Design and implementation
of a public-key signature system

D. J. Bernstein
University of lllinois at Chicago

2164433956657901882446918303945984922
6446955501125839107201482054711184821
8049535271322850559064483907466032823

_ 1568084128976071124352843082689980268

F ___ 2604618703295449479028501573993961791

IX X == 1882059723833462648323979853562951413.

A secret key is a pair of
prime numbers (p, g) with

p mod 40 = 3, g mod 40 =7,
4.270 <5< 5.2 and
280y < pg < 2899(a + 1)

Many people have realized that one can save space for public keys in an RSA-type system by
prespecifying some leading or trailing bits. The idea was published in 1991 (EUROCRYPT
'90, page 467). More historical details have been collected by Arjen Lenstra (ASIACRYPT '98,
page 1). In 2000, three days before my talk, Vanstone and Zuccherato received US patent
6134325 on the same idea. Their patent application was in 1995, more than a year after the
idea appeared in a printed publication, so the patent is invalid under 35 USC 102(b). | was
planning to discuss this patent in my talk, but after a series of questions | decided that | didn't
have the time.

Public key ng.
21535 < pg < 21536.
Compress to pg mod 2809

Conjecturally: NFS computes
DG — D, g IN & 2100 steps.

ECM computes pg — p, g with

270

chance 27V in ~ steps.

For p > 0 with p mod 10 € {3, 7}

Images of 2(P—1)/2 and z(r+1)/2

n (2/p)lz]/(z? — 3z + 1)
are in {—1,1} if p is prime.

In practice, only if p is prime.

A message Is a byte string.

A hash value Is an integer h
with 0 < A < 21931 A mod 8 = 1.

A hash function is a function
from {0, 13%°® x {messages}
to {hash values}.

For public key n,
hash function A, message m:

(7, h, f,s,t) is an
A-signature of m under n
if r € {0,1}%° h = A(r, m),
0<s< 21936 <t < 21536
fe{-2-112} s> =tn+ fh.

Recap of the signature systems | mentioned in my talk:

s€ mod n = m: The RSA system. Trivially breakable. Slow verification.

s3 mod n m: Often incorrectly called the RSA system. Trivially breakable.
s2 mod n m: Often incorrectly called the Rabin system. Trivially breakable.
s2 mod n = A(r,m): The Rabin system. Unbroken.

s2 mod n = fA(r,m): The Rabin-Williams system. Unbroken.

s2 — tn = fA(r,m): The RWB system. Unbroken.

Can compute s — tn — fh,
check if result is O.

Faster: Reduce s? — tn — fh
modulo a secret prime £ with

U4 « ¢ <215 ¢ mod 5 € {2,3};
check if result is 0.

Chance < 27100 of error
for uniform random /.

Given small ng, n1, ..., nos with
n = 2%0¢q + D 23%0m,;:

n = (2°%% mod ¢)
+ Zj(232~7 mod £)n ;.
Precompute 2899« mod ¢, etc.

Similarly s, t, A.

449 bytes for (7, h, f, s, t)
if h can be stored in 32 bytes.

257 bytes for (7, h, f, s).
Recover t as (s° — fh)/n.
Combine Q> division, R division.

2 mod n,

Could compute s
compare to fh;

but faster to recover t and use /£.

The idea of combining 2-adic division with 0-adic division, to halve the time for exact division

of small numbers, was published by Jebelean in 1993.

Signer must always generate
standard signatures:

s Is a square modulo n; s < n;
fisearliestinl,2, —1, -2

with fh a square modulo n.

Signer should choose uniform
random 7 for each signature.

To compute (f, s) given h, D, q:

z = hl9T1)/4 mod g.

e =1if 2 = h (modq), else —1.
y = (eh)PT1/4 mod p.

f=-eif y* = eh (modp), else 2e.
z' = (f/e)9t1)/4z mod gq.
y' = (f/e)P1)/*y mod p.
s =a' 4+ q(¢"*(y' — ') mod p).

| neglected to mention in my talk that this procedure, without much programming effort, takes

constant time on typical computers, so there is no risk from timing attacks.

Attacker has random public key n
and oracles for r, m — A(r, m),
m — uniform random standard
A-signature of m under n.

Attacker's success chance for A
Is chance that attacker’'s output
is (m, an A-signature for m)

for some message m

never given to the second oracle.

If attacker does < 280 queries
and has success chance ¢

on average over all A

then In about the same time
can find square roots modulo n

with probability > ¢ — 2798,

Hence can factor n
with probability > (e — 2798)/2.

This type of theorem prevents stupid mistakes, but it doesn’'t prevent malice. | mentioned
in my talk that one can easily construct a system where every computable hash function is
insecure even though the same type of theorem holds; one can, for example, accept a program
as a signature if the program produces the same result as the hash function on several inputs
selected randomly by the verifier.

Given n, vy square unit modulo n,
to find a square root of y:
Use attacker with fake oracles.

Hashing oracle generates
uniform random hash values A
and auxiliary (w, f) with
fh = w?y (mod n), proper f.

Signing oracle, given m,
generates uniform random r
and a standard signature with

a uniform random hash value.

Fails if (, m) was already
assigned a hash value
by the hashing oracle.

Reasonable choice of A:

9070023117376067920656283394
4025700038548313316260683816
7207155960299447770935701734
2445432473581147748610084622
8086606416744290576148843994
1080451207039781438375110910
1525913570889283323670943497
2682323183703659506259243300
0275340926695314718129950300
2301036647247246615258712831

_ 7549574535303667042772676966
F __ 0475059996390742757794266253
| X T 1747820635325409548281828172.

Alr,m) = 2305 4+ 2042 + 1
where z = SHA-256L(r, m).

In my talk | alluded to a selective signature forgery method whose complexity is roughly the
square root of the number of hash outputs. The attacker first obtains legitimate signatures
on many messages, and sorts those signatures by h; then the attacker hashes many potential
forgeries, looking for a match in h.

http://cr.yp.to
/papers/sigs.dvi

sigs—subscribe

@list.cr.yp.to

