Applications of fast multiplication

D. J. Bernstein
University of Illinois at Chicago
Power-series product

Recall: a power series $f \in A[[x]]$ is a formal sum $f_0 + f_1x + f_2x^2 + \cdots$ with each $f_j \in A$.

Approximate f by the polynomial $f \mod x^n = f_0 + \cdots + f_{n-1}x^{n-1}$.

Given $f \mod x^n$ and $g \mod x^n$, can compute $fg \mod x^n$ with A-complexity $O(n \lg n \lg \lg n)$.
Power-series reciprocal

\(f \in A[[x]] \) with \(f_0 = 1 \).

Given approximation to \(f \).

Want approximation to \(1/f \).

Fact: If \((1/f) \mod x^n = z\) then \((1/f) \mod x^{2n} = z - (fz - 1)z \mod x^{2n}\).

A-complexity \(O(n \lg n \lg \lg n) \) for \((1/f) \mod x^n\) given \(f \mod x^n \).
Newton’s method

Differentiable partial function p. Want to find a root of p.

General idea:
If z is “close” to a root of p then $z - p(z)/p'(z)$ is “closer.”
Fast convergence to simple roots.

For $p = (z \mapsto 1 - 1/fz)$:
$p/p' = (z \mapsto (fz - 1)z)$.
Power-series quotient

\[f, g \in A[[x]] \text{ with } f_0 = 1. \]

A-complexity \(O(n \lg n \ lg \lg n) \)
for \((g/f) \mod x^n \)
given \(f \mod x^n, g \mod x^n \).

More precisely:
\[4 + o(1) \text{ times multiplication.} \]
(Cook; Sieveking; Kung; Brent)
Eliminate redundant FFTs.
Use higher-order iteration.
Merge quotient with reciprocal.

\[\frac{13}{6} + o(1) \text{ times multiplication.} \]

(Schönhage; A. Karp, Markstein, U.S. Patent 5,341,321; Brent; Harley; Zimmermann; Bernstein)
What about \(\mathbb{Z} \)?

Circuit of size \(O(n \lg n \lg \lg n) \) can compute \(n \)-bit approximation to a quotient in \(\mathbb{R} \).

Same idea as in \(A[[x]] \); more numerical analysis.

Or a quotient in \(\mathbb{Z}_2 \):
given \(g \in \mathbb{Z} \) and odd \(f \in \mathbb{Z} \), find \(h \in \mathbb{Z} \) with \(hf \equiv g \pmod{2^n} \).
Power-series logarithm

\(\mathcal{R} \)-complexity \((12 + o(1))n \lg n\) to multiply in \(\mathcal{R}[[x]] \).

Given \(f \in \mathcal{R}[[x]], f_0 = 1 \).
Want \(\log f \).

Use \((\log f)' = f'/f \).
\(\mathcal{R} \)-complexity \((26 + o(1))n \lg n\).
Power-series exponential

Given $f \in \mathbb{R}[[x]]$, $f_0 = 0$. Want $\exp f$.

Use Newton’s method to find root of $p = (z \mapsto \log z - f)$.
Note $p/p' = (z \mapsto (\log z - f)z)$.

\mathbb{R}-complexity $(34 + o(1))n \log n$.
Counting smooth polynomials

A polynomial in $\mathbb{F}_2[t]$ is smooth if it is a product of polynomials of degree ≤ 30.

$$\sum_{n \in \mathbb{F}_2[t], \text{n smooth}} x^{\deg n}$$

$$= \prod_{k \leq 30} 1/(1 - x^k)^{c_k}$$

$$= \exp \sum_{k \leq 30} c_k (x^k + \frac{1}{2} x^{2k} + \cdots)$$

where $c_k = (1/k) \sum_{d \mid k} 2^d \mu(k/d)$.
Not so easy to approximate \(\log f \) or \(\exp f \) for \(f \in \mathbb{R} \).

Circuit size \(n(\lg n)^{O(1)} \) using arithmetic-geometric mean or fast Taylor-series summation.

(Gauss; Legendre; Landen; Beeler; Gosper; Schroeppel; Salamin; Brent)
Multiplying many numbers

Given $x_1, x_2, \ldots, x_m \in \mathbb{Z}$, n bits together, $m \geq 1$.
Want $x_1 x_2 \cdots x_m$.

Method for m even: $x_1 x_2 \cdots x_m$
$= (x_1 \cdots x_{m/2})(x_{m/2+1} \cdots x_m)$.
Circuit size $O(n \lg n \lg \lg n \lg m)$.
Need a balanced splitting. Otherwise too much recursion.

Can measure balance by total bits instead of m.
Replaces $\lg m$ by entropy of x_j size distribution.
(Strassen)
Continued fractions

\[5 + \frac{1}{2 + \frac{1}{(1 + \frac{1}{1 + \frac{1}{3}})}} \]
= \frac{97}{18}.

\[C(5)C(2)C(1)C(1)C(3) = \begin{pmatrix} 97 & 27 \\ 18 & 5 \end{pmatrix} \]
where \(C(a) = \begin{pmatrix} a & 1 \\ 1 & 0 \end{pmatrix} \).

Given \(a_1, a_2, \ldots, a_m \),
can quickly compute
\(C(a_1)C(a_2) \cdots C(a_m) \).
Given \(f, g \in \mathbb{Z} \),
can quickly compute \(\gcd \{ f, g \} \) and the continued fraction for \(\frac{f}{g} \).

Circuit size \(O(n(\lg n)^2 \lg \lg n) \).

(Lehmer; Knuth; Schönhage; Brent, Gustavson, Yun)
Multipoint evaluation

Given positive $f, q_1, \ldots, q_m \in \mathbb{Z}$. Want each $f \mod q_j$.

Method for m even:
Recursively do the same for $f, q_1q_2, \ldots, q_{m-1}q_m$.

Circuit size $O(n \lg n \lg \lg n \lg m)$.

(Borodin, Moenck)
Finding small factors

Given a set \(P \) of primes, a set \(S \) of nonzero integers. Want to partly factor \(S \) using \(P \).

Method: Find \(g = \prod_{f \in S} f \).
Find \(Q = \{q \in P : g \mod q = 0\} \).
If \(\#S \leq 1 \), print \((Q, S)\) and stop.
Choose \(T \subseteq S \), half size.
Handle \(Q, T \). Handle \(Q, S - T \).
Circuit size $n(\lg n)^{O(1)}$.

In particular: Given y integers, each with $(\lg y)^{O(1)}$ bits, can recognize and factor the y-smooth integers. Circuit size $(\lg y)^{O(1)}$ per integer.
Factoring into coprimes

Given a set S of positive integers:
Can find a coprime set P
and completely factor S using P.

Coprime means $\gcd\{q, q'\} = 1$
for all $q, q' \in P$ with $q \neq q'$.

Circuit size $n(\lg n)^{O(1)}$.