Proving primality
D. J. Bernstein

University of Illinois at Chicago

Thm (Agrawal, Kayal, Saxena 2002): "PRIMES \in P."
i.e. there is a deterministic
polynomial-time algorithm A
such that $A(s)=1$ iff
s is the decimal expansion
of a prime number.

Proving compositeness

e.g. 3141592653589793238
is not prime.
e.g. 314159265358979323
is not prime:
it is $317213509 \cdot 990371647$.

Thm: Assume that $a>1, b>1$, and $a b=n$. Then n is not prime.

For every non-prime n :
can find suitable a, b
by trying all a 's in
$\{2,3, \ldots,\lfloor\sqrt{n}\rfloor\}$.

Verifying compositeness proof:
\log time $\asymp \log d$ where d is length of input. "PRIMES \in coNP."

Finding compositeness proof:
log time $\asymp d$.
One way to prove primality:
Fail to prove compositeness;
log time $\asymp d$.

Faster factoring
Many ways to find a more quickly than trial division.

Number field sieve: conjectured \log time $\asymp d^{1 / 3}(\log d)^{2 / 3}$.

Compositeness without factoring

Thm (Fermat):
Assume that $a^{n} \neq a$ in \mathbf{Z} / n. Then n is not prime. e.g. $n=314159265358979323$ is not prime:
$2^{n}=198079119221837432 \neq 2$
in \mathbf{Z} / n.

Represent \mathbf{Z} / n as
$\{0,1,2, \ldots, n-1\}$.
Computing powers in \mathbf{Z} / n takes
\log time $\asymp \log d$.
e.g. in $\mathbf{Z} / 35621: 2^{12900}=509$ so
$2^{25800}=509^{2}=259081=9734$.

Quickly proves compositeness of most non-primes n.

But some non-primes n
have $2^{n}=2$ in \mathbf{Z} / n.
Some non-primes n
("Carmichael numbers")
have $a^{n}=a$ in \mathbf{Z} / n for all a.
e.g. $2821=7 \cdot 13 \cdot 31$;
but $2^{2821}=2$ in $\mathbf{Z} / 2821$.

Chm (Artjuhov 1966, et al.):
Assume that $n \in 5+8 \mathbf{Z}$ and that $a, a^{(n-1) / 2}+1, a^{(n-1) / 4}+1$, $a^{(n-1) / 4}-1$ are nonzero in \mathbf{Z} / n. Then n is not prime.
e.g. in $\mathbf{Z} / 2821: 2^{1410}+1=1521$; $2^{705}+1=2606 ; 2^{705}-1=2604$.

Cover all n using similar tests
for $n \in 3+4 \mathbf{Z}, n \in 9+16 \mathbf{Z}$, etc.

For every non-prime n :
if generalized Riemann hypothesis is true, can find $a \leq 70(\log n)^{2}$.
(Miller 1976; Oesterlé 1979)
Trying all these a 's takes
\log time $\asymp \log d$.
"GRH implies PRIMES $\in P$."

For every non-prime n :
most a 's work.
(Rabin 1976; Monier 1980;
Atkin, Larson 1982; similar:
Solovay, Strassen 1977)
Try 100d uniform random a's; negligible chance of failure; $\log \operatorname{time} \asymp \log d$. "PRIMES \in coRP."

Can eliminate randomness by generating "pseudorandom" sequence of a 's for n.

If generator is
cryptographically strong
then algorithm never fails.
"If there is a strong PRNG
then $\mathrm{BPP}=\mathrm{coRP}=\mathrm{RP}=\mathrm{P}$."
(basic idea: Yao 1982)

Proving primality

Thm (Lucas 1876): Assume that $n>1 ; a^{n-1}=1$ in \mathbf{Z} / n; and $a^{(n-1) / q} \neq 1$ in \mathbf{Z} / n for every prime q dividing $n-1$. Then n is prime.
e.g. $n=1000003$ is prime: $n-1=2 \cdot 3 \cdot 166667$;
$2,3,166667$ are prime;
in $\mathbf{Z} / n: 2^{n-1}=1,2^{(n-1) / 2} \neq 1$,
$2^{(n-1) / 3} \neq 1,2^{(n-1) / 166667} \neq 1$.

If n is prime
then can find a and q 's.
Verifying primality proof:
\log time $\asymp \log d$.
"PRIMES \in NP."
Finding primality proof is slow.
Much faster if $n-1$ factors nicely.

Partial factorization of $n-1$ is sufficient. (Pocklington 1914)

Or $n^{2}-1$. (Morrison 1975; Brillhart, Lehmer, Selfridge 1975)

Proving primality with Jacobi sums using $n^{6}-1, n^{24}-1$, etc.: \log time $\asymp \log d \log \log d$.
(Adleman, Pomerance, Rumely
1979)

Replace unit group with random elliptic-curve group.
Conjecturally negligible
chance of failure;
\log time $\asymp \log d$.
"If primes are well distributed then PRIMES \in RP."
(Goldwasser, Kilian 1986; relying on Schoof 1985)

Replace elliptic-curve group with group of points on Jacobian of genus-2 hyperelliptic curve.
Negligible chance of failure; \log time $\asymp \log d$. "PRIMES \in RP."
(Adleman, Huang 1992)

Thm (Agrawal, Kayal, Saxena 2002): Assume that q and r are prime, q divides $r-1$,
$n^{(r-1) / q} \bmod r \notin\{0,1\}$,
and $\binom{q+s-1}{s} \geq n^{2\lfloor\sqrt{r}\rfloor}$.
If n has no prime divisors $<s$,
and $(x+b)^{n}=x^{n}+b$
in the ring $(\mathbf{Z} / n)[x] /\left(x^{r}-1\right)$
for all $b \in\{0,1, \ldots, s-1\}$,
then n is a power of a prime.

Find q, r, s with $r s \in(\log n)^{10+o(1)}$. Check remaining conditions.
Proves that n is prime,
or proves that n is composite.
Bottleneck in computation:
$s \log _{2} n$ multiplications of
huge integers, each $\approx 2 r \log _{2} n$ bits.
Time $r^{1+o(1)} s(\log n)^{2+o(1)}$;
\log time $\asymp \log d$.

Life after "PRIMES $\in P$ "

Simplified proof. (Lenstra)
Polynomial time does not mean fast.
In practice, use coRP tests.
For proofs, use Jacobi sums.
Trying to make AKS competitive:
$\approx 450 \times$ speedup (Bernstein);
$\approx 1000 \times$ additional speedup
(Lenstra, Poonen, Voloch); more?

