3}(\log d)^{2/3}$.

Compositeness without factoring

Thm (Fermat):

Assume that $a^n \neq a$ in \mathbf{Z}/n . Then n is not prime.

e.g. n = 314159265358979323 is not prime:

 $2^n = 198079119221837432 \neq 2$ in ${\bf Z}/n$.

Represent \mathbf{Z}/n as $\{0, 1, 2, \ldots, n-1\}$.

Computing powers in \mathbf{Z}/n takes log time $\simeq \log d$.

e.g. in $\mathbf{Z}/35621$: $2^{12900} = 509$ so $2^{25800} = 509^2 = 259081 = 9734$.

Quickly proves compositeness of most non-primes n.

But some non-primes n have $2^n=2$ in \mathbf{Z}/n . Some non-primes n ("Carmichael numbers") have $a^n=a$ in \mathbf{Z}/n for all a.

e.g. $2821 = 7 \cdot 13 \cdot 31$; but $2^{2821} = 2$ in $\mathbf{Z}/2821$. Thm (Artjuhov 1966, et al.): Assume that $n \in 5+8\mathbf{Z}$ and that a, $a^{(n-1)/2}+1$, $a^{(n-1)/4}+1$, $a^{(n-1)/4}-1$ are nonzero in \mathbf{Z}/n . Then n is not prime.

e.g. in
$$\mathbf{Z}/2821$$
: $2^{1410} + 1 = 1521$; $2^{705} + 1 = 2606$; $2^{705} - 1 = 2604$.

Cover all n using similar tests for $n \in 3 + 4\mathbf{Z}$, $n \in 9 + 16\mathbf{Z}$, etc.

For every non-prime n: if generalized Riemann hypothesis is true, can find $a \le 70(\log n)^2$. (Miller 1976; Oesterlé 1979)

Trying all these a's takes $\log t$ time $\approx \log d$.

"GRH implies PRIMES ∈ P."

For every non-prime n:
most a's work.
(Rabin 1976; Monier 1980;
Atkin, Larson 1982; similar:
Solovay, Strassen 1977)

Try 100d uniform random a's; negligible chance of failure; log time $\asymp \log d$. "PRIMES \in coRP."

Can eliminate randomness by generating "pseudorandom" sequence of a's for n.

If generator is cryptographically strong then algorithm never fails.

"If there is a strong PRNG then BPP = coRP = RP = P." (basic idea: Yao 1982)

Proving primality

Thm (Lucas 1876): Assume that n>1; $a^{n-1}=1$ in \mathbf{Z}/n ; and $a^{(n-1)/q}\neq 1$ in \mathbf{Z}/n for every prime q dividing n-1. Then n is prime.

e.g.
$$n=1000003$$
 is prime: $n-1=2\cdot 3\cdot 166667;$ 2, 3, 166667 are prime; in \mathbf{Z}/n : $2^{n-1}=1$, $2^{(n-1)/2}\neq 1$, $2^{(n-1)/3}\neq 1$, $2^{(n-1)/166667}\neq 1$.

If n is prime then can find a and q's.

Verifying primality proof: log time $\asymp \log d$. "PRIMES \in NP."

Finding primality proof is slow. Much faster if n-1 factors nicely.

Partial factorization of n-1 is sufficient. (Pocklington 1914)

Or $n^2 - 1$. (Morrison 1975; Brillhart, Lehmer, Selfridge 1975)

Proving primality with Jacobi sums using n^6-1 , $n^{24}-1$, etc.: log time $\asymp \log d \log \log d$. (Adleman, Pomerance, Rumely 1979)

Replace unit group with random elliptic-curve group. Conjecturally negligible chance of failure; $\log d$.

"If primes are well distributed then PRIMES \in RP."

(Goldwasser, Kilian 1986; relying on Schoof 1985)

Replace elliptic-curve group with group of points on Jacobian of genus-2 hyperelliptic curve. Negligible chance of failure; $\log t$

"PRIMES ∈ RP."

(Adleman, Huang 1992)

Thm (Agrawal, Kayal, Saxena 2002): Assume that q and r are prime, q divides r-1, $n^{(r-1)/q} \bmod r
otin \{0,1\},$ and $\binom{q+s-1}{s} \geq n^{2\lfloor \sqrt{r} \rfloor}$. If n has no prime divisors < s, and $(x+b)^n = x^n + b$ in the ring $(\mathbf{Z}/n)[x]/(x^r-1)$ for all $b \in \{0, 1, ..., s - 1\}$, then n is a power of a prime.

Find q, r, s with $rs \in (\log n)^{10+o(1)}$. Check remaining conditions. Proves that n is prime, or proves that n is composite.

Bottleneck in computation: $s \log_2 n$ multiplications of huge integers, each $\approx 2r \log_2 n$ bits. Time $r^{1+o(1)}s(\log n)^{2+o(1)}$; $\log time \approx \log d$.

Life after "PRIMES \in P"

Simplified proof. (Lenstra)

Polynomial time does *not* mean fast. In practice, use coRP tests. For proofs, use Jacobi sums.

Trying to make AKS competitive:

- pprox 450× speedup (Bernstein);
- pprox 1000× additional speedup (Lenstra, Poonen, Voloch); more?