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Abstract. A recent key-recovery attack on Pomaranch stream cipher
was built due to the spotted biases in the distribution of certain linear
relations in the output sequence of a Jump Register Section. All the
relations and corresponding biases were found by computer experiments.
The suggested attack has the complexity O(295.4) and requires 271.8 bits
of the key-stream. In this paper we give theoretical reasons explaining
the bias and provide the means for its evaluation. We also propose a
minor change to the Pomaranch jump register configuration that allows
to reduce the maximal bias to a level that effectively counters the attack
increasing its complexity to O(2133.4) with 2116.9 bits of the key-stream
required.

1 Introduction

The Pomaranch stream cipher algorithm [1] uses a cascade construction of so
called jump registers [2] being essentially linear finite state machines with a spe-
cial transition matrix. The cascade consists of nine identical registers each built
on 14 memory cells. The transition matrix of the jump register has been chosen
with side channel resistance in mind. Moreover, the characteristic polynomial of
the transition matrix was made to be primitive and satisfying additional con-
straints that arise from the need to use the register in a cascade jump control
setup. In particular this means that it must be a member of a primitive S6 set
(see [2]), i.e., its jump index J as well as J − 1 must be coprime with its period.
The total number of polynomials of degree 14 belonging to primitive S6 sets is
228 or when counting a polynomial and its dual as one (since both of them have
similar properties) then this number goes down to 114 pairs. Then we looked for
the polynomials that correspond to jump registers having a minimal number of
feedback taps (namely, one). A polynomial chosen this way was implemented in
the submitted design.

It was noted in [3] that some linear relations in any 15 consecutive bits
of a Jump Register Section output have a biased distribution. This result was
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obtained by simulating the jump register operation during 14 cycles using all
possible 214 different Jump Control (JC) sequences of length 14 and then finding,
listing and counting arising linear relations on corresponding 15 output bits. It
thus turned out that there were two linear relations, which resulted from 840
different 14-bit sections of the JC sequence, and a total of 334 linear relations
occurred. In [3] the author described a correlation key-recovery attack having
the complexity O(295.4) that was based on the nonuniform distribution of the
linear relation having the highest bias of 840/214.

2 Linear Equivalences in Jump Registers

Depending on the value of the jump control bit, the transition matrix applied to
a jump register state is either A or A + I, where I denotes the identity matrix.
A has a primitive characteristic polynomial C(x) (obviously, the characteristic
polynomial of A+ I is the dual C⊥(x) which is primitive as well). Let Ri denote
the state of the register at time i. Then Ri+1 = (A + JCi+1I)Ri, where JCi

denotes the jump control bit at time i. The matrix A is similar to the companion
matrix of C(x) and, hence, can be seen as a primitive element of GF(2L), were L
is the degree of C(x). Clocking the register that is implemented by multiplying
the state by the transition matrix, then is equivalent to multiplication by x or
x + 1.

Let Z = {zi}
∞
i=0 denote the output sequence of a jump register. Starting from

some register state Ri, the first output bit zi is not affected by the jump control
bits from (JCi+1, . . . , JCi+L), the second output bit zi+1 is defined by JCi+1, the
third zi+2 is defined by (JCi+1, JCi+2) and so on. Assume that a linear relation
holds on L + 1 consecutive bits of Z at the shift position i independent of the
initial state of the register. This means that for some set of binary coefficients
(ℓ0, ℓ1, . . . , ℓL) and any initial state we have ℓ0zi + ℓ1zi+1 + . . . + ℓLzi+L = 0.
This is equivalent to

ℓ0 +

L
∑

j=1

ℓj

j
∏

k=1

(x + JCi+k) =

L
∑

j=0

ℓjx
j−kj (x + 1)kj = C(x) , (1)

where 0 ≤ kj ≤ j are defined by the control bits JCi+1, . . . , JCi+L, namely,
k0 = 0 and kj is equal to the binary weight of vector (JCi+1, . . . , JCi+j). Thus,
if assuming the jump control sequence is purely random, then the values of kj

are binomially distributed. Since the degree of C(x) is L and C(0) = 1 then
the coefficients at the highest-order and the constant term of the polynomial
standing on the left hand side of (1) should be nonzero, i.e., ℓ0 = ℓL = 1 for
any linear relation in the jump register output. Given an arbitrary jump control
sequence (that provides the values of kj) the solution of (1) for the unknowns
ℓj can be found applying a simplified version of Gaussian elimination with the
complexity linear in L. Such a solution always exists since every bit of the output
is a linear combination of L bits from the initial state R0 and thus any L + 1
bits of the output sequence are linearly dependent. The same can be also easily
seen from the matrix of the system that is nonsingular triangular.
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Take a set of coefficients ℓ0, . . . , ℓN that satisfy (1) for some fixed jump
control sequence and assume that the term at the coefficient ℓj = 1 has the
form xa(x + 1)b and for the nearest t > j with ℓt = 1 the term is xc(x + 1)d

(obviously, a + b = j, c + d = t, a ≤ c and b ≤ d). Then the number of possible
(t − j)-long sections of the jump control sequence leading from xa(x + 1)b to
xc(x+1)d is equal to

(

c+d−a−b
d−b

)

(these are exactly the sequences with the binary
weight of (JCi+j+1, . . . , JCi+t) equal to d−b since t−j = c+d−a−b). In a similar
manner, starting from the constant term x0(x+1)0 at ℓ0 = 1 and proceeding till
the highest-order term at ℓL = 1 we can find the total number of jump control
sequences that correspond to the given polynomial

∑L

j=0
ℓjx

j−kj (x + 1)kj and
this number is obtained as a product of the relevant binomial coefficients for all
ℓj 6= 0 and j > 0.

As can be seen from (1), the set of possible linear relations that correspond
to different control sequences, and the number of their occurrences only depend
on the characteristic polynomial of the jump register. As the linear relation
occurring most often plays an essential role in the aforementioned attack, we
will call this number the Linear Equivalence Bias (LEB) of the polynomial. All
occurrence numbers together form a Linear Equivalence Spectrum (LES) of the
polynomial. It can easily be seen by interchanging the roles of x and x + 1 that
C(x) and C⊥(x) have the same LES.

The following Doubling Rule holds

xa(x + 1)b =

{

xa−1(x + 1)b + xa−1(x + 1)b+1,

xa(x + 1)b−1 + xa+1(x + 1)b−1 .
(2)

This doubling rule can be applied to different terms in (1) that correspond to
any given linear relation. Other relations can be found this way and partial
contributions to their occurrences can be calculated. The most obvious example
is doubling the highest-order term corresponding to ℓL = 1, which gives rise to
ℓL−1 = 1 and ℓL = 1. Due to the binomial identity

(

n
k

)

+
(

n
k−1

)

=
(

n+1

k

)

the
partial contribution number computed for latter linear relation will be the same
and this, in particular, implies that all values in the LES are even. Applying the
doubling rule to other terms can result in a new relation having higher or lower
partial contribution number. This feature will be illustrated in the following
sections.

Note that using the presented technique we can evaluate a partial contribu-
tion to the total number of occurrences for some linear relations of length L+1 in
the output sequence of a jump control register. In some cases this value is equal
to the LEB of a polynomial meaning that we have found a relation that belongs
to the ones occurring most often. We can not currently provide the algorithm
for evaluating the LEB with the complexity lower than O(L · 2L) (the number
of JC sequences of length L multiplied by the complexity of a simple version of
Gaussian elimination of length L). Finding a less complex algorithm remains an
interesting open problem.
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3 The LEB of Pomaranch

The characteristic polynomial chosen for Pomaranch is given by the following
equation

C(x) = 1 + x
L
2
+k−n(x + 1)

L
2
−k + x

L
2 (x + 1)

L
2 (3)

for L = 14, n = 6 and k = 2. So the linear relation zi + zi+L−n + zi+L = 0 is
immediately evident. Applying the doubling rule to the senior term in (3) we
can get another relation zi + zi+L−n + zi+L−1 + zi+L = 0. Both linear relations
have the same occurrence number, given by

(

L − n
L
2
− k

)

·

(

n

k

)

. (4)

For the values chosen for Pomaranch this results in
(

8

5

)

·
(

6

2

)

= 840. The value of
840 also turns out to be the LEB of the characteristic polynomial used.

Applying the doubling rule, other LES values can be calculated. For example,
applying the doubling rule to the 8th order term in zi + zi+8 + zi+14 = 0 we
obtain a new linear relation zi + zi+7 + zi+8 + zi+14 = 0 having the occurrence
number

(

7

5

)

·
(

6

1

)

+
(

7

4

)

·
(

6

3

)

= 826, the second largest LES value of this polynomial.
For L = 14 and using one feedback tap only there are only 5 choices for (n, k)

and the dual (n, n − k) resulting in characteristic polynomials satisfying all the
conditions, viz. (6, 2), (7, 2), (7, 3), (8, 3) and (11, 5). The corresponding LEBs
are 840, 567, 1225, 840 and 1386 respectively. The conclusion is that with one
feedback tap the resulting characteristic polynomials all have too high LEB to
counter the attack suggested in [3].

4 A Modified Jump Register for Pomaranch

In order to find a characteristic polynomial with a sufficiently low LEB, the
Pomaranch jump register is changed to have two feedback taps. There is one
tap, the rightmost, at position n1 with k1 feedback cells among cells 1 to n1.
The other tap is at position n2 > n1, with k2 feedback cells among cells n1 + 1
to n2. The modified characteristic polynomial now becomes

C(x) = 1+x
L
2
+k1+k2−n2(x+1)

L
2
−k1−k2+x

L
2
+k1−n1(x+1)

L
2
−k1+x

L
2 (x+1)

L
2 (5)

for L = 14. The LES of this polynomial contains the obvious relation zi +
zi+L−n2

+ zi+L−n1
+ zi+L = 0.

Searching through all relevant (n1, n2, k1, k2) quadruplets results in a set of
16 primitive S6-set polynomials, amongst which are the five polynomials already
obtained for one tap. The polynomial with the least LEB in this set is x14 +
x13 + x12 + x11 + x9 + x7 + x5 + x4 + x2 + x + 1 is obtained for n1 = 4, n2 = 8,
k1 = k2 = 1 and has a LEB equal to 124 and a LES consisting of 1088 relations.
The linear relation zi + zi+6 + zi+10 + zi+14 = 0 occurs

(

6

1

)

·
(

4

3

)

·
(

4

3

)

= 96 times.
Performing a doubling operation on the 6th order term yields a relation which
occurs 124 times that is equal to the LEB value.
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Plugging in the bias of 124/214 of the jump register in the equations of [3]
now results in the attack complexity of O(2133.4) with 2116.9 bits of the key-
stream required. This complexity exceeds the one of the exhaustive search over
the key space containing 2128.

5 Conclusion

We introduced a minor change in the configuration of the Jump Register Section
in Pomaranch. Namely, feedback now is computed by taking the bits from the
tap positions 4, 8 and 14. The positions of the F- and S-cells in the register are
FFSFFFSSFSSFSS. This new configuration brings the complexity of the key-
recovery attack in [3] to O(2133.4) with 2116.9 bits of the key-stream required.
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