Speed records for cryptographic software: an update

D. J. Bernstein

University of Illinois at Chicago NSF CCR–9983950

Elliptic-curve cryptography

Define $p = 2^{226} - 5$; p is prime.

Consider the elliptic curve $y^2 = x^3 + 7530x^2 + x$ over **Z**/*p*.

For $n \in \mathbb{Z}$: Multiply $(53(2^{224} - 1)/(2^8 - 1), ...)$ by non the curve to get $(K_n, ...)$ or ∞ .

Compressed Diffie-Hellman

Your secret key: $a \in 16\mathbf{Z}$ with $0 \le K_a < 2^{224}$. Your public key: K_a .

My secret key: $b \in 16\mathbf{Z}$ with $0 \leq K_b < 2^{224}$. My public key: K_b .

Our shared secret: K_{ab} .

Given *a*, K_b , can compute K_{ab} in < 10⁶ cycles.

This is a very fast curve; somewhat faster than NIST P-224.

Elliptic-curve DH is much faster than other forms of DH at this presumed security level.

Some computational tools

Curve shape $y^2 = x^3 + c_2 x^2 + x$ allows very fast compressed curve multiplication. (Montgomery 1987)

Small $c_2 = 7530$ saves some mults.

Curve multiplication is only ≈ 2000 multiplications in \mathbf{Z}/p and one inversion in \mathbf{Z}/p .

Represent integers as sums of floating-point numbers at specified scales.

Use radix $R = 2^{28.25}$; sparse $p = R^8 - 5$ allows very fast reduction mod p.

Floatasm: new language and generation/verification tools for straight-line fp code. Keep the multiplier busy!

Hashing with rare collisions

For 128-bit m_i 's: Define $h_r(m_0, m_1, \ldots, m_{\ell-1}) =$ $(r^{\ell+1} + m_0 r^{\ell} + \cdots + m_{\ell-1} r)$ mod $(2^{130} - 5)$.

 $2^{130} - 5$ is prime $> 2^{128}$ to allow 128-bit m_i 's. Works well with radix 2^{26} .

Secret-key message authentication

I save $(k, r) = SHA-256(K_a, K_{ab})$.

You transmit *n*th message *m* as *n*, *m*, $(F_k(n) + h_r(m)) \mod 2^{128}$, using strong secret-key cipher *F*. (Easy to encrypt too.)

I reject n', m', s' if n' is old or if $s' \neq (F_k(n') + h_r(m')) \mod 2^{128}.$ Can compute $h_r(m)$ in $< 10^3$ cycles for typical lengths of m.

No precomputation needed, thanks to wide m_i 's.

This is the fastest known method to handle a flood of forgeries while communicating with known users.

Equation verification

To check a ring equation such as $s^2 = tn + fh$ where s, t, n, f, h have thousands of bits: Reduce s, t, n, f, h modulo secret 115-bit prime ℓ . Compute $s^2 - tn - fh$ mod ℓ .

Public-key signature verification

Signature of *m* under public key *n* is (r, h, f, s, t) where *r* is a random 256-bit string, *h* is a cryptographic hash of (r, m), $f \in \{1, -1, 2, -2\}$, and $s^2 = tn + fh$.

Check $s^2 = tn + fh$ in $< 10^4$ cycles for 3072-bit public keys.

This is the fastest known method at its presumed security level.

<u>Hello, chip designers</u>

Common chips have multiplier computing 128-bit product, then rounding to 64 bits.

Small additional cost: Provide the whole product, and a 136-bit adder. Roughly 4× speedup in arithmetic.