Speed records
for cryptographic software: an update
D. J. Bernstein

University of Illinois at Chicago
NSF CCR-9983950

Elliptic-curve cryptography

Define $p=2^{226}-5 ; p$ is prime.
Consider the elliptic curve
$y^{2}=x^{3}+7530 x^{2}+x$ over \mathbf{Z} / p.
For $n \in \mathbf{Z}$: Multiply
$\left(53\left(2^{224}-1\right) /\left(2^{8}-1\right), \ldots\right)$ by n
on the curve to get $\left(K_{n}, \ldots\right)$ or ∞.

Compressed Diffie-Hellman

Your secret key: $a \in 16 Z$
with $0 \leq K_{a}<2^{224}$.
Your public key: K_{a}.
My secret key: $b \in 16 Z$ with $0 \leq K_{b}<2^{224}$. My public key: K_{b}.

Our shared secret: $K_{a b}$.

Given a, K_{b}, can compute $K_{a b}$ in $<10^{6}$ cycles.

This is a very fast curve; somewhat faster than NIST P-224.

Elliptic-curve DH is much faster than other forms of DH at this presumed security level.

Some computational tools
Curve shape $y^{2}=x^{3}+c_{2} x^{2}+x$ allows very fast compressed curve multiplication. (Montgomery 1987)

Small $c_{2}=7530$ saves some mults.
Curve multiplication is only ≈ 2000 multiplications in \mathbf{Z} / p and one inversion in \mathbf{Z} / p.

Represent integers as sums of floating-point numbers at specified scales.

Use radix $R=2^{28.25}$;
sparse $p=R^{8}-5$ allows very fast reduction $\bmod p$.

Floatasm: new language and generation/verification tools for straight-line fp code. Keep the multiplier busy!

Hashing with rare collisions

For 128-bit m_{i} 's: Define
$h_{r}\left(m_{0}, m_{1}, \ldots, m_{\ell-1}\right)=$
$\left(r^{\ell+1}+m_{0} r^{\ell}+\cdots+m_{\ell-1} r\right)$
$\bmod \left(2^{130}-5\right)$.
$2^{130}-5$ is prime $>2^{128}$ to allow 128 -bit m_{i} 's.
Works well with radix 2^{26}.

Secret-key message authentication
I save $(k, r)=$ SHA- $256\left(K_{a}, K_{a b}\right)$.
You transmit nth message m as $n, m,\left(F_{k}(n)+h_{r}(m)\right) \bmod 2^{128}$, using strong secret-key cipher F. (Easy to encrypt too.)

I reject $n^{\prime}, m^{\prime}, s^{\prime}$ if n^{\prime} is old or if $s^{\prime} \neq\left(F_{k}\left(n^{\prime}\right)+h_{r}\left(m^{\prime}\right)\right) \bmod 2^{128}$.

Can compute $h_{r}(m)$ in $<10^{3}$ cycles for typical lengths of m.

No precomputation needed, thanks to wide m_{i} 's.

This is the fastest known method to handle a flood of forgeries while communicating with known users.

Equation verification

To check a ring equation

such as $s^{2}=t n+f h$ where s, t, n, f, h have thousands of bits:

Reduce s, t, n, f, h modulo secret 115-bit prime ℓ.
Compute $s^{2}-t n-f h \bmod \ell$.

Public-key signature verification

Signature of m under public key n is (r, h, f, s, t) where
r is a random 256-bit string,
h is a cryptographic hash of (r, m),
$f \in\{1,-1,2,-2\}$, and
$s^{2}=t n+f h$.
Check $s^{2}=t n+f h$ in $<10^{4}$ cycles for 3072-bit public keys.

This is the fastest known method at its presumed security level.

Hello, chip designers

Common chips have multiplier computing 128-bit product, then rounding to 64 bits.

Small additional cost:
Provide the whole product, and a 136-bit adder.

Roughly $4 \times$ speedup in arithmetic.

