
Design and implementation

of a publi-key signature system

D. J. Bernstein

University of Illinois at Chiago



Fix � =

2164433956657901882446918303945984922

6446955501125839107201482054711184821

8049535271322850559064483907466032823

1568084128976071124352843082689980268

2604618703295449479028501573993961791

4882059723833462648323979853562951413.

A seret key is a pair of

prime numbers (p; q) with

p mod 40 = 3, q mod 40 = 7,

4 � 2

765

< p < 5 � 2

765

, and

2

800

� < pq < 2

800

(�+ 1).

Many people have realized that one an save spae for publi keys in an RSA-type system by

prespeifying some leading or trailing bits. The idea was published in 1991 (EUROCRYPT

'90, page 467). More historial details have been olleted by Arjen Lenstra (ASIACRYPT '98,

page 1). In 2000, three days before my talk, Vanstone and Zuherato reeived US patent

6134325 on the same idea. Their patent appliation was in 1995, more than a year after the

idea appeared in a printed publiation, so the patent is invalid under 35 USC 102(b). I was

planning to disuss this patent in my talk, but after a series of questions I deided that I didn't

have the time.



Publi key pq.

2

1535

< pq < 2

1536

.

Compress to pq mod 2

800

.

Conjeturally: NFS omputes

pq 7! p; q in � 2

100

steps.

ECM omputes pq 7! p; q with

hane 2

�50

in � 2

70

steps.



For p > 0 with p mod 10 2 f3; 7g:

Images of 2

(p�1)=2

and x

(p+1)=2

in (Z=p)[x℄=(x

2

� 3x+ 1)

are in f�1; 1g if p is prime.

In pratie, only if p is prime.



A message is a byte string.

A hash value is an integer h

with 0 < h < 2

1531

, h mod 8 = 1.

A hash funtion is a funtion

from f0; 1g

256

� fmessagesg

to fhash valuesg.



For publi key n,

hash funtion A, message m:

(r; h; f; s; t) is an

A-signature of m under n

if r 2 f0; 1g

256

, h = A(r;m),

0 � s < 2

1536

, 0 � t < 2

1536

,

f 2 f�2;�1; 1; 2g, s

2

= tn+ fh.

Reap of the signature systems I mentioned in my talk:

s

e

mod n = m: The RSA system. Trivially breakable. Slow veri�ation.

s

3

mod n = m: Often inorretly alled the RSA system. Trivially breakable.

s

2

mod n = m: Often inorretly alled the Rabin system. Trivially breakable.

s

2

mod n = A(r,m): The Rabin system. Unbroken.

s

2

mod n = fA(r,m): The Rabin-Williams system. Unbroken.

s

2

{ tn = fA(r,m): The RWB system. Unbroken.



Can ompute s

2

� tn� fh,

hek if result is 0.

Faster: Redue s

2

� tn� fh

modulo a seret prime ` with

2

114

< ` < 2

115

, ` mod 5 2 f2; 3g;

hek if result is 0.

Chane < 2

�100

of error

for uniform random `.



Given small n

0

; n

1

; : : : ; n

24

with

n = 2

800

�+

P

j

2

32j

n

j

:

n � (2

800

� mod `)

+

P

j

(2

32j

mod `)n

j

.

Preompute 2

800

� mod `, et.

Similarly s; t; h.



449 bytes for (r; h; f; s; t)

if h an be stored in 32 bytes.

257 bytes for (r; h; f; s).

Reover t as (s

2

� fh)=n.

Combine Q

2

division, R division.

Could ompute s

2

mod n,

ompare to fh;

but faster to reover t and use `.

The idea of ombining 2-adi division with 0-adi division, to halve the time for exat division

of small numbers, was published by Jebelean in 1993.



Signer must always generate

standard signatures:

s is a square modulo n; s < n;

f is earliest in 1; 2;�1;�2

with fh a square modulo n.

Signer should hoose uniform

random r for eah signature.



To ompute (f; s) given h; p; q:

x = h

(q+1)=4

mod q.

e = 1 if x

2

� h (mod q), else �1.

y = (eh)

(p+1)=4

mod p.

f = e if y

2

� eh (mod p), else 2e.

x

0

= (f=e)

(q+1)=4

x mod q.

y

0

= (f=e)

(p+1)=4

y mod p.

s = x

0

+ q(q

p�2

(y

0

� x

0

) mod p).

I negleted to mention in my talk that this proedure, without muh programming e�ort, takes

onstant time on typial omputers, so there is no risk from timing attaks.



Attaker has random publi key n

and orales for r;m 7! A(r;m),

m 7! uniform random standard

A-signature of m under n.

Attaker's suess hane for A

is hane that attaker's output

is (m; an A-signature for m)

for some message m

never given to the seond orale.



If attaker does < 2

80

queries

and has suess hane �

on average over all A

then in about the same time

an �nd square roots modulo n

with probability � �� 2

�98

.

Hene an fator n

with probability � (�� 2

�98

)=2.

This type of theorem prevents stupid mistakes, but it doesn't prevent malie. I mentioned

in my talk that one an easily onstrut a system where every omputable hash funtion is

inseure even though the same type of theorem holds; one an, for example, aept a program

as a signature if the program produes the same result as the hash funtion on several inputs

seleted randomly by the veri�er.



Given n, y square unit modulo n,

to �nd a square root of y:

Use attaker with fake orales.

Hashing orale generates

uniform random hash values h

and auxiliary (w; f) with

fh � w

2

y (modn), proper f .



Signing orale, given m,

generates uniform random r

and a standard signature with

a uniform random hash value.

Fails if (r;m) was already

assigned a hash value

by the hashing orale.



Reasonable hoie of A:

Fix � =

9070023117376067920656283394

4025700038548313316260683816

7207155960299447770935701734

2445432473581147748610084622

8086606416744290576148843994

1980451207039781438375110910

1525913570889283323670943497

2682323183703659506259243300

9275340926695314718129950300

2391936647247246615258712831

7549574535303667042772676966

9475959996390742757794266253

1747820635325409548281828172.

A(r;m) = 2

320

� + 2

64

z + 1

where z = SHA-256L(r;m):

In my talk I alluded to a seletive signature forgery method whose omplexity is roughly the

square root of the number of hash outputs. The attaker �rst obtains legitimate signatures

on many messages, and sorts those signatures by h; then the attaker hashes many potential

forgeries, looking for a math in h.



http://r.yp.to

/papers/sigs.dvi

sigs-subsribe

�list.r.yp.to


