
Design and implementation

of a publi
-key signature system

D. J. Bernstein

University of Illinois at Chi
ago



Fix � =

2164433956657901882446918303945984922

6446955501125839107201482054711184821

8049535271322850559064483907466032823

1568084128976071124352843082689980268

2604618703295449479028501573993961791

4882059723833462648323979853562951413.

A se
ret key is a pair of

prime numbers (p; q) with

p mod 40 = 3, q mod 40 = 7,

4 � 2

765

< p < 5 � 2

765

, and

2

800

� < pq < 2

800

(�+ 1).

Many people have realized that one 
an save spa
e for publi
 keys in an RSA-type system by

prespe
ifying some leading or trailing bits. The idea was published in 1991 (EUROCRYPT

'90, page 467). More histori
al details have been 
olle
ted by Arjen Lenstra (ASIACRYPT '98,

page 1). In 2000, three days before my talk, Vanstone and Zu

herato re
eived US patent

6134325 on the same idea. Their patent appli
ation was in 1995, more than a year after the

idea appeared in a printed publi
ation, so the patent is invalid under 35 USC 102(b). I was

planning to dis
uss this patent in my talk, but after a series of questions I de
ided that I didn't

have the time.



Publi
 key pq.

2

1535

< pq < 2

1536

.

Compress to pq mod 2

800

.

Conje
turally: NFS 
omputes

pq 7! p; q in � 2

100

steps.

ECM 
omputes pq 7! p; q with


han
e 2

�50

in � 2

70

steps.



For p > 0 with p mod 10 2 f3; 7g:

Images of 2

(p�1)=2

and x

(p+1)=2

in (Z=p)[x℄=(x

2

� 3x+ 1)

are in f�1; 1g if p is prime.

In pra
ti
e, only if p is prime.



A message is a byte string.

A hash value is an integer h

with 0 < h < 2

1531

, h mod 8 = 1.

A hash fun
tion is a fun
tion

from f0; 1g

256

� fmessagesg

to fhash valuesg.



For publi
 key n,

hash fun
tion A, message m:

(r; h; f; s; t) is an

A-signature of m under n

if r 2 f0; 1g

256

, h = A(r;m),

0 � s < 2

1536

, 0 � t < 2

1536

,

f 2 f�2;�1; 1; 2g, s

2

= tn+ fh.

Re
ap of the signature systems I mentioned in my talk:

s

e

mod n = m: The RSA system. Trivially breakable. Slow veri�
ation.

s

3

mod n = m: Often in
orre
tly 
alled the RSA system. Trivially breakable.

s

2

mod n = m: Often in
orre
tly 
alled the Rabin system. Trivially breakable.

s

2

mod n = A(r,m): The Rabin system. Unbroken.

s

2

mod n = fA(r,m): The Rabin-Williams system. Unbroken.

s

2

{ tn = fA(r,m): The RWB system. Unbroken.



Can 
ompute s

2

� tn� fh,


he
k if result is 0.

Faster: Redu
e s

2

� tn� fh

modulo a se
ret prime ` with

2

114

< ` < 2

115

, ` mod 5 2 f2; 3g;


he
k if result is 0.

Chan
e < 2

�100

of error

for uniform random `.



Given small n

0

; n

1

; : : : ; n

24

with

n = 2

800

�+

P

j

2

32j

n

j

:

n � (2

800

� mod `)

+

P

j

(2

32j

mod `)n

j

.

Pre
ompute 2

800

� mod `, et
.

Similarly s; t; h.



449 bytes for (r; h; f; s; t)

if h 
an be stored in 32 bytes.

257 bytes for (r; h; f; s).

Re
over t as (s

2

� fh)=n.

Combine Q

2

division, R division.

Could 
ompute s

2

mod n,


ompare to fh;

but faster to re
over t and use `.

The idea of 
ombining 2-adi
 division with 0-adi
 division, to halve the time for exa
t division

of small numbers, was published by Jebelean in 1993.



Signer must always generate

standard signatures:

s is a square modulo n; s < n;

f is earliest in 1; 2;�1;�2

with fh a square modulo n.

Signer should 
hoose uniform

random r for ea
h signature.



To 
ompute (f; s) given h; p; q:

x = h

(q+1)=4

mod q.

e = 1 if x

2

� h (mod q), else �1.

y = (eh)

(p+1)=4

mod p.

f = e if y

2

� eh (mod p), else 2e.

x

0

= (f=e)

(q+1)=4

x mod q.

y

0

= (f=e)

(p+1)=4

y mod p.

s = x

0

+ q(q

p�2

(y

0

� x

0

) mod p).

I negle
ted to mention in my talk that this pro
edure, without mu
h programming e�ort, takes


onstant time on typi
al 
omputers, so there is no risk from timing atta
ks.



Atta
ker has random publi
 key n

and ora
les for r;m 7! A(r;m),

m 7! uniform random standard

A-signature of m under n.

Atta
ker's su

ess 
han
e for A

is 
han
e that atta
ker's output

is (m; an A-signature for m)

for some message m

never given to the se
ond ora
le.



If atta
ker does < 2

80

queries

and has su

ess 
han
e �

on average over all A

then in about the same time


an �nd square roots modulo n

with probability � �� 2

�98

.

Hen
e 
an fa
tor n

with probability � (�� 2

�98

)=2.

This type of theorem prevents stupid mistakes, but it doesn't prevent mali
e. I mentioned

in my talk that one 
an easily 
onstru
t a system where every 
omputable hash fun
tion is

inse
ure even though the same type of theorem holds; one 
an, for example, a

ept a program

as a signature if the program produ
es the same result as the hash fun
tion on several inputs

sele
ted randomly by the veri�er.



Given n, y square unit modulo n,

to �nd a square root of y:

Use atta
ker with fake ora
les.

Hashing ora
le generates

uniform random hash values h

and auxiliary (w; f) with

fh � w

2

y (modn), proper f .



Signing ora
le, given m,

generates uniform random r

and a standard signature with

a uniform random hash value.

Fails if (r;m) was already

assigned a hash value

by the hashing ora
le.



Reasonable 
hoi
e of A:

Fix � =

9070023117376067920656283394

4025700038548313316260683816

7207155960299447770935701734

2445432473581147748610084622

8086606416744290576148843994

1980451207039781438375110910

1525913570889283323670943497

2682323183703659506259243300

9275340926695314718129950300

2391936647247246615258712831

7549574535303667042772676966

9475959996390742757794266253

1747820635325409548281828172.

A(r;m) = 2

320

� + 2

64

z + 1

where z = SHA-256L(r;m):

In my talk I alluded to a sele
tive signature forgery method whose 
omplexity is roughly the

square root of the number of hash outputs. The atta
ker �rst obtains legitimate signatures

on many messages, and sorts those signatures by h; then the atta
ker hashes many potential

forgeries, looking for a mat
h in h.



http://
r.yp.to

/papers/sigs.dvi

sigs-subs
ribe

�list.
r.yp.to


