
Cryptanalysis of Pomaranch

Carlos Cid1, Henri Gilbert2 and Thomas Johansson3

1 Information Security Group,
Royal Holloway, University of London

Egham, Surrey TW20 0EX, United Kingdom
carlos.cid@rhul.ac.uk

2 France Télécom, R&D Division
38�40, rue du Général Leclerc

92794 Issy les Moulineaux, Cedex 9, France
henri.gilbert@francetelecom.com

3 Dept. of Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

thomas@it.lth.se

Abstract Pomaranch [3] is a synchronous stream cipher submitted to eSTREAM,
the ECRYPT Stream Cipher Project. The cipher is constructed as a cascade clock
control sequence generator, which is based on the notion of jump registers. In this
paper we present an attack which exploits the cipher's initialization procedure to
recover the 128-bit secret key. The attack requires around 265 computations. An
improved version of the attack is also presented, with complexity 252.

1 Introduction

Pomaranch1 is one of the 34 stream ciphers submitted to eSTREAM, the ECRYPT
Stream Cipher Project [1]. The cipher is implemented as a binary one clock pulse
cascade clock control sequence generator, and uses 128-bit keys and IVs of length
between 64 and 112 bits [3]. The construction is based on the notion of jump registers.

Jump controlled LFSRs were introduced in [2] as alternative to traditional clock-
controlled registers. In jump controlled LFSRs, the registers are able to move to
a state that is more than one step ahead without having to step through all the
intermediate states (thus the name jump registers). The main motivation for the
proposal of jump registers is to construct LFSR-based ciphers that can be e�ciently
protected against side-channel attacks while preserving the advantages of irregular
clocking.

2 Outline of Pomaranch

Pomaranch is depicted in Figure 1, where only the key stream generation phase is
represented (called Key Stream Generation Mode). The cipher consists of nine cas-
caded jump registers R1 to R9. The jump registers are implemented as autonomous
Linear Finite State Machine (LFSM), built on 14 memory cells, which behave either

1 The cipher is also referred in the speci�cation document [3] as Cascade Jump Controlled Sequence
Generator (CJCSG).



as simple delay shift cells or feedback cells, depending on the value of the so-called
Jump Control (JC) signal. At any moment, half of the cells in the registers are shift
cells, while the other half are feedback cells. The initial con�guration of cells is de-
termined by the LFSM transition matrix A, and is used if the JC value is zero. If JC
is one, all cells are switched to the opposite mode. This is equivalent to switching
the transition matrix to (A + 1) [3].

Figure1. The Pomaranch stream cipher

The 128-bit key K is divided into eight 16-bit subkeys k1 to k8. At time t, the
current state of the registers Rt

1 to Rt
8 are non linearly �ltered, using a function that

involves the corresponding subkey ki. These functions provide as output eight bits
ct
1 to ct

8, which are used to produce the jump control bits JCt
2 to JCt

9 controlling the
registers R2 to R9 at time t, as following:

JCt
i = ct

1 ⊕ . . .⊕ ct
i−1 for i = 2, . . . , 9.

The jump control bit JC1 of register R1 is permanently set to zero. The key stream
bit zt produced at time t is the XOR of nine bits rt

1 to rt
9 selected at �xed positions

of the current register states Rt
1 to Rt

9.

Key and IV Loading. During the cipher initialization, the content of registers
R1 to R9 are �rst set to non-zero constant 14-bit values derived from π, then the

2



subkeys ki are loaded and the registers are run for 128 steps in a special mode (called
Shift Mode). The main di�erence between the Key Stream Generation Mode and the
Shift Mode is that, in the latter the output of the �ltering function of register Ri

(denoted by ci) is added to the feedback of register Ri+1, with the tap from cell 1
in the register R9 being added to the register R1, making then what can be seen as
a �big loop�. Note that the con�guration of the jump registers do not change in this
mode (they all operate as if JCi = 0). This process ensures that the states of the
registers R1 and R9 after this key loading phase depend upon the entire key K. We
denote these states by RK

1 to RK
9 .

Next the IV is loaded into the registers. The IV can have any arbitrary length
between 64 and 112 bits. If the IV length is shorter than 112 bits, it is expanded by
cyclically repeating it until a length of exactly 112 bits is obtained. This new string
is then loaded into the registers as described below. In the remaining of this paper,
for the sake of simplicity, we assume that the IV length is exactly 112 bits.

The IV is loaded into the registers in the following manner: the 112-bit IV is
split into eight 14-bit parts IV1 to IV8, which are XORed with the 14-bit states of
registers RK

1 to RK
8 obtained at the end of the key loading. If any of the resulting

states consists of 14 null bits, its lowest weight bit is set to one (this ensures that
no state will be made up entirely of null bits2). The resulting register states R1 to
R8 form together with RK

9 the nine initial states. We denote these resulting 14-bit
state values by R−128

1 to R−128
9 . The key stream generation mode of Figure 1 is now

activated, and the runup consists of 128 steps in which the produced key stream bits
are discarded.

3 Description of the Attack

We have identi�ed the following weakness in the Pomaranch IV initialization proce-
dure: if for a given key K and IV value IV , we only modify the IV part IV8 and
keep the remaining parts IV1 to IV7 unchanged (thus obtaining a modi�ed IV value
IV ′), on comparing the key stream generation under the key K with IV and IV ′,
we have that for every t ≥ −128

Rt
i(IV ) = Rt

i(IV ′) for i = 1, . . . , 7 .

In other words, the Key and IV loading procedure does not di�use all IV bits into the
whole state of the generator. Consequently, if IV and IV ′ are chosen as above, the
contributions from registers R1 to R7 cancel out on each key stream XOR zt(IV )⊕
zt(IV ′), and we obtain the relation

zt(IV )⊕ zt(IV ′) = rt
8(IV )⊕ rt

8(IV ′)⊕ rt
9(IV )⊕ rt

9(IV ′).

2 The Pomaranch speci�cation does not mention this feature, which is described in the source code
provided with the submission and has been con�rmed by one of the designers [4]. We will show
in the next section that, although the cipher can be attacked even if this feature is withdrawn,
this represents an additional weakness that leads to improved attacks.

3



We now show how to exploit this weakness to recover the subkey k8 of an unknown
key K, in a chosen IV attack. Consider 3 distinct chosen IV values IV , IV ′ and IV ′′,
which only di�er by their part IV8, IV ′

8 and IV ′′
8 . We can obtain the corresponding

�rst m-bit key stream zt(IV )t=0 to m−1, zt(IV ′)t=0 to m−1, and zt(IV ′′)t=0 to m−1,
which in turn provide the pairwise XOR values

δt = zt(IV ) ⊕ zt(IV ′)t=0 to m−1,
δ′t = zt(IV ′) ⊕ zt(IV ′′)t=0 to m−1,

In order to recover the value of k8, we guess the following values:

- Subkey k8: 16 bits;
- Registers RK

8 and RK
9 : 28 bits;

- n8 = ]{t ∈ {−128, ..,−1} | JCt
8(IV ) = 1}: 129 possible values;

- n9 = ]{t ∈ {−128, ..,−1} | JCt
9(IV ) = 1}: 129 possible values;

- n′
9 = ]{t ∈ {−128, ..,−1} | JCt

9(IV ′) = 1}: 129 possible values;
- n′′

9 = ]{t ∈ {−128, ..,−1} | JCt
9(IV ′′) = 1}: 129 possible values.

The attack exploits the jump registers property that since the transition matrices
A and A + I commute, the transition matrix associated with a number s of steps
can only take one of the at most s + 1 values Ap(A + I)q, with p + q = s. Due to
this property, the knowledge of the values of (n8, n9, n′

9, n′′
9) is su�cient to derive

the R8 and R9 transition matrices of the form A128−n(A + I)n associated with the
128-step runup for IV values IV , IV ′ and IV ′′. Note that although n8, n9, n′

9, n′′
9

can take any of the 129 values in the [0 · · · 128] interval, their values are binomially
distributed, so that in practice the 25−1 middle values in the interval [49 · · · 79] have
an overwhelming occurrence probability.

Now since we have3

R−128
8 (IV ) = RK

8 ⊕ IV,

R−128
8 (IV ′) = RK

8 ⊕ IV ′,

R−128
8 (IV ′′) = RK

8 ⊕ IV ′′,

R−128
9 (IV ) = R−128

9 (IV ′) = R−128
9 (IV ′′) = RK

9 ,

it follows that knowledge of RK
8 , RK

9 , n8, n9, n
′
9 and n′′

9 allows us to compute R0
8(IV ),

R0
8(IV ′), R0

8(IV ′′), R0
9(IV ), R0

9(IV ′), and R0
9(IV ′′).

To test a (k8, R
K
8 , RK

9 , n8, n9, n
′
9, n

′′
9) assumption we need to compute the result-

ing values of R0
8(IV ), R0

8(IV ′), R0
8(IV ′′), R0

9(IV ), R0
9(IV ′), and R0

9(IV ′′) and itera-
tively try, for consecutive values of m, to guess the m-bit value JCt

8(IV )t=0 to m−1 in
order to derive the resulting values of Rt

8(IV ), Rt
8(IV ′), Rt

8(IV ′′), Rt
9(IV ), Rt

9(IV ′),
and Rt

9(IV ′′). Following we verify whether the predicted values (δt, δ′t)t=0 to m−1 are
in agreement with the observed ones. The average number of m values to be tested
until a wrong assumption is discarded (because no JCt

8(IV )t=0 to m−1 m-tuple �ts
the observed values) is about 2.

3 We are ignoring the cipher's non-zero state forcing feature at this stage.

4



Indeed, for a certain (k8, RK
8 , RK

9 , n8, n9, n′
9, n′′

9) assumption and a choice of
JCt

8(IV ), the pair (δt, δ′t) can take one of four possible values. Assuming the values
are randomly generated, there are three events to consider. First the case in which
the pairs (δt, δ′t) for both the choices of JCt

8(IV ) = 0 and JCt
8(IV ) = 1 are in

agreement with the observed value. Its probability is 1/16, and it leaves us with
two possible con�gurations that need to be further tested. The second event is when
only one pair (δt, δ′t) for either the choices of JCt

8(IV ) = 0 or JCt
8(IV ) = 1 is in

agreement with the observed one. Its probability is 3/8, and it leaves us with one
possible con�guration that need to be further tested. The third event is when neither
the pairs (δt, δ′t) for the choices of JCt

8(IV ) = 0 and JCt
8(IV ) = 1 is in agreement

with the observed one (i.e. the con�guration is inconsistent). Its probability is 9/16,
and no further tests using this con�guration is necessary. Thus if X denotes the
number of tests we need to perform, then

E(X) = 1 +
1
16

· 2 · E(X) +
3
8
· 1 · E(X) +

9
16

· 0 · E(X),

and E(X) = 2.

The attack described above allows us to recover the value of k8. Its complexity
is bounded over by 216 × 228 × (25)4 × 2 = 265. Note that the attack also recovers
the correct values for RK

8 and RK
9 . To recover the other key parts, we can pro-

ceed as following: repeat the same attack for another value of (IV, IV ′, IV ′′), call it
(IV , IV ′, IV ′′), such that IV and IV only di�er by their part IV7 and IV7. Since
we know already k8, RK

8 and RK
9 , this second attack can be mounted much faster.

Finally, we can guess the values of RK
7 and n7 and check whether there exists a

sequence JCt
7(IV )t=0 to m−1 that is consistent with the already known sequences

JCt
8(IV )t=0 to m−1 and JCt

8(IV )t=0 to m−1. This can be done for all the remaining
key parts, until the entire key K has been recover. The complexity of the entire
attack remains about 265.

Improved Attack. Note that so far we have not exploited the non-zero state forcing
feature of Pomaranch, and the above attack works whether this feature is present or
not. We now show that this feature results in a low complexity distinguisher, and
also allows us to reduce the complexity of the key derivation procedure described
above.

The distinguisher works as following: given an unknown key K, we can try the
214 possible IV values obtained by keeping (say) IV1 to IV7 unchanged and taking
all possible values for (say) IV8. Now two of these 214 IVs result in exactly the same
states R−128

1 to R−128
9 after key and IV loading, namely the IV value resulting on a

14-bit R8 state equal to zero (which will have one bit switched to 1 by the cipher
non-zero state forcing procedure), and the IV value derived from the former one by
swapping the same bit position. The key streams for these two IV values are exactly
the same. If the key stream is su�cient long (e.g. more than 27 bits in order for
collisions of a pair of IV values to be unlikely), this provides an e�cient chosen IV

5



distinguisher of distinguishing probability close to 1, requiring generation of only 214

key stream sequences of length (say) 64 bits each.
This distinguisher can be used to improve the key derivation attack described

above. Indeed, the distinguisher allows us to recover the register value RK
8 up to one

single bit, so that a factor of 213 can be saved in the search of (k8, RK
8 , RK

9 , n8,
n9,n

′
9, n′′

9), and the attack complexity is reduced to 252.

4 Conclusion

We showed in this paper how to mount a chosen IV attack to recover the secret key of
Pomaranch with complexity much lower than the one expected with 128-bit keys. The
attack exploits a weakness in the cipher initialization procedure, namely the process
does not di�use all the IV bits into the whole state of the key stream generator. By
exploiting another feature of the IV loading, we were able to substantially improve
the attack.

References

1. eSTREAM, the ECRYPT Stream Cipher Project. http://www.ecrypt.eu.org/stream/.
2. C. J. Jansen. Streamcipher Design: Make your LFSRs jump! In SASC, Workshop Record,

ECRYPT Network of Excellence in Cryptology, pages 94�108, 2004.
3. C.J. Jansen, T. Helleseth, and A. Kholosha. Cascade Jump Controlled Sequence Generator

(CJCSG). In SKEW, Workshop Record, ECRYPT Network of Excellence in Cryptology, 2005.
4. A. Kholosha. Personal Communication.

6


