
Rethinking the number field sieve

D. J. Bernstein

University of Illinois at Chicago

NSF DMS–9970409



Combining congruences

Want to factor n.

Consider pairs (g; h)

with g ≡ h (mod n).

Find set S of pairs so thatQ
(g;h)∈S g is a square andQ
(g;h)∈S h is a square.

Then a2 ≡ b2 (mod n)

where a =
pQ

g , b =
pQ

h.



The continued-fraction method

For each convergent p=q to
√
n:

g = (p mod n)2, h = p2 − nq2.

Then g ≡ h (mod n).

Focus on smooth h’s:

no large prime factors.

Find square products of h’s by

linear algebra on h factorizations.

(Lehmer, Powers,

Brillhart, Morrison)



How to find all prime factors ≤ y
of a nonzero integer h?

Assume h has (log y)O(1) digits.

Trial division: Time ≤ y1+o(1).

Fast-factorials method:

Time ≤ y1=2+o(1). (Pollard)



Hyperelliptic-curve method:

Time ≤ exp((log y)2=3+o(1))

with negligible chance of error.

(Lenstra, Pila, Pomerance)

Elliptic-curve method:

Conjectured time ≤
exp

p
(2 + o(1)) log y log log y

with negligible chance of error.

(Lenstra)



New method:

Time (log y)O(1) if there are

at least y=(log y)O(1)

h’s to handle at once.

Number of h’s to handle

is roughly y2 in

congruence-combining methods.



“How to find

small factors of integers”

http://cr.yp.to

/papers/sf.dvi

“Factoring into coprimes

in essentially linear time”

http://cr.yp.to

/papers/dcba.dvi



Given set P of primes,

set S of nonzero integers:

Find x =
Q
h∈S h.

Find Q = {q ∈ P : x mod q = 0}.
If #S ≤ 1: Print (Q; S) and stop.

Choose T ⊆ S, #T = b#S=2c.
Recursively handle Q; T .

Recursively handle Q; S − T .



Find x mod q1, x mod q2, etc.

by computing

x mod q1q2, x mod q3q4, etc.

recursively, then

x mod q1q2 mod q1,

x mod q1q2 mod q2,

x mod q3q4 mod q3, etc.

(Borodin, Moenck)



The quadratic sieve

Combine pairs (a2; a2 − n)

where a ≈
√
n.

Sieving finds small primes in

a2 − n for many consecutive a’s:

2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3 3

11 11 11 11
13 13 13 13

17 17 17
19 19

31 31
41

(Schroeppel, Pomerance)



Multiple lattices

For many (d; k) with

d square, k2 ≡ n (mod d):

Sieve over {a : a ≡ k (mod d)}.

For S values of a ≡ k (mod d):˛̨
a−
√
n
˛̨

up to ≈ Sd=2

so
˛̨
a2 − n

˛̨
=d up to ≈ S

√
n.

(“special d”: Davis, Holdridge;

“MPQS”: Montgomery;

“lattice sieve”: Pollard)



How to choose S

Make S as large as possible:

overhead is divided by S.

Make S as small as possible:

then (a2 − n)=d is small

and random access is fast

in a size-S sieve array.

(Example of sieving in L1 cache:

http://cr.yp.to

/primegen.html)



Standard solution (“early abort,”

aka “multiple large prime”):

1. Sieve using some primes.

2. Discard unlikely a’s.

3. Check each remaining a2 − n.

Faster step 3

⇒ can keep more a’s in step 2

⇒ can sieve less in step 1

⇒ can safely reduce S.



The number field sieve

Fix algebraic numbers ‚0; ‚1

and ring maps Z[‚i ]
mod n−−−→ Z=n

with ‚0 mod n = ‚1 mod n.

Combine pairs (a− b‚0; a− b‚1)

with small a; b ∈ Z.

Find smooth pairs by sieving.

(Pollard, Buhler, Lenstra,

Pomerance, Adleman)



e.g. n ≈ 10300:

Choose ‚0 ∈ Z, ‚0 ≈ 1040.

Find polynomial f over Z

with n = f (‚0),

deg f = 7, small coefficients.

Assume that f7 is coprime to n.

Let ‚1 be a root of f .



Use multiple lattices

as in quadratic sieve.

Faster factoring allows faster sieve

and smaller pairs (g; h).

Bound on (g; h) grows with d ,

so use more pairs (a; b)

for smaller d .



Coppersmith’s variant

Sieve to find smooth a− b‚0.

For each smooth a− b‚0:

Check a− b‚1.

Faster than sieving a− b‚1.

Have time to also try

a− b‚2; a− b‚3; : : :.

Reduce bounds accordingly.



Parameter selection

How to choose deg f , ‚0,

y for ‚0, y for ‚1, y for ‚2,

range of (a; b), sieve limit, etc.?

Many sensible possibilities

↓ quickly estimate NFS time

Attractive possibilities

↓ accurately estimate NFS time

Best of the attractive possibilities



Can compute at reasonable speed

a conjecturally accurate estimate

for NFS time. (new)

Highlight: Very fast algorithm

to compute tight bounds on

smoothness probabilities.

e.g. lower bounds on Ψ(x; 106) for

x ∈ {20; 21=776; : : : ; 2262143=776}
with relative log error < 10−4

in 7 · 1010 Pentium-II cycles.



Method: Change primes slightly.

e.g. increase 3 to 21230=776,

increase 5 to 21802=776, etc.

This changes the Dirichlet series

for smooth integers into a

fractional power series.

Use fast series exponentiation.

http://cr.yp.to

/psibound.html


