Rethinking the number field sieve

D. J. Bernstein

 University of Illinois at ChicagoNSF DMS-9970409

Combining congruences

Want to factor n.
Consider pairs (g, h)
with $g \equiv h(\bmod n)$.
Find set S of pairs so that
$\prod_{(g, h) \in S} g$ is a square and
$\prod_{(g, h) \in S} h$ is a square.
Then $a^{2} \equiv b^{2}(\bmod n)$
where $a=\sqrt{\prod g}, b=\sqrt{\prod h}$.

The continued-fraction method

For each convergent p / q to \sqrt{n} :
$g=(p \bmod n)^{2}, h=p^{2}-n q^{2}$.
Then $g \equiv h(\bmod n)$.
Focus on smooth h 's:
no large prime factors.
Find square products of h 's by
linear algebra on h factorizations.
(Lehmer, Powers,
Brillhart, Morrison)

How to find all prime factors $\leq y$ of a nonzero integer h ?

Assume h has $(\log y)^{O(1)}$ digits.
Trial division: Time $\leq y^{1+o(1)}$.
Fast-factorials method:
Time $\leq y^{1 / 2+o(1)}$. (Pollard)

Hyperelliptic-curve method: Time $\leq \exp \left((\log y)^{2 / 3+o(1)}\right)$ with negligible chance of error. (Lenstra, Pila, Pomerance)

Elliptic-curve method:
Conjectured time \leq
$\exp \sqrt{(2+o(1)) \log y \log \log y}$
with negligible chance of error. (Lenstra)

New method:
Time $(\log y)^{O(1)}$ if there are at least $y /(\log y)^{O(1)}$
h 's to handle at once.
Number of h 's to handle is roughly y^{2} in congruence-combining methods.
"How to find
small factors of integers"
http://cr.yp.to
/papers/sf.dvi
"Factoring into coprimes
in essentially linear time"
http://cr.yp.to
/papers/dcba.dvi

Given set P of primes, set S of nonzero integers:

Find $x=\prod_{h \in S} h$.
Find $Q=\{q \in P: \times \bmod q=0\}$. If $\# S \leq 1$: Print (Q, S) and stop.
Choose $T \subseteq S, \# T=\lfloor \# S / 2\rfloor$.
Recursively handle Q, T.
Recursively handle $Q, S-T$.

Find $x \bmod q_{1}, x \bmod q_{2}$, etc. by computing $x \bmod q_{1} q_{2}, x \bmod q_{3} q_{4}$, etc. recursively, then $x \bmod q_{1} q_{2} \bmod q_{1}$, $x \bmod q_{1} q_{2} \bmod q_{2}$, $x \bmod q_{3} q_{4} \bmod q_{3}$, etc.
(Borodin, Moenck)

The quadratic sieve

Combine pairs $\left(a^{2}, a^{2}-n\right)$
where $a \approx \sqrt{n}$.
Sieving finds small primes in $a^{2}-n$ for many consecutive a's:

(Schroeppel, Pomerance)

Multiple lattices

For many (d, k) with
d square, $k^{2} \equiv n(\bmod d)$:
Sieve over $\{a: a \equiv k(\bmod d)\}$.
For S values of $a \equiv k(\bmod d)$: $|a-\sqrt{n}|$ up to $\approx S d / 2$
so $\left|a^{2}-n\right| / d$ up to $\approx S \sqrt{n}$.
("special d": Davis, Holdridge; "MPQS": Montgomery; "lattice sieve": Pollard)

How to choose S

Make S as large as possible: overhead is divided by S.

Make S as small as possible:
then $\left(a^{2}-n\right) / d$ is small and random access is fast in a size- S sieve array.
(Example of sieving in L1 cache:
http://cr.yp.to
/primegen.html)

Standard solution ("early abort," aka "multiple large prime"):

1. Sieve using some primes.
2. Discard unlikely a's.
3. Check each remaining $a^{2}-n$.

Faster step 3
\Rightarrow can keep more a's in step 2
\Rightarrow can sieve less in step 1
\Rightarrow can safely reduce S.

The number field sieve

Fix algebraic numbers γ_{0}, γ_{1} and ring maps $\mathbf{Z}\left[\gamma_{i}\right] \xrightarrow{\bmod n} \mathbf{Z} / n$ with $\gamma_{0} \bmod n=\gamma_{1} \bmod n$.

Combine pairs $\left(a-b \gamma_{0}, a-b \gamma_{1}\right)$ with small $a, b \in \mathbf{Z}$.
Find smooth pairs by sieving.
(Pollard, Buhler, Lenstra,
Pomerance, Adleman)
e.g. $n \approx 10^{300}$.

Choose $\gamma_{0} \in \mathbf{Z}, \gamma_{0} \approx 10^{40}$.
Find polynomial f over \mathbf{Z}
with $n=f\left(\gamma_{0}\right)$,
$\operatorname{deg} f=7$, small coefficients.
Assume that f_{7} is coprime to n.
Let γ_{1} be a root of f.

Use multiple lattices
as in quadratic sieve.
Faster factoring allows faster sieve and smaller pairs (g, h).

Bound on (g, h) grows with d, so use more pairs (a, b)
for smaller d.

Coppersmith's variant

Sieve to find smooth $a-b \gamma_{0}$. For each smooth $a-b \gamma_{0}$:
Check $a-b \gamma_{1}$.
Faster than sieving $a-b \gamma_{1}$.
Have time to also try
$a-b \gamma_{2}, a-b \gamma_{3}, \ldots$.
Reduce bounds accordingly.

Parameter selection

How to choose $\operatorname{deg} f, \gamma_{0}$,
y for γ_{0}, y for γ_{1}, y for γ_{2},
range of (a, b), sieve limit, etc.?
Many sensible possibilities
\downarrow quickly estimate NFS time
Attractive possibilities
\downarrow accurately estimate NFS time
Best of the attractive possibilities

Can compute at reasonable speed a conjecturally accurate estimate for NFS time. (new)

Highlight: Very fast algorithm to compute tight bounds on smoothness probabilities.
e.g. lower bounds on $\Psi\left(x, 10^{6}\right)$ for $x \in\left\{2^{0}, 2^{1 / 776}, \ldots, 2^{262143 / 776}\right\}$
with relative log error $<10^{-4}$ in $7 \cdot 10^{10}$ Pentium-II cycles.

Method: Change primes slightly. e.g. increase 3 to $2^{1230 / 776}$,

$$
\text { increase } 5 \text { to } 2^{1802 / 776} \text {, etc. }
$$

This changes the Dirichlet series for smooth integers into a fractional power series. Use fast series exponentiation.
http://cr.yp.to
/psibound.html

